linux/drivers/iommu/mtk_iommu.c

973 lines
27 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2016 MediaTek Inc.
* Author: Yong Wu <yong.wu@mediatek.com>
*/
#include <linux/bitfield.h>
#include <linux/bug.h>
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/device.h>
#include <linux/dma-iommu.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/list.h>
#include <linux/mfd/syscon.h>
#include <linux/of_address.h>
#include <linux/of_iommu.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/soc/mediatek/infracfg.h>
#include <asm/barrier.h>
#include <soc/mediatek/smi.h>
#include "mtk_iommu.h"
#define REG_MMU_PT_BASE_ADDR 0x000
#define MMU_PT_ADDR_MASK GENMASK(31, 7)
#define REG_MMU_INVALIDATE 0x020
#define F_ALL_INVLD 0x2
#define F_MMU_INV_RANGE 0x1
#define REG_MMU_INVLD_START_A 0x024
#define REG_MMU_INVLD_END_A 0x028
#define REG_MMU_INV_SEL_GEN2 0x02c
#define REG_MMU_INV_SEL_GEN1 0x038
#define F_INVLD_EN0 BIT(0)
#define F_INVLD_EN1 BIT(1)
#define REG_MMU_MISC_CTRL 0x048
#define F_MMU_IN_ORDER_WR_EN_MASK (BIT(1) | BIT(17))
#define F_MMU_STANDARD_AXI_MODE_MASK (BIT(3) | BIT(19))
#define REG_MMU_DCM_DIS 0x050
#define REG_MMU_WR_LEN_CTRL 0x054
#define F_MMU_WR_THROT_DIS_MASK (BIT(5) | BIT(21))
#define REG_MMU_CTRL_REG 0x110
#define F_MMU_TF_PROT_TO_PROGRAM_ADDR (2 << 4)
#define F_MMU_PREFETCH_RT_REPLACE_MOD BIT(4)
#define F_MMU_TF_PROT_TO_PROGRAM_ADDR_MT8173 (2 << 5)
#define REG_MMU_IVRP_PADDR 0x114
#define REG_MMU_VLD_PA_RNG 0x118
#define F_MMU_VLD_PA_RNG(EA, SA) (((EA) << 8) | (SA))
#define REG_MMU_INT_CONTROL0 0x120
#define F_L2_MULIT_HIT_EN BIT(0)
#define F_TABLE_WALK_FAULT_INT_EN BIT(1)
#define F_PREETCH_FIFO_OVERFLOW_INT_EN BIT(2)
#define F_MISS_FIFO_OVERFLOW_INT_EN BIT(3)
#define F_PREFETCH_FIFO_ERR_INT_EN BIT(5)
#define F_MISS_FIFO_ERR_INT_EN BIT(6)
#define F_INT_CLR_BIT BIT(12)
#define REG_MMU_INT_MAIN_CONTROL 0x124
/* mmu0 | mmu1 */
#define F_INT_TRANSLATION_FAULT (BIT(0) | BIT(7))
#define F_INT_MAIN_MULTI_HIT_FAULT (BIT(1) | BIT(8))
#define F_INT_INVALID_PA_FAULT (BIT(2) | BIT(9))
#define F_INT_ENTRY_REPLACEMENT_FAULT (BIT(3) | BIT(10))
#define F_INT_TLB_MISS_FAULT (BIT(4) | BIT(11))
#define F_INT_MISS_TRANSACTION_FIFO_FAULT (BIT(5) | BIT(12))
#define F_INT_PRETETCH_TRANSATION_FIFO_FAULT (BIT(6) | BIT(13))
#define REG_MMU_CPE_DONE 0x12C
#define REG_MMU_FAULT_ST1 0x134
#define F_REG_MMU0_FAULT_MASK GENMASK(6, 0)
#define F_REG_MMU1_FAULT_MASK GENMASK(13, 7)
#define REG_MMU0_FAULT_VA 0x13c
#define F_MMU_INVAL_VA_31_12_MASK GENMASK(31, 12)
#define F_MMU_INVAL_VA_34_32_MASK GENMASK(11, 9)
#define F_MMU_INVAL_PA_34_32_MASK GENMASK(8, 6)
#define F_MMU_FAULT_VA_WRITE_BIT BIT(1)
#define F_MMU_FAULT_VA_LAYER_BIT BIT(0)
#define REG_MMU0_INVLD_PA 0x140
#define REG_MMU1_FAULT_VA 0x144
#define REG_MMU1_INVLD_PA 0x148
#define REG_MMU0_INT_ID 0x150
#define REG_MMU1_INT_ID 0x154
#define F_MMU_INT_ID_COMM_ID(a) (((a) >> 9) & 0x7)
#define F_MMU_INT_ID_SUB_COMM_ID(a) (((a) >> 7) & 0x3)
#define F_MMU_INT_ID_LARB_ID(a) (((a) >> 7) & 0x7)
#define F_MMU_INT_ID_PORT_ID(a) (((a) >> 2) & 0x1f)
#define MTK_PROTECT_PA_ALIGN 256
#define HAS_4GB_MODE BIT(0)
/* HW will use the EMI clock if there isn't the "bclk". */
#define HAS_BCLK BIT(1)
#define HAS_VLD_PA_RNG BIT(2)
#define RESET_AXI BIT(3)
#define OUT_ORDER_WR_EN BIT(4)
#define HAS_SUB_COMM BIT(5)
#define WR_THROT_EN BIT(6)
#define HAS_LEGACY_IVRP_PADDR BIT(7)
#define IOVA_34_EN BIT(8)
#define MTK_IOMMU_HAS_FLAG(pdata, _x) \
((((pdata)->flags) & (_x)) == (_x))
