linux/arch/powerpc/platforms/cell/spufs/inode.c

811 lines
17 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SPU file system
*
* (C) Copyright IBM Deutschland Entwicklung GmbH 2005
*
* Author: Arnd Bergmann <arndb@de.ibm.com>
*/
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/fsnotify.h>
#include <linux/backing-dev.h>
#include <linux/init.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/parser.h>
#include <asm/prom.h>
#include <asm/spu.h>
#include <asm/spu_priv1.h>
#include <linux/uaccess.h>
#include "spufs.h"
struct spufs_sb_info {
int debug;
};
static struct kmem_cache *spufs_inode_cache;
char *isolated_loader;
static int isolated_loader_size;
static struct spufs_sb_info *spufs_get_sb_info(struct super_block *sb)
{
return sb->s_fs_info;
}
static struct inode *
spufs_alloc_inode(struct super_block *sb)
{
struct spufs_inode_info *ei;
ei = kmem_cache_alloc(spufs_inode_cache, GFP_KERNEL);
if (!ei)
return NULL;
ei->i_gang = NULL;
ei->i_ctx = NULL;
ei->i_openers = 0;
return &ei->vfs_inode;
}
static void spufs_free_inode(struct inode *inode)
{
kmem_cache_free(spufs_inode_cache, SPUFS_I(inode));
}
static void
spufs_init_once(void *p)
{
struct spufs_inode_info *ei = p;
inode_init_once(&ei->vfs_inode);
}
static struct inode *
spufs_new_inode(struct super_block *sb, umode_t mode)
{
struct inode *inode;
inode = new_inode(sb);
if (!inode)
goto out;
inode->i_ino = get_next_ino();
inode->i_mode = mode;
inode->i_uid = current_fsuid();
inode->i_gid = current_fsgid();
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
out:
return inode;
}
static int
spufs_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
if ((attr->ia_valid & ATTR_SIZE) &&
(attr->ia_size != inode->i_size))
return -EINVAL;
setattr_copy(inode, attr);
mark_inode_dirty(inode);
return 0;
}
static int
spufs_new_file(struct super_block *sb, struct dentry *dentry,
const struct file_operations *fops, umode_t mode,
size_t size, struct spu_context *ctx)
{
static const struct inode_operations spufs_file_iops = {
.setattr = spufs_setattr,
};
struct inode *inode;
int ret;
ret = -ENOSPC;
inode = spufs_new_inode(sb, S_IFREG | mode);
if (!inode)
goto out;
ret = 0;
inode->i_op = &spufs_file_iops;
inode->i_fop = fops;
inode->i_size = size;
inode->i_private = SPUFS_I(inode)->i_ctx = get_spu_context(ctx);
d_add(dentry, inode);
out:
return ret;
}
static void
spufs_evict_inode(struct inode *inode)
{
struct spufs_inode_info *ei = SPUFS_I(inode);
clear_inode(inode);
if (ei->i_ctx)
put_spu_context(ei->i_ctx);
if (ei->i_gang)
put_spu_gang(ei->i_gang);
}
static void spufs_prune_dir(struct dentry *dir)
{
struct dentry *dentry, *tmp;
inode_lock(d_inode(dir));
list_for_each_entry_safe(dentry, tmp, &dir->d_subdirs, d_child) {
spin_lock(&dentry->d_lock);
if (simple_positive(dentry)) {
dget_dlock(dentry);
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
simple_unlink(d_inode(dir), dentry);
/* XXX: what was dcache_lock protecting here? Other
* filesystems (IB, configfs) release dcache_lock
* before unlink */
dput(dentry);
} else {
spin_unlock(&dentry->d_lock);
}
}
shrink_dcache_parent(dir);
inode_unlock(d_inode(dir));
}
/* Caller must hold parent->i_mutex */
static int spufs_rmdir(struct inode *parent, struct dentry *dir)
{
/* remove all entries */
int res;
spufs_prune_dir(dir);
d_drop(dir);
res = simple_rmdir(parent, dir);
/* We have to give up the mm_struct */
