linux/arch/arm64/kernel/sleep.S

151 lines
4.4 KiB
ArmAsm
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
#include <linux/errno.h>
#include <linux/linkage.h>
#include <asm/asm-offsets.h>
#include <asm/assembler.h>
#include <asm/smp.h>
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
.text
/*
* Implementation of MPIDR_EL1 hash algorithm through shifting
* and OR'ing.
*
* @dst: register containing hash result
* @rs0: register containing affinity level 0 bit shift
* @rs1: register containing affinity level 1 bit shift
* @rs2: register containing affinity level 2 bit shift
* @rs3: register containing affinity level 3 bit shift
* @mpidr: register containing MPIDR_EL1 value
* @mask: register containing MPIDR mask
*
* Pseudo C-code:
*
*u32 dst;
*
*compute_mpidr_hash(u32 rs0, u32 rs1, u32 rs2, u32 rs3, u64 mpidr, u64 mask) {
* u32 aff0, aff1, aff2, aff3;
* u64 mpidr_masked = mpidr & mask;
* aff0 = mpidr_masked & 0xff;
* aff1 = mpidr_masked & 0xff00;
* aff2 = mpidr_masked & 0xff0000;
* aff3 = mpidr_masked & 0xff00000000;
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
* dst = (aff0 >> rs0 | aff1 >> rs1 | aff2 >> rs2 | aff3 >> rs3);
*}
* Input registers: rs0, rs1, rs2, rs3, mpidr, mask
* Output register: dst
* Note: input and output registers must be disjoint register sets
(eg: a macro instance with mpidr = x1 and dst = x1 is invalid)
*/
.macro compute_mpidr_hash dst, rs0, rs1, rs2, rs3, mpidr, mask
and \mpidr, \mpidr, \mask // mask out MPIDR bits
and \dst, \mpidr, #0xff // mask=aff0
lsr \dst ,\dst, \rs0 // dst=aff0>>rs0
and \mask, \mpidr, #0xff00 // mask = aff1
lsr \mask ,\mask, \rs1
orr \dst, \dst, \mask // dst|=(aff1>>rs1)
and \mask, \mpidr, #0xff0000 // mask = aff2
lsr \mask ,\mask, \rs2
orr \dst, \dst, \mask // dst|=(aff2>>rs2)
and \mask, \mpidr, #0xff00000000 // mask = aff3
lsr \mask ,\mask, \rs3
orr \dst, \dst, \mask // dst|=(aff3>>rs3)
.endm
/*
* Save CPU state in the provided sleep_stack_data area, and publish its
* location for cpu_resume()'s use in sleep_save_stash.
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
*
* cpu_resume() will restore this saved state, and return. Because the
* link-register is saved and restored, it will appear to return from this
* function. So that the caller can tell the suspend/resume paths apart,
* __cpu_suspend_enter() will always return a non-zero value, whereas the
* path through cpu_resume() will return 0.
*
* x0 = struct sleep_stack_data area
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
*/
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 21:54:50 +08:00
ENTRY(__cpu_suspend_enter)
stp x29, lr, [x0, #SLEEP_STACK_DATA_CALLEE_REGS]
stp x19, x20, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+16]
stp x21, x22, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+32]
stp x23, x24, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+48]
stp x25, x26, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+64]
stp x27, x28, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+80]
/* save the sp in cpu_suspend_ctx */
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
mov x2, sp
str x2, [x0, #SLEEP_STACK_DATA_SYSTEM_REGS + CPU_CTX_SP]
/* find the mpidr_hash */
ldr_l x1, sleep_save_stash
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
mrs x7, mpidr_el1
adr_l x9, mpidr_hash
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
ldr x10, [x9, #MPIDR_HASH_MASK]
/*
* Following code relies on the struct mpidr_hash
* members size.
*/
ldp w3, w4, [x9, #MPIDR_HASH_SHIFTS]
ldp w5, w6, [x9, #(MPIDR_HASH_SHIFTS + 8)]
compute_mpidr_hash x8, x3, x4, x5, x6, x7, x10
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 21:54:50 +08:00
add x1, x1, x8, lsl #3
str x0, [x1]
add x0, x0, #SLEEP_STACK_DATA_SYSTEM_REGS
stp x29, lr, [sp, #-16]!