struct mtk_iommu_domain {
struct io_pgtable_cfg cfg;
struct io_pgtable_ops *iop;
struct mtk_iommu_data *data;
struct iommu_domain domain;
};
static const struct iommu_ops mtk_iommu_ops;
static int mtk_iommu_hw_init(const struct mtk_iommu_data *data);
#define MTK_IOMMU_TLB_ADDR(iova) ({ \
dma_addr_t _addr = iova; \
((lower_32_bits(_addr) & GENMASK(31, 12)) | upper_32_bits(_addr));\
})
/*
* In M4U 4GB mode, the physical address is remapped as below:
*
* CPU Physical address:
* ====================
*
* 0 1G 2G 3G 4G 5G
* |---A---|---B---|---C---|---D---|---E---|
* +--I/O--+------------Memory-------------+
*
* IOMMU output physical address:
* =============================
*
* 4G 5G 6G 7G 8G
* |---E---|---B---|---C---|---D---|
* +------------Memory-------------+
*
* The Region 'A'(I/O) can NOT be mapped by M4U; For Region 'B'/'C'/'D', the
* bit32 of the CPU physical address always is needed to set, and for Region
* 'E', the CPU physical address keep as is.
* Additionally, The iommu consumers always use the CPU phyiscal address.
*/
#define MTK_IOMMU_4GB_MODE_REMAP_BASE 0x140000000UL
static LIST_HEAD(m4ulist); /* List all the M4U HWs */
#define for_each_m4u(data) list_for_each_entry(data, &m4ulist, list)
/*
* There may be 1 or 2 M4U HWs, But we always expect they are in the same domain
* for the performance.
*
* Here always return the mtk_iommu_data of the first probed M4U where the
* iommu domain information is recorded.
*/
static struct mtk_iommu_data *mtk_iommu_get_m4u_data(void)
{
struct mtk_iommu_data *data;
for_each_m4u(data)
return data;
return NULL;
}
static struct mtk_iommu_domain *to_mtk_domain(struct iommu_domain *dom)
{
return container_of(dom, struct mtk_iommu_domain, domain);
}
static void mtk_iommu_tlb_flush_all(struct mtk_iommu_data *data)
{
for_each_m4u(data) {
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
if (pm_runtime_get_if_in_use(data->dev) <= 0)
continue;
writel_relaxed(F_INVLD_EN1 | F_INVLD_EN0,
data->base + data->plat_data->inv_sel_reg);
writel_relaxed(F_ALL_INVLD, data->base + REG_MMU_INVALIDATE);
wmb(); /* Make sure the tlb flush all done */
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
pm_runtime_put(data->dev);
}
}
static void mtk_iommu_tlb_flush_range_sync(unsigned long iova, size_t size,
size_t granule,
struct mtk_iommu_data *data)
{
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
bool has_pm = !!data->dev->pm_domain;
unsigned long flags;
int ret;
u32 tmp;
for_each_m4u(data) {
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
if (has_pm) {
if (pm_runtime_get_if_in_use(data->dev) <= 0)
continue;
}
spin_lock_irqsave(&data->tlb_lock, flags);
writel_relaxed(F_INVLD_EN1 | F_INVLD_EN0,
data->base + data->plat_data->inv_sel_reg);
writel_relaxed(MTK_IOMMU_TLB_ADDR(iova),
data->base + REG_MMU_INVLD_START_A);
writel_relaxed(MTK_IOMMU_TLB_ADDR(iova + size - 1),
data->base + REG_MMU_INVLD_END_A);
writel_relaxed(F_MMU_INV_RANGE,
data->base + REG_MMU_INVALIDATE);
/* tlb sync */
ret = readl_poll_timeout_atomic(data->base + REG_MMU_CPE_DONE,
tmp, tmp != 0, 10, 1000);
if (ret) {
dev_warn(data->dev,
"Partial TLB flush timed out, falling back to full flush\n");
mtk_iommu_tlb_flush_all(data);
}
/* Clear the CPE status */
writel_relaxed(0, data->base + REG_MMU_CPE_DONE);
spin_unlock_irqrestore(&data->tlb_lock, flags);
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
if (has_pm)
pm_runtime_put(data->dev);
}
}
static irqreturn_t mtk_iommu_isr(int irq, void *dev_id)