spu_forget(SPUFS_I(d_inode(dir))->i_ctx);
return res;
}
static int spufs_fill_dir(struct dentry *dir,
const struct spufs_tree_descr *files, umode_t mode,
struct spu_context *ctx)
{
while (files->name && files->name[0]) {
int ret;
struct dentry *dentry = d_alloc_name(dir, files->name);
if (!dentry)
return -ENOMEM;
ret = spufs_new_file(dir->d_sb, dentry, files->ops,
files->mode & mode, files->size, ctx);
if (ret)
return ret;
files++;
}
return 0;
}
static int spufs_dir_close(struct inode *inode, struct file *file)
{
struct spu_context *ctx;
struct inode *parent;
struct dentry *dir;
int ret;
dir = file->f_path.dentry;
parent = d_inode(dir->d_parent);
ctx = SPUFS_I(d_inode(dir))->i_ctx;
inode_lock_nested(parent, I_MUTEX_PARENT);
ret = spufs_rmdir(parent, dir);
inode_unlock(parent);
WARN_ON(ret);
return dcache_dir_close(inode, file);
}
const struct file_operations spufs_context_fops = {
.open = dcache_dir_open,
.release = spufs_dir_close,
.llseek = dcache_dir_lseek,
.read = generic_read_dir,
.iterate_shared = dcache_readdir,
.fsync = noop_fsync,
};
EXPORT_SYMBOL_GPL(spufs_context_fops);
static int
spufs_mkdir(struct inode *dir, struct dentry *dentry, unsigned int flags,
umode_t mode)
{
int ret;
struct inode *inode;
struct spu_context *ctx;
inode = spufs_new_inode(dir->i_sb, mode | S_IFDIR);
if (!inode)
return -ENOSPC;
if (dir->i_mode & S_ISGID) {
inode->i_gid = dir->i_gid;
inode->i_mode &= S_ISGID;
}
ctx = alloc_spu_context(SPUFS_I(dir)->i_gang); /* XXX gang */
SPUFS_I(inode)->i_ctx = ctx;
if (!ctx) {
iput(inode);
return -ENOSPC;
}
ctx->flags = flags;
inode->i_op = &simple_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
inode_lock(inode);
dget(dentry);
inc_nlink(dir);
inc_nlink(inode);
d_instantiate(dentry, inode);
if (flags & SPU_CREATE_NOSCHED)
ret = spufs_fill_dir(dentry, spufs_dir_nosched_contents,
mode, ctx);
else
ret = spufs_fill_dir(dentry, spufs_dir_contents, mode, ctx);
if (!ret && spufs_get_sb_info(dir->i_sb)->debug)
ret = spufs_fill_dir(dentry, spufs_dir_debug_contents,
mode, ctx);
if (ret)
spufs_rmdir(dir, dentry);
inode_unlock(inode);
return ret;
}
static int spufs_context_open(struct path *path)
{
int ret;
struct file *filp;
ret = get_unused_fd_flags(0);
if (ret < 0)
return ret;
filp = dentry_open(path, O_RDONLY, current_cred());
if (IS_ERR(filp)) {
put_unused_fd(ret);
return PTR_ERR(filp);
}
filp->f_op = &spufs_context_fops;
fd_install(ret, filp);
return ret;
}
static struct spu_context *
spufs_assert_affinity(unsigned int flags, struct spu_gang *gang,
struct file *filp)
{
struct spu_context *tmp, *neighbor, *err;
int count, node;
int aff_supp;
aff_supp = !list_empty(&(list_entry(cbe_spu_info[0].spus.next,
struct spu, cbe_list))->aff_list);
if (!aff_supp)
return ERR_PTR(-EINVAL);
if (flags & SPU_CREATE_GANG)
return ERR_PTR(-EINVAL);
if (flags & SPU_CREATE_AFFINITY_MEM &&
gang->aff_ref_ctx &&
gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM)
return ERR_PTR(-EEXIST);
if (gang->aff_flags & AFF_MERGED)
return ERR_PTR(-EBUSY);
neighbor = NULL;
if (flags & SPU_CREATE_AFFINITY_SPU) {
if (!filp || filp->f_op != &spufs_context_fops)
return ERR_PTR(-EINVAL);
neighbor = get_spu_context(
SPUFS_I(file_inode(filp))->i_ctx);
if (!list_empty(&neighbor->aff_list) && !(neighbor->aff_head) &&
!list_is_last(&neighbor->aff_list, &gang->aff_list_head) &&
!list_entry(neighbor->aff_list.next, struct spu_context,
aff_list)->aff_head) {
