linux/drivers/net/wireless/iwlwifi/mvm/nvm.c

241 lines
7.4 KiB
C
Raw Normal View History

/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2012 - 2013 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called COPYING.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2012 - 2013 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include "iwl-trans.h"
#include "mvm.h"
#include "iwl-eeprom-parse.h"
#include "iwl-eeprom-read.h"
#include "iwl-nvm-parse.h"
/* list of NVM sections we are allowed/need to read */
static const int nvm_to_read[] = {
NVM_SECTION_TYPE_HW,
NVM_SECTION_TYPE_SW,
NVM_SECTION_TYPE_CALIBRATION,
NVM_SECTION_TYPE_PRODUCTION,
};
/* Default NVM size to read */
#define IWL_NVM_DEFAULT_CHUNK_SIZE (2*1024);
static inline void iwl_nvm_fill_read(struct iwl_nvm_access_cmd *cmd,
u16 offset, u16 length, u16 section)
{
cmd->offset = cpu_to_le16(offset);
cmd->length = cpu_to_le16(length);
cmd->type = cpu_to_le16(section);
}
static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
u16 offset, u16 length, u8 *data)
{
struct iwl_nvm_access_cmd nvm_access_cmd = {};
struct iwl_nvm_access_resp *nvm_resp;
struct iwl_rx_packet *pkt;
struct iwl_host_cmd cmd = {
.id = NVM_ACCESS_CMD,
.flags = CMD_SYNC | CMD_WANT_SKB,
.data = { &nvm_access_cmd, },
};
int ret, bytes_read, offset_read;
u8 *resp_data;
iwl_nvm_fill_read(&nvm_access_cmd, offset, length, section);
cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
ret = iwl_mvm_send_cmd(mvm, &cmd);
if (ret)
return ret;
pkt = cmd.resp_pkt;
if (pkt->hdr.flags & IWL_CMD_FAILED_MSK) {
IWL_ERR(mvm, "Bad return from NVM_ACCES_COMMAND (0x%08X)\n",
pkt->hdr.flags);
ret = -EIO;
goto exit;
}
/* Extract NVM response */
nvm_resp = (void *)pkt->data;
ret = le16_to_cpu(nvm_resp->status);
bytes_read = le16_to_cpu(nvm_resp->length);
offset_read = le16_to_cpu(nvm_resp->offset);
resp_data = nvm_resp->data;
if (ret) {
IWL_ERR(mvm,
"NVM access command failed with status %d (device: %s)\n",
ret, mvm->cfg->name);
ret = -EINVAL;
goto exit;
}
if (offset_read != offset) {
IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
offset_read);
ret = -EINVAL;
goto exit;
}
/* Write data to NVM */
memcpy(data + offset, resp_data, bytes_read);
ret = bytes_read;
exit:
iwl_free_resp(&cmd);
return ret;
}
/*
* Reads an NVM section completely.
* NICs prior to 7000 family doesn't have a real NVM, but just read
* section 0 which is the EEPROM. Because the EEPROM reading is unlimited
* by uCode, we need to manually check in this case that we don't
* overflow and try to read more than the EEPROM size.
* For 7000 family NICs, we supply the maximal size we can read, and
* the uCode fills the response with as much data as we can,
* without overflowing, so no check is needed.
*/
static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
u8 *data)
{
u16 length, offset = 0;
int ret;
/* Set nvm section read length */
length = IWL_NVM_DEFAULT_CHUNK_SIZE;
ret = length;
/* Read the NVM until exhausted (reading less than requested) */
while (ret == length) {
ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
if (ret < 0) {
IWL_ERR(mvm,
"Cannot read NVM from section %d offset %d, length %d\n",
section, offset, length);
return ret;
}
offset += ret;
}
IWL_DEBUG_EEPROM(mvm->trans->dev,
"NVM section %d read completed\n", section);
return offset;
}
static struct iwl_nvm_data *
iwl_parse_nvm_sections(struct iwl_mvm *mvm)
{
struct iwl_nvm_section *sections = mvm->nvm_sections;
const __le16 *hw, *sw, *calib;
/* Checking for required sections */
if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
!mvm->nvm_sections[NVM_SECTION_TYPE_HW].data) {
IWL_ERR(mvm, "Can't parse empty NVM sections\n");
return NULL;
}
if (WARN_ON(!mvm->cfg))
return NULL;
hw = (const __le16 *)sections[NVM_SECTION_TYPE_HW].data;
sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
return iwl_parse_nvm_data(mvm->trans->dev, mvm->cfg, hw, sw, calib);
}
int iwl_nvm_init(struct iwl_mvm *mvm)
{
int ret, i, section;
u8 *nvm_buffer, *temp;
/* TODO: find correct NVM max size for a section */
nvm_buffer = kmalloc(mvm->cfg->base_params->eeprom_size,
GFP_KERNEL);
if (!nvm_buffer)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(nvm_to_read); i++) {
section = nvm_to_read[i];
/* we override the constness for initial read */
ret = iwl_nvm_read_section(mvm, section, nvm_buffer);
if (ret < 0)
break;
temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
if (!temp) {
ret = -ENOMEM;
break;
}
mvm->nvm_sections[section].data = temp;
mvm->nvm_sections[section].length = ret;
}
kfree(nvm_buffer);
if (ret < 0)
return ret;
mvm->nvm_data = iwl_parse_nvm_sections(mvm);
if (!mvm->nvm_data)
return -ENODATA;
return 0;
}