{
struct mtk_iommu_data *data = dev_id;
struct mtk_iommu_domain *dom = data->m4u_dom;
unsigned int fault_larb, fault_port, sub_comm = 0;
u32 int_state, regval, va34_32, pa34_32;
u64 fault_iova, fault_pa;
bool layer, write;
/* Read error info from registers */
int_state = readl_relaxed(data->base + REG_MMU_FAULT_ST1);
if (int_state & F_REG_MMU0_FAULT_MASK) {
regval = readl_relaxed(data->base + REG_MMU0_INT_ID);
fault_iova = readl_relaxed(data->base + REG_MMU0_FAULT_VA);
fault_pa = readl_relaxed(data->base + REG_MMU0_INVLD_PA);
} else {
regval = readl_relaxed(data->base + REG_MMU1_INT_ID);
fault_iova = readl_relaxed(data->base + REG_MMU1_FAULT_VA);
fault_pa = readl_relaxed(data->base + REG_MMU1_INVLD_PA);
}
layer = fault_iova & F_MMU_FAULT_VA_LAYER_BIT;
write = fault_iova & F_MMU_FAULT_VA_WRITE_BIT;
if (MTK_IOMMU_HAS_FLAG(data->plat_data, IOVA_34_EN)) {
va34_32 = FIELD_GET(F_MMU_INVAL_VA_34_32_MASK, fault_iova);
pa34_32 = FIELD_GET(F_MMU_INVAL_PA_34_32_MASK, fault_iova);
fault_iova = fault_iova & F_MMU_INVAL_VA_31_12_MASK;
fault_iova |= (u64)va34_32 << 32;
fault_pa |= (u64)pa34_32 << 32;
}
fault_port = F_MMU_INT_ID_PORT_ID(regval);
if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_SUB_COMM)) {
fault_larb = F_MMU_INT_ID_COMM_ID(regval);
sub_comm = F_MMU_INT_ID_SUB_COMM_ID(regval);
} else {
fault_larb = F_MMU_INT_ID_LARB_ID(regval);
}
fault_larb = data->plat_data->larbid_remap[fault_larb][sub_comm];
if (report_iommu_fault(&dom->domain, data->dev, fault_iova,
write ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ)) {
dev_err_ratelimited(
data->dev,
"fault type=0x%x iova=0x%llx pa=0x%llx larb=%d port=%d layer=%d %s\n",
int_state, fault_iova, fault_pa, fault_larb, fault_port,
layer, write ? "write" : "read");
}
/* Interrupt clear */
regval = readl_relaxed(data->base + REG_MMU_INT_CONTROL0);
regval |= F_INT_CLR_BIT;
writel_relaxed(regval, data->base + REG_MMU_INT_CONTROL0);
mtk_iommu_tlb_flush_all(data);
return IRQ_HANDLED;
}
static void mtk_iommu_config(struct mtk_iommu_data *data,
struct device *dev, bool enable)
{
struct mtk_smi_larb_iommu *larb_mmu;
unsigned int larbid, portid;
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
int i;
for (i = 0; i < fwspec->num_ids; ++i) {
larbid = MTK_M4U_TO_LARB(fwspec->ids[i]);
portid = MTK_M4U_TO_PORT(fwspec->ids[i]);
larb_mmu = &data->larb_imu[larbid];
dev_dbg(dev, "%s iommu port: %d\n",
enable ? "enable" : "disable", portid);
if (enable)
larb_mmu->mmu |= MTK_SMI_MMU_EN(portid);
else
larb_mmu->mmu &= ~MTK_SMI_MMU_EN(portid);
}
}
static int mtk_iommu_domain_finalise(struct mtk_iommu_domain *dom)
{
struct mtk_iommu_data *data = mtk_iommu_get_m4u_data();
dom->cfg = (struct io_pgtable_cfg) {
.quirks = IO_PGTABLE_QUIRK_ARM_NS |
IO_PGTABLE_QUIRK_NO_PERMS |
IO_PGTABLE_QUIRK_ARM_MTK_EXT,
.pgsize_bitmap = mtk_iommu_ops.pgsize_bitmap,
.ias = MTK_IOMMU_HAS_FLAG(data->plat_data, IOVA_34_EN) ? 34 : 32,
.iommu_dev = data->dev,
};
if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_4GB_MODE))
dom->cfg.oas = data->enable_4GB ? 33 : 32;
else
dom->cfg.oas = 35;
dom->iop = alloc_io_pgtable_ops(ARM_V7S, &dom->cfg, data);
if (!dom->iop) {
dev_err(data->dev, "Failed to alloc io pgtable\n");
return -EINVAL;
}
dom->data = data;
/* Update our support page sizes bitmap */
dom->domain.pgsize_bitmap = dom->cfg.pgsize_bitmap;
return 0;
}
static struct iommu_domain *mtk_iommu_domain_alloc(unsigned type)
{
struct mtk_iommu_domain *dom;