err = ERR_PTR(-EEXIST);
goto out_put_neighbor;
}
if (gang != neighbor->gang) {
err = ERR_PTR(-EINVAL);
goto out_put_neighbor;
}
count = 1;
list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
count++;
if (list_empty(&neighbor->aff_list))
count++;
for (node = 0; node < MAX_NUMNODES; node++) {
if ((cbe_spu_info[node].n_spus - atomic_read(
&cbe_spu_info[node].reserved_spus)) >= count)
break;
}
if (node == MAX_NUMNODES) {
err = ERR_PTR(-EEXIST);
goto out_put_neighbor;
}
}
return neighbor;
out_put_neighbor:
put_spu_context(neighbor);
return err;
}
static void
spufs_set_affinity(unsigned int flags, struct spu_context *ctx,
struct spu_context *neighbor)
{
if (flags & SPU_CREATE_AFFINITY_MEM)
ctx->gang->aff_ref_ctx = ctx;
if (flags & SPU_CREATE_AFFINITY_SPU) {
if (list_empty(&neighbor->aff_list)) {
list_add_tail(&neighbor->aff_list,
&ctx->gang->aff_list_head);
neighbor->aff_head = 1;
}
if (list_is_last(&neighbor->aff_list, &ctx->gang->aff_list_head)
|| list_entry(neighbor->aff_list.next, struct spu_context,
aff_list)->aff_head) {
list_add(&ctx->aff_list, &neighbor->aff_list);
} else {
list_add_tail(&ctx->aff_list, &neighbor->aff_list);
if (neighbor->aff_head) {
neighbor->aff_head = 0;
ctx->aff_head = 1;
}
}
if (!ctx->gang->aff_ref_ctx)
ctx->gang->aff_ref_ctx = ctx;
}
}
static int
spufs_create_context(struct inode *inode, struct dentry *dentry,
struct vfsmount *mnt, int flags, umode_t mode,
struct file *aff_filp)
{
int ret;
int affinity;
struct spu_gang *gang;
struct spu_context *neighbor;
struct path path = {.mnt = mnt, .dentry = dentry};
if ((flags & SPU_CREATE_NOSCHED) &&
!capable(CAP_SYS_NICE))
return -EPERM;
if ((flags & (SPU_CREATE_NOSCHED | SPU_CREATE_ISOLATE))
== SPU_CREATE_ISOLATE)
return -EINVAL;
if ((flags & SPU_CREATE_ISOLATE) && !isolated_loader)
return -ENODEV;
gang = NULL;
neighbor = NULL;
affinity = flags & (SPU_CREATE_AFFINITY_MEM | SPU_CREATE_AFFINITY_SPU);
if (affinity) {
gang = SPUFS_I(inode)->i_gang;
if (!gang)
return -EINVAL;
mutex_lock(&gang->aff_mutex);
neighbor = spufs_assert_affinity(flags, gang, aff_filp);
if (IS_ERR(neighbor)) {
ret = PTR_ERR(neighbor);
goto out_aff_unlock;
}
}
ret = spufs_mkdir(inode, dentry, flags, mode & 0777);
if (ret)
goto out_aff_unlock;
if (affinity) {
spufs_set_affinity(flags, SPUFS_I(d_inode(dentry))->i_ctx,
neighbor);
if (neighbor)
put_spu_context(neighbor);
}
ret = spufs_context_open(&path);
if (ret < 0)
WARN_ON(spufs_rmdir(inode, dentry));
out_aff_unlock:
if (affinity)
mutex_unlock(&gang->aff_mutex);
return ret;
}
static int
spufs_mkgang(struct inode *dir, struct dentry *dentry, umode_t mode)
{
int ret;
struct inode *inode;
struct spu_gang *gang;
ret = -ENOSPC;
inode = spufs_new_inode(dir->i_sb, mode | S_IFDIR);
if (!inode)
goto out;
ret = 0;
if (dir->i_mode & S_ISGID) {
inode->i_gid = dir->i_gid;
inode->i_mode &= S_ISGID;
}
gang = alloc_spu_gang();
SPUFS_I(inode)->i_ctx = NULL;
SPUFS_I(inode)->i_gang = gang;
if (!gang) {
ret = -ENOMEM;
goto out_iput;
}
inode->i_op = &simple_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
d_instantiate(dentry, inode);
inc_nlink(dir);
inc_nlink(d_inode(dentry));
return ret;
out_iput:
iput(inode);
out:
return ret;
}
static int spufs_gang_open(struct path *path)
{
int ret;
struct file *filp;
ret = get_unused_fd_flags(0);
if (ret < 0)
return ret;
/*
* get references for dget and mntget, will be released
* in error path of *_open().