bl cpu_do_suspend
ldp x29, lr, [sp], #16
mov x0, #1
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
ret
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 21:54:50 +08:00
ENDPROC(__cpu_suspend_enter)
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
.pushsection ".idmap.text", "awx"
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
ENTRY(cpu_resume)
bl el2_setup // if in EL2 drop to EL1 cleanly
mov x0, #ARM64_CPU_RUNTIME
bl __cpu_setup
/* enable the MMU early - so we can access sleep_save_stash by va */
adrp x1, swapper_pg_dir
bl __enable_mmu
ldr x8, =_cpu_resume
br x8
ENDPROC(cpu_resume)
.ltorg
.popsection
ENTRY(_cpu_resume)
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
mrs x1, mpidr_el1
adr_l x8, mpidr_hash // x8 = struct mpidr_hash virt address
/* retrieve mpidr_hash members to compute the hash */
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
ldr x2, [x8, #MPIDR_HASH_MASK]
ldp w3, w4, [x8, #MPIDR_HASH_SHIFTS]
ldp w5, w6, [x8, #(MPIDR_HASH_SHIFTS + 8)]
compute_mpidr_hash x7, x3, x4, x5, x6, x1, x2
/* x7 contains hash index, let's use it to grab context pointer */
ldr_l x0, sleep_save_stash
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
ldr x0, [x0, x7, lsl #3]
add x29, x0, #SLEEP_STACK_DATA_CALLEE_REGS
add x0, x0, #SLEEP_STACK_DATA_SYSTEM_REGS
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
/* load sp from context */
ldr x2, [x0, #CPU_CTX_SP]
mov sp, x2
/*
* cpu_do_resume expects x0 to contain context address pointer
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
*/
bl cpu_do_resume
#ifdef CONFIG_KASAN
mov x0, sp
kprobes: Unpoison stack in jprobe_return() for KASAN I observed false KSAN positives in the sctp code, when sctp uses jprobe_return() in jsctp_sf_eat_sack(). The stray 0xf4 in shadow memory are stack redzones: [ ] ================================================================== [ ] BUG: KASAN: stack-out-of-bounds in memcmp+0xe9/0x150 at addr ffff88005e48f480 [ ] Read of size 1 by task syz-executor/18535 [ ] page:ffffea00017923c0 count:0 mapcount:0 mapping: (null) index:0x0 [ ] flags: 0x1fffc0000000000() [ ] page dumped because: kasan: bad access detected [ ] CPU: 1 PID: 18535 Comm: syz-executor Not tainted 4.8.0+ #28 [ ] Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 [ ] ffff88005e48f2d0 ffffffff82d2b849 ffffffff0bc91e90 fffffbfff10971e8 [ ] ffffed000bc91e90 ffffed000bc91e90 0000000000000001 0000000000000000 [ ] ffff88005e48f480 ffff88005e48f350 ffffffff817d3169 ffff88005e48f370 [ ] Call Trace: [ ] [<ffffffff82d2b849>] dump_stack+0x12e/0x185 [ ] [<ffffffff817d3169>] kasan_report+0x489/0x4b0 [ ] [<ffffffff817d31a9>] __asan_report_load1_noabort+0x19/0x20 [ ] [<ffffffff82d49529>] memcmp+0xe9/0x150 [ ] [<ffffffff82df7486>] depot_save_stack+0x176/0x5c0 [ ] [<ffffffff817d2031>] save_stack+0xb1/0xd0 [ ] [<ffffffff817d27f2>] kasan_slab_free+0x72/0xc0 [ ] [<ffffffff817d05b8>] kfree+0xc8/0x2a0 [ ] [<ffffffff85b03f19>] skb_free_head+0x79/0xb0 [ ] [<ffffffff85b0900a>] skb_release_data+0x37a/0x420 [ ] [<ffffffff85b090ff>] skb_release_all+0x4f/0x60 [ ] [<ffffffff85b11348>] consume_skb+0x138/0x370 [ ] [<ffffffff8676ad7b>] sctp_chunk_put+0xcb/0x180 [ ] [<ffffffff8676ae88>] sctp_chunk_free+0x58/0x70 [ ] [<ffffffff8677fa5f>] sctp_inq_pop+0x68f/0xef0 [ ] [<ffffffff8675ee36>] sctp_assoc_bh_rcv+0xd6/0x4b0 [ ] [<ffffffff8677f2c1>] sctp_inq_push+0x131/0x190 [ ] [<ffffffff867bad69>] sctp_backlog_rcv+0xe9/0xa20 [ ... ] [ ] Memory state around the buggy address: [ ] ffff88005e48f380: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ ] ffff88005e48f400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ ] >ffff88005e48f480: f4 f4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ ] ^ [ ] ffff88005e48f500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ ] ffff88005e48f580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ ] ================================================================== KASAN stack instrumentation poisons stack redzones on function entry and unpoisons them on function exit. If a function exits abnormally (e.g. with a longjmp like jprobe_return()), stack redzones are left poisoned. Later this leads to random KASAN false reports. Unpoison stack redzones in the frames we are going to jump over before doing actual longjmp in jprobe_return(). Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: kasan-dev@googlegroups.com Cc: surovegin@google.com Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/1476454043-101898-1-git-send-email-dvyukov@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-14 22:07:23 +08:00
bl kasan_unpoison_task_stack_below
#endif
ldp x19, x20, [x29, #16]
ldp x21, x22, [x29, #32]
ldp x23, x24, [x29, #48]
ldp x25, x26, [x29, #64]
ldp x27, x28, [x29, #80]
ldp x29, lr, [x29]
mov x0, #0
ret
ENDPROC(_cpu_resume)