if (type != IOMMU_DOMAIN_DMA)
return NULL;
dom = kzalloc(sizeof(*dom), GFP_KERNEL);
if (!dom)
return NULL;
if (iommu_get_dma_cookie(&dom->domain))
goto free_dom;
if (mtk_iommu_domain_finalise(dom))
goto put_dma_cookie;
dom->domain.geometry.aperture_start = 0;
dom->domain.geometry.aperture_end = DMA_BIT_MASK(32);
dom->domain.geometry.force_aperture = true;
return &dom->domain;
put_dma_cookie:
iommu_put_dma_cookie(&dom->domain);
free_dom:
kfree(dom);
return NULL;
}
static void mtk_iommu_domain_free(struct iommu_domain *domain)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
free_io_pgtable_ops(dom->iop);
iommu_put_dma_cookie(domain);
kfree(to_mtk_domain(domain));
}
static int mtk_iommu_attach_device(struct iommu_domain *domain,
struct device *dev)
{
struct mtk_iommu_data *data = dev_iommu_priv_get(dev);
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
struct device *m4udev = data->dev;
int ret;
if (!data)
return -ENODEV;
if (!data->m4u_dom) { /* Initialize the M4U HW */
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
ret = pm_runtime_resume_and_get(m4udev);
if (ret < 0)
return ret;
ret = mtk_iommu_hw_init(data);
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
if (ret) {
pm_runtime_put(m4udev);
return ret;
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
}
data->m4u_dom = dom;
writel(dom->cfg.arm_v7s_cfg.ttbr & MMU_PT_ADDR_MASK,
data->base + REG_MMU_PT_BASE_ADDR);
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
pm_runtime_put(m4udev);
}
mtk_iommu_config(data, dev, true);
return 0;
}
static void mtk_iommu_detach_device(struct iommu_domain *domain,
struct device *dev)
{
struct mtk_iommu_data *data = dev_iommu_priv_get(dev);
if (!data)
return;
mtk_iommu_config(data, dev, false);
}
static int mtk_iommu_map(struct iommu_domain *domain, unsigned long iova,
phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
/* The "4GB mode" M4U physically can not use the lower remap of Dram. */
if (dom->data->enable_4GB)
paddr |= BIT_ULL(32);
/* Synchronize with the tlb_lock */
return dom->iop->map(dom->iop, iova, paddr, size, prot, gfp);
}
static size_t mtk_iommu_unmap(struct iommu_domain *domain,
unsigned long iova, size_t size,
struct iommu_iotlb_gather *gather)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
unsigned long end = iova + size - 1;
if (gather->start > iova)
gather->start = iova;
if (gather->end < end)
gather->end = end;
return dom->iop->unmap(dom->iop, iova, size, gather);
}
static void mtk_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
mtk_iommu_tlb_flush_all(dom->data);
}
static void mtk_iommu_iotlb_sync(struct iommu_domain *domain,
struct iommu_iotlb_gather *gather)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
size_t length = gather->end - gather->start + 1;
mtk_iommu_tlb_flush_range_sync(gather->start, length, gather->pgsize,
dom->data);
}
static void mtk_iommu_sync_map(struct iommu_domain *domain, unsigned long iova,
size_t size)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
mtk_iommu_tlb_flush_range_sync(iova, size, size, dom->data);
}
static phys_addr_t mtk_iommu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova)
{
struct mtk_iommu_domain *dom = to_mtk_domain(domain);
phys_addr_t pa;
pa = dom->iop->iova_to_phys(dom->iop, iova);
if (dom->data->enable_4GB && pa >= MTK_IOMMU_4GB_MODE_REMAP_BASE)
pa &= ~BIT_ULL(32);
return pa;
}
static struct iommu_device *mtk_iommu_probe_device(struct device *dev)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