*/
filp = dentry_open(path, O_RDONLY, current_cred());
if (IS_ERR(filp)) {
put_unused_fd(ret);
return PTR_ERR(filp);
}
filp->f_op = &simple_dir_operations;
fd_install(ret, filp);
return ret;
}
static int spufs_create_gang(struct inode *inode,
struct dentry *dentry,
struct vfsmount *mnt, umode_t mode)
{
struct path path = {.mnt = mnt, .dentry = dentry};
int ret;
ret = spufs_mkgang(inode, dentry, mode & 0777);
if (!ret) {
ret = spufs_gang_open(&path);
if (ret < 0) {
int err = simple_rmdir(inode, dentry);
WARN_ON(err);
}
}
return ret;
}
static struct file_system_type spufs_type;
long spufs_create(struct path *path, struct dentry *dentry,
unsigned int flags, umode_t mode, struct file *filp)
{
struct inode *dir = d_inode(path->dentry);
int ret;
/* check if we are on spufs */
if (path->dentry->d_sb->s_type != &spufs_type)
return -EINVAL;
/* don't accept undefined flags */
if (flags & (~SPU_CREATE_FLAG_ALL))
return -EINVAL;
/* only threads can be underneath a gang */
if (path->dentry != path->dentry->d_sb->s_root)
if ((flags & SPU_CREATE_GANG) || !SPUFS_I(dir)->i_gang)
return -EINVAL;
mode &= ~current_umask();
if (flags & SPU_CREATE_GANG)
ret = spufs_create_gang(dir, dentry, path->mnt, mode);
else
ret = spufs_create_context(dir, dentry, path->mnt, flags, mode,
filp);
if (ret >= 0)
fsnotify_mkdir(dir, dentry);
return ret;
}
/* File system initialization */
enum {
Opt_uid, Opt_gid, Opt_mode, Opt_debug, Opt_err,
};
static const match_table_t spufs_tokens = {
{ Opt_uid, "uid=%d" },
{ Opt_gid, "gid=%d" },
{ Opt_mode, "mode=%o" },
{ Opt_debug, "debug" },
{ Opt_err, NULL },
};
static int spufs_show_options(struct seq_file *m, struct dentry *root)
{
struct spufs_sb_info *sbi = spufs_get_sb_info(root->d_sb);
struct inode *inode = root->d_inode;
if (!uid_eq(inode->i_uid, GLOBAL_ROOT_UID))
seq_printf(m, ",uid=%u",
from_kuid_munged(&init_user_ns, inode->i_uid));
if (!gid_eq(inode->i_gid, GLOBAL_ROOT_GID))
seq_printf(m, ",gid=%u",
from_kgid_munged(&init_user_ns, inode->i_gid));
if ((inode->i_mode & S_IALLUGO) != 0775)
seq_printf(m, ",mode=%o", inode->i_mode);
if (sbi->debug)
seq_puts(m, ",debug");
return 0;
}
static int
spufs_parse_options(struct super_block *sb, char *options, struct inode *root)
{
char *p;
substring_t args[MAX_OPT_ARGS];
while ((p = strsep(&options, ",")) != NULL) {
int token, option;
if (!*p)
continue;
token = match_token(p, spufs_tokens, args);
switch (token) {
case Opt_uid:
if (match_int(&args[0], &option))
return 0;
root->i_uid = make_kuid(current_user_ns(), option);
if (!uid_valid(root->i_uid))
return 0;
break;
case Opt_gid:
if (match_int(&args[0], &option))
return 0;
root->i_gid = make_kgid(current_user_ns(), option);
if (!gid_valid(root->i_gid))
return 0;
break;
case Opt_mode:
if (match_octal(&args[0], &option))
return 0;
root->i_mode = option | S_IFDIR;
break;
case Opt_debug:
spufs_get_sb_info(sb)->debug = 1;
break;
default:
return 0;
}
}
return 1;
}
static void spufs_exit_isolated_loader(void)
{
free_pages((unsigned long) isolated_loader,
get_order(isolated_loader_size));
}
static void
spufs_init_isolated_loader(void)
{
struct device_node *dn;
const char *loader;
int size;
dn = of_find_node_by_path("/spu-isolation");
if (!dn)
return;
loader = of_get_property(dn, "loader", &size);
if (!loader)
return;
/* the loader must be align on a 16 byte boundary */
isolated_loader = (char *)__get_free_pages(GFP_KERNEL, get_order(size));
if (!isolated_loader)
return;
isolated_loader_size = size;
memcpy(isolated_loader, loader, size);
printk(KERN_INFO "spufs: SPU isolation mode enabled\n");
}
static int
spufs_create_root(struct super_block *sb, void *data)
{
struct inode *inode;
int ret;
ret = -ENODEV;
if (!spu_management_ops)
goto out;
ret = -ENOMEM;
inode = spufs_new_inode(sb, S_IFDIR | 0775);
if (!inode)
goto out;
inode->i_op = &simple_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
SPUFS_I(inode)->i_ctx = NULL;
inc_nlink(inode);
ret = -EINVAL;
if (!spufs_parse_options(sb, data, inode))
goto out_iput;
ret = -ENOMEM;
sb->s_root = d_make_root(inode);
if (!sb->s_root)
goto out;
return 0;
out_iput:
iput(inode);
out:
return ret;
}
static int