struct mtk_iommu_data *data;
if (!fwspec || fwspec->ops != &mtk_iommu_ops)
return ERR_PTR(-ENODEV); /* Not a iommu client device */
data = dev_iommu_priv_get(dev);
return &data->iommu;
}
static void mtk_iommu_release_device(struct device *dev)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
if (!fwspec || fwspec->ops != &mtk_iommu_ops)
return;
iommu_fwspec_free(dev);
}
static struct iommu_group *mtk_iommu_device_group(struct device *dev)
{
struct mtk_iommu_data *data = mtk_iommu_get_m4u_data();
if (!data)
return ERR_PTR(-ENODEV);
/* All the client devices are in the same m4u iommu-group */
if (!data->m4u_group) {
data->m4u_group = iommu_group_alloc();
if (IS_ERR(data->m4u_group))
dev_err(dev, "Failed to allocate M4U IOMMU group\n");
} else {
iommu_group_ref_get(data->m4u_group);
}
return data->m4u_group;
}
static int mtk_iommu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
struct platform_device *m4updev;
if (args->args_count != 1) {
dev_err(dev, "invalid #iommu-cells(%d) property for IOMMU\n",
args->args_count);
return -EINVAL;
}
if (!dev_iommu_priv_get(dev)) {
/* Get the m4u device */
m4updev = of_find_device_by_node(args->np);
if (WARN_ON(!m4updev))
return -EINVAL;
dev_iommu_priv_set(dev, platform_get_drvdata(m4updev));
}
return iommu_fwspec_add_ids(dev, args->args, 1);
}
static const struct iommu_ops mtk_iommu_ops = {
.domain_alloc = mtk_iommu_domain_alloc,
.domain_free = mtk_iommu_domain_free,
.attach_dev = mtk_iommu_attach_device,
.detach_dev = mtk_iommu_detach_device,
.map = mtk_iommu_map,
.unmap = mtk_iommu_unmap,
.flush_iotlb_all = mtk_iommu_flush_iotlb_all,
.iotlb_sync = mtk_iommu_iotlb_sync,
.iotlb_sync_map = mtk_iommu_sync_map,
.iova_to_phys = mtk_iommu_iova_to_phys,
.probe_device = mtk_iommu_probe_device,
.release_device = mtk_iommu_release_device,
.device_group = mtk_iommu_device_group,
.of_xlate = mtk_iommu_of_xlate,
.pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
};
static int mtk_iommu_hw_init(const struct mtk_iommu_data *data)
{
u32 regval;
int ret;
ret = clk_prepare_enable(data->bclk);
if (ret) {
dev_err(data->dev, "Failed to enable iommu bclk(%d)\n", ret);
return ret;
}
if (data->plat_data->m4u_plat == M4U_MT8173) {
regval = F_MMU_PREFETCH_RT_REPLACE_MOD |
F_MMU_TF_PROT_TO_PROGRAM_ADDR_MT8173;
} else {
regval = readl_relaxed(data->base + REG_MMU_CTRL_REG);
regval |= F_MMU_TF_PROT_TO_PROGRAM_ADDR;
}
writel_relaxed(regval, data->base + REG_MMU_CTRL_REG);
regval = F_L2_MULIT_HIT_EN |
F_TABLE_WALK_FAULT_INT_EN |
F_PREETCH_FIFO_OVERFLOW_INT_EN |
F_MISS_FIFO_OVERFLOW_INT_EN |
F_PREFETCH_FIFO_ERR_INT_EN |
F_MISS_FIFO_ERR_INT_EN;
writel_relaxed(regval, data->base + REG_MMU_INT_CONTROL0);
regval = F_INT_TRANSLATION_FAULT |
F_INT_MAIN_MULTI_HIT_FAULT |
F_INT_INVALID_PA_FAULT |
F_INT_ENTRY_REPLACEMENT_FAULT |
F_INT_TLB_MISS_FAULT |
F_INT_MISS_TRANSACTION_FIFO_FAULT |
F_INT_PRETETCH_TRANSATION_FIFO_FAULT;
writel_relaxed(regval, data->base + REG_MMU_INT_MAIN_CONTROL);
if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_LEGACY_IVRP_PADDR))
regval = (data->protect_base >> 1) | (data->enable_4GB << 31);
else
regval = lower_32_bits(data->protect_base) |
upper_32_bits(data->protect_base);
writel_relaxed(regval, data->base + REG_MMU_IVRP_PADDR);
if (data->enable_4GB &&
MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_VLD_PA_RNG)) {
/*
* If 4GB mode is enabled, the validate PA range is from
* 0x1_0000_0000 to 0x1_ffff_ffff. here record bit[32:30].
*/
regval = F_MMU_VLD_PA_RNG(7, 4);
writel_relaxed(regval, data->base + REG_MMU_VLD_PA_RNG);
}
writel_relaxed(0, data->base + REG_MMU_DCM_DIS);
if (MTK_IOMMU_HAS_FLAG(data->plat_data, WR_THROT_EN)) {
/* write command throttling mode */
regval = readl_relaxed(data->base + REG_MMU_WR_LEN_CTRL);
regval &= ~F_MMU_WR_THROT_DIS_MASK;
writel_relaxed(regval, data->base + REG_MMU_WR_LEN_CTRL);
}
if (MTK_IOMMU_HAS_FLAG(data->plat_data, RESET_AXI)) {
/* The register is called STANDARD_AXI_MODE in this case */
regval = 0;
} else {
regval = readl_relaxed(data->base + REG_MMU_MISC_CTRL);
regval &= ~F_MMU_STANDARD_AXI_MODE_MASK;
if (MTK_IOMMU_HAS_FLAG(data->plat_data, OUT_ORDER_WR_EN))
regval &= ~F_MMU_IN_ORDER_WR_EN_MASK;
}
writel_relaxed(regval, data->base + REG_MMU_MISC_CTRL);
if (devm_request_irq(data->dev, data->irq, mtk_iommu_isr, 0,
dev_name(data->dev), (void *)data)) {
writel_relaxed(0, data->base + REG_MMU_PT_BASE_ADDR);
clk_disable_unprepare(data->bclk);
dev_err(data->dev, "Failed @ IRQ-%d Request\n", data->irq);
return -ENODEV;
}
return 0;
}
static const struct component_master_ops mtk_iommu_com_ops = {
.bind = mtk_iommu_bind,
.unbind = mtk_iommu_unbind,
};
static int mtk_iommu_probe(struct platform_device *pdev)
{
struct mtk_iommu_data *data;
struct device *dev = &pdev->dev;
struct device_node *larbnode, *smicomm_node;
struct platform_device *plarbdev;
struct device_link *link;
struct resource *res;
resource_size_t ioaddr;
struct component_match *match = NULL;
struct regmap *infracfg;
void *protect;
int i, larb_nr, ret;
u32 val;
char *p;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->dev = dev;
data->plat_data = of_device_get_match_data(dev);
/* Protect memory. HW will access here while translation fault.*/
protect = devm_kzalloc(dev, MTK_PROTECT_PA_ALIGN * 2, GFP_KERNEL);
if (!protect)
return -ENOMEM;
data->protect_base = ALIGN(virt_to_phys(protect), MTK_PROTECT_PA_ALIGN);
if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_4GB_MODE)) {
switch (data->plat_data->m4u_plat) {
case M4U_MT2712:
p = "mediatek,mt2712-infracfg";
break;
case M4U_MT8173:
p = "mediatek,mt8173-infracfg";
break;
default:
p = NULL;
}
infracfg = syscon_regmap_lookup_by_compatible(p);
if (IS_ERR(infracfg))
return PTR_ERR(infracfg);
ret = regmap_read(infracfg, REG_INFRA_MISC, &val);
if (ret)
return ret;
data->enable_4GB = !!(val & F_DDR_4GB_SUPPORT_EN);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
data->base = devm_ioremap_resource(dev, res);
if (IS_ERR(data->base))
return PTR_ERR(data->base);
ioaddr = res->start;
data->irq = platform_get_irq(pdev, 0);
if (data->irq < 0)
return data->irq;
if (MTK_IOMMU_HAS_FLAG(data->plat_data, HAS_BCLK)) {
data->bclk = devm_clk_get(dev, "bclk");
if (IS_ERR(data->bclk))
return PTR_ERR(data->bclk);
}
larb_nr = of_count_phandle_with_args(dev->of_node,
"mediatek,larbs", NULL);
if (larb_nr < 0)
return larb_nr;
for (i = 0; i < larb_nr; i++) {
u32 id;
larbnode = of_parse_phandle(dev->of_node, "mediatek,larbs", i);
if (!larbnode)
return -EINVAL;
if (!of_device_is_available(larbnode)) {
of_node_put(larbnode);
continue;
}
ret = of_property_read_u32(larbnode, "mediatek,larb-id", &id);
if (ret)/* The id is consecutive if there is no this property */
id = i;
plarbdev = of_find_device_by_node(larbnode);
if (!plarbdev) {
of_node_put(larbnode);
return -EPROBE_DEFER;
}
data->larb_imu[id].dev = &plarbdev->dev;
component_match_add_release(dev, &match, release_of,
compare_of, larbnode);
}
/* Get smi-common dev from the last larb. */
smicomm_node = of_parse_phandle(larbnode, "mediatek,smi", 0);
if (!smicomm_node)
return -EINVAL;
plarbdev = of_find_device_by_node(smicomm_node);
of_node_put(smicomm_node);
data->smicomm_dev = &plarbdev->dev;
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