spufs_fill_super(struct super_block *sb, void *data, int silent)
{
struct spufs_sb_info *info;
static const struct super_operations s_ops = {
.alloc_inode = spufs_alloc_inode,
.free_inode = spufs_free_inode,
.statfs = simple_statfs,
.evict_inode = spufs_evict_inode,
.show_options = spufs_show_options,
};
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
sb->s_maxbytes = MAX_LFS_FILESIZE;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 20:29:47 +08:00
sb->s_blocksize = PAGE_SIZE;
sb->s_blocksize_bits = PAGE_SHIFT;
sb->s_magic = SPUFS_MAGIC;
sb->s_op = &s_ops;
sb->s_fs_info = info;
return spufs_create_root(sb, data);
}
static struct dentry *
spufs_mount(struct file_system_type *fstype, int flags,
const char *name, void *data)
{
return mount_single(fstype, flags, data, spufs_fill_super);
}
static struct file_system_type spufs_type = {
.owner = THIS_MODULE,
.name = "spufs",
.mount = spufs_mount,
.kill_sb = kill_litter_super,
};
fs: Limit sys_mount to only request filesystem modules. Modify the request_module to prefix the file system type with "fs-" and add aliases to all of the filesystems that can be built as modules to match. A common practice is to build all of the kernel code and leave code that is not commonly needed as modules, with the result that many users are exposed to any bug anywhere in the kernel. Looking for filesystems with a fs- prefix limits the pool of possible modules that can be loaded by mount to just filesystems trivially making things safer with no real cost. Using aliases means user space can control the policy of which filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf with blacklist and alias directives. Allowing simple, safe, well understood work-arounds to known problematic software. This also addresses a rare but unfortunate problem where the filesystem name is not the same as it's module name and module auto-loading would not work. While writing this patch I saw a handful of such cases. The most significant being autofs that lives in the module autofs4. This is relevant to user namespaces because we can reach the request module in get_fs_type() without having any special permissions, and people get uncomfortable when a user specified string (in this case the filesystem type) goes all of the way to request_module. After having looked at this issue I don't think there is any particular reason to perform any filtering or permission checks beyond making it clear in the module request that we want a filesystem module. The common pattern in the kernel is to call request_module() without regards to the users permissions. In general all a filesystem module does once loaded is call register_filesystem() and go to sleep. Which means there is not much attack surface exposed by loading a filesytem module unless the filesystem is mounted. In a user namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT, which most filesystems do not set today. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Kees Cook <keescook@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2013-03-03 11:39:14 +08:00
MODULE_ALIAS_FS("spufs");
static int __init spufs_init(void)
{
int ret;
ret = -ENODEV;
if (!spu_management_ops)
goto out;
ret = -ENOMEM;
spufs_inode_cache = kmem_cache_create("spufs_inode_cache",
sizeof(struct spufs_inode_info), 0,
2016-01-15 07:18:21 +08:00
SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, spufs_init_once);
if (!spufs_inode_cache)
goto out;
ret = spu_sched_init();
if (ret)
goto out_cache;
ret = register_spu_syscalls(&spufs_calls);
if (ret)
goto out_sched;
ret = register_filesystem(&spufs_type);
if (ret)
goto out_syscalls;
spufs_init_isolated_loader();
return 0;
out_syscalls:
unregister_spu_syscalls(&spufs_calls);
out_sched:
spu_sched_exit();
out_cache:
kmem_cache_destroy(spufs_inode_cache);
out:
return ret;
}
module_init(spufs_init);
static void __exit spufs_exit(void)
{
spu_sched_exit();
spufs_exit_isolated_loader();
unregister_spu_syscalls(&spufs_calls);
unregister_filesystem(&spufs_type);
kmem_cache_destroy(spufs_inode_cache);
}
module_exit(spufs_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");