pm_runtime_enable(dev);
link = device_link_add(data->smicomm_dev, dev,
DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
if (!link) {
dev_err(dev, "Unable link %s.\n", dev_name(data->smicomm_dev));
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
goto out_runtime_disable;
}
platform_set_drvdata(pdev, data);
ret = iommu_device_sysfs_add(&data->iommu, dev, NULL,
"mtk-iommu.%pa", &ioaddr);
if (ret)
goto out_link_remove;
iommu_device_set_ops(&data->iommu, &mtk_iommu_ops);
iommu_device_set_fwnode(&data->iommu, &pdev->dev.of_node->fwnode);
ret = iommu_device_register(&data->iommu);
if (ret)
goto out_sysfs_remove;
spin_lock_init(&data->tlb_lock);
list_add_tail(&data->list, &m4ulist);
if (!iommu_present(&platform_bus_type)) {
ret = bus_set_iommu(&platform_bus_type, &mtk_iommu_ops);
if (ret)
goto out_list_del;
}
ret = component_master_add_with_match(dev, &mtk_iommu_com_ops, match);
if (ret)
goto out_bus_set_null;
return ret;
out_bus_set_null:
bus_set_iommu(&platform_bus_type, NULL);
out_list_del:
list_del(&data->list);
iommu_device_unregister(&data->iommu);
out_sysfs_remove:
iommu_device_sysfs_remove(&data->iommu);
out_link_remove:
device_link_remove(data->smicomm_dev, dev);
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
out_runtime_disable:
pm_runtime_disable(dev);
return ret;
}
static int mtk_iommu_remove(struct platform_device *pdev)
{
struct mtk_iommu_data *data = platform_get_drvdata(pdev);
iommu_device_sysfs_remove(&data->iommu);
iommu_device_unregister(&data->iommu);
if (iommu_present(&platform_bus_type))
bus_set_iommu(&platform_bus_type, NULL);
clk_disable_unprepare(data->bclk);
device_link_remove(data->smicomm_dev, &pdev->dev);
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
pm_runtime_disable(&pdev->dev);
devm_free_irq(&pdev->dev, data->irq, data);
component_master_del(&pdev->dev, &mtk_iommu_com_ops);
return 0;
}
static int __maybe_unused mtk_iommu_runtime_suspend(struct device *dev)
{
struct mtk_iommu_data *data = dev_get_drvdata(dev);
struct mtk_iommu_suspend_reg *reg = &data->reg;
void __iomem *base = data->base;
reg->wr_len_ctrl = readl_relaxed(base + REG_MMU_WR_LEN_CTRL);
reg->misc_ctrl = readl_relaxed(base + REG_MMU_MISC_CTRL);
reg->dcm_dis = readl_relaxed(base + REG_MMU_DCM_DIS);
reg->ctrl_reg = readl_relaxed(base + REG_MMU_CTRL_REG);
reg->int_control0 = readl_relaxed(base + REG_MMU_INT_CONTROL0);
reg->int_main_control = readl_relaxed(base + REG_MMU_INT_MAIN_CONTROL);
reg->ivrp_paddr = readl_relaxed(base + REG_MMU_IVRP_PADDR);
reg->vld_pa_rng = readl_relaxed(base + REG_MMU_VLD_PA_RNG);
clk_disable_unprepare(data->bclk);
return 0;
}
static int __maybe_unused mtk_iommu_runtime_resume(struct device *dev)
{
struct mtk_iommu_data *data = dev_get_drvdata(dev);
struct mtk_iommu_suspend_reg *reg = &data->reg;
struct mtk_iommu_domain *m4u_dom = data->m4u_dom;
void __iomem *base = data->base;
int ret;
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
/* Avoid first resume to affect the default value of registers below. */
if (!m4u_dom)
return 0;
ret = clk_prepare_enable(data->bclk);
if (ret) {
dev_err(data->dev, "Failed to enable clk(%d) in resume\n", ret);
return ret;
}
writel_relaxed(reg->wr_len_ctrl, base + REG_MMU_WR_LEN_CTRL);
writel_relaxed(reg->misc_ctrl, base + REG_MMU_MISC_CTRL);
writel_relaxed(reg->dcm_dis, base + REG_MMU_DCM_DIS);
writel_relaxed(reg->ctrl_reg, base + REG_MMU_CTRL_REG);
writel_relaxed(reg->int_control0, base + REG_MMU_INT_CONTROL0);
writel_relaxed(reg->int_main_control, base + REG_MMU_INT_MAIN_CONTROL);
writel_relaxed(reg->ivrp_paddr, base + REG_MMU_IVRP_PADDR);
writel_relaxed(reg->vld_pa_rng, base + REG_MMU_VLD_PA_RNG);
iommu/mediatek: Add power-domain operation In the previous SoC, the M4U HW is in the EMI power domain which is always on. the latest M4U is in the display power domain which may be turned on/off, thus we have to add pm_runtime interface for it. When the engine work, the engine always enable the power and clocks for smi-larb/smi-common, then the M4U's power will always be powered on automatically via the device link with smi-common. Note: we don't enable the M4U power in iommu_map/unmap for tlb flush. If its power already is on, of course it is ok. if the power is off, the main tlb will be reset while M4U power on, thus the tlb flush while m4u power off is unnecessary, just skip it. Therefore, we increase the ref_count for pm when pm status is ACTIVE, otherwise, skip it. Meanwhile, the tlb_flush_range is called so often, thus, update pm ref_count while the SoC has power-domain to avoid touch the dev->power.lock. and the tlb_flush_all only is called when boot, so no need check if the SoC has power-domain to keep code clean. There will be one case that pm runctime status is not expected when tlb flush. After boot, the display may call dma_alloc_attrs before it call pm_runtime_get(disp-dev), then the m4u's pm status is not active inside the dma_alloc_attrs. Since it only happens after boot, the tlb is clean at that time, I also think this is ok. Signed-off-by: Yong Wu <yong.wu@mediatek.com> Reviewed-by: Tomasz Figa <tfiga@chromium.org> Link: https://lore.kernel.org/r/20210111111914.22211-21-yong.wu@mediatek.com Signed-off-by: Will Deacon <will@kernel.org>
2021-01-11 19:19:01 +08:00
writel(m4u_dom->cfg.arm_v7s_cfg.ttbr & MMU_PT_ADDR_MASK, base + REG_MMU_PT_BASE_ADDR);
return 0;
}
static const struct dev_pm_ops mtk_iommu_pm_ops = {
SET_RUNTIME_PM_OPS(mtk_iommu_runtime_suspend, mtk_iommu_runtime_resume, NULL)
SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static const struct mtk_iommu_plat_data mt2712_data = {
.m4u_plat = M4U_MT2712,
.flags = HAS_4GB_MODE | HAS_BCLK | HAS_VLD_PA_RNG,
.inv_sel_reg = REG_MMU_INV_SEL_GEN1,
.larbid_remap = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}},
};
static const struct mtk_iommu_plat_data mt6779_data = {
.m4u_plat = M4U_MT6779,
.flags = HAS_SUB_COMM | OUT_ORDER_WR_EN | WR_THROT_EN,
.inv_sel_reg = REG_MMU_INV_SEL_GEN2,
.larbid_remap = {{0}, {1}, {2}, {3}, {5}, {7, 8}, {10}, {9}},
};
static const struct mtk_iommu_plat_data mt8167_data = {
.m4u_plat = M4U_MT8167,
.flags = RESET_AXI | HAS_LEGACY_IVRP_PADDR,
.inv_sel_reg = REG_MMU_INV_SEL_GEN1,
.larbid_remap = {{0}, {1}, {2}}, /* Linear mapping. */
};
static const struct mtk_iommu_plat_data mt8173_data = {
.m4u_plat = M4U_MT8173,
.flags = HAS_4GB_MODE | HAS_BCLK | RESET_AXI |
HAS_LEGACY_IVRP_PADDR,
.inv_sel_reg = REG_MMU_INV_SEL_GEN1,
.larbid_remap = {{0}, {1}, {2}, {3}, {4}, {5}}, /* Linear mapping. */
};
static const struct mtk_iommu_plat_data mt8183_data = {
.m4u_plat = M4U_MT8183,
.flags = RESET_AXI,
.inv_sel_reg = REG_MMU_INV_SEL_GEN1,
.larbid_remap = {{0}, {4}, {5}, {6}, {7}, {2}, {3}, {1}},
};
static const struct of_device_id mtk_iommu_of_ids[] = {
{ .compatible = "mediatek,mt2712-m4u", .data = &mt2712_data},
{ .compatible = "mediatek,mt6779-m4u", .data = &mt6779_data},
{ .compatible = "mediatek,mt8167-m4u", .data = &mt8167_data},
{ .compatible = "mediatek,mt8173-m4u", .data = &mt8173_data},
{ .compatible = "mediatek,mt8183-m4u", .data = &mt8183_data},
{}
};
static struct platform_driver mtk_iommu_driver = {
.probe = mtk_iommu_probe,
.remove = mtk_iommu_remove,
.driver = {
.name = "mtk-iommu",
.of_match_table = mtk_iommu_of_ids,
.pm = &mtk_iommu_pm_ops,
}
};
static int __init mtk_iommu_init(void)
{
int ret;
ret = platform_driver_register(&mtk_iommu_driver);
if (ret != 0)
pr_err("Failed to register MTK IOMMU driver\n");
return ret;
}
subsys_initcall(mtk_iommu_init)