linux/net/sunrpc/xprtrdma/svc_rdma_transport.c

1352 lines
37 KiB
C
Raw Normal View History

/*
* Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
* Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Author: Tom Tucker <tom@opengridcomputing.com>
*/
#include <linux/sunrpc/svc_xprt.h>
#include <linux/sunrpc/addr.h>
#include <linux/sunrpc/debug.h>
#include <linux/sunrpc/rpc_rdma.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/sunrpc/svc_rdma.h>
#include <linux/export.h>
#include "xprt_rdma.h"
#define RPCDBG_FACILITY RPCDBG_SVCXPRT
static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *, int);
static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
struct net *net,
struct sockaddr *sa, int salen,
int flags);
static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
static void svc_rdma_release_rqst(struct svc_rqst *);
static void svc_rdma_detach(struct svc_xprt *xprt);
static void svc_rdma_free(struct svc_xprt *xprt);
static int svc_rdma_has_wspace(struct svc_xprt *xprt);
static int svc_rdma_secure_port(struct svc_rqst *);
sunrpc: svc_age_temp_xprts_now should not call setsockopt non-tcp transports This fixes the following panic that can occur with NFSoRDMA. general protection fault: 0000 [#1] SMP Modules linked in: rpcrdma ib_isert iscsi_target_mod ib_iser libiscsi scsi_transport_iscsi ib_srpt target_core_mod ib_srp scsi_transport_srp scsi_tgt ib_ipoib rdma_ucm ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm mlx5_ib ib_core intel_powerclamp coretemp kvm_intel kvm sg ioatdma ipmi_devintf ipmi_ssif dcdbas iTCO_wdt iTCO_vendor_support pcspkr irqbypass sb_edac shpchp dca crc32_pclmul ghash_clmulni_intel edac_core lpc_ich aesni_intel lrw gf128mul glue_helper ablk_helper mei_me mei ipmi_si cryptd wmi ipmi_msghandler acpi_pad acpi_power_meter nfsd auth_rpcgss nfs_acl lockd grace sunrpc ip_tables xfs libcrc32c sd_mod crc_t10dif crct10dif_generic mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect sysimgblt ahci fb_sys_fops ttm libahci mlx5_core tg3 crct10dif_pclmul drm crct10dif_common ptp i2c_core libata crc32c_intel pps_core fjes dm_mirror dm_region_hash dm_log dm_mod CPU: 1 PID: 120 Comm: kworker/1:1 Not tainted 3.10.0-514.el7.x86_64 #1 Hardware name: Dell Inc. PowerEdge R320/0KM5PX, BIOS 2.4.2 01/29/2015 Workqueue: events check_lifetime task: ffff88031f506dd0 ti: ffff88031f584000 task.ti: ffff88031f584000 RIP: 0010:[<ffffffff8168d847>] [<ffffffff8168d847>] _raw_spin_lock_bh+0x17/0x50 RSP: 0018:ffff88031f587ba8 EFLAGS: 00010206 RAX: 0000000000020000 RBX: 20041fac02080072 RCX: ffff88031f587fd8 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 20041fac02080072 RBP: ffff88031f587bb0 R08: 0000000000000008 R09: ffffffff8155be77 R10: ffff880322a59b00 R11: ffffea000bf39f00 R12: 20041fac02080072 R13: 000000000000000d R14: ffff8800c4fbd800 R15: 0000000000000001 FS: 0000000000000000(0000) GS:ffff880322a40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f3c52d4547e CR3: 00000000019ba000 CR4: 00000000001407e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Stack: 20041fac02080002 ffff88031f587bd0 ffffffff81557830 20041fac02080002 ffff88031f587c78 ffff88031f587c40 ffffffff8155ae08 000000010157df32 0000000800000001 ffff88031f587c20 ffffffff81096acb ffffffff81aa37d0 Call Trace: [<ffffffff81557830>] lock_sock_nested+0x20/0x50 [<ffffffff8155ae08>] sock_setsockopt+0x78/0x940 [<ffffffff81096acb>] ? lock_timer_base.isra.33+0x2b/0x50 [<ffffffff8155397d>] kernel_setsockopt+0x4d/0x50 [<ffffffffa0386284>] svc_age_temp_xprts_now+0x174/0x1e0 [sunrpc] [<ffffffffa03b681d>] nfsd_inetaddr_event+0x9d/0xd0 [nfsd] [<ffffffff81691ebc>] notifier_call_chain+0x4c/0x70 [<ffffffff810b687d>] __blocking_notifier_call_chain+0x4d/0x70 [<ffffffff810b68b6>] blocking_notifier_call_chain+0x16/0x20 [<ffffffff815e8538>] __inet_del_ifa+0x168/0x2d0 [<ffffffff815e8cef>] check_lifetime+0x25f/0x270 [<ffffffff810a7f3b>] process_one_work+0x17b/0x470 [<ffffffff810a8d76>] worker_thread+0x126/0x410 [<ffffffff810a8c50>] ? rescuer_thread+0x460/0x460 [<ffffffff810b052f>] kthread+0xcf/0xe0 [<ffffffff810b0460>] ? kthread_create_on_node+0x140/0x140 [<ffffffff81696418>] ret_from_fork+0x58/0x90 [<ffffffff810b0460>] ? kthread_create_on_node+0x140/0x140 Code: ca 75 f1 5d c3 0f 1f 80 00 00 00 00 eb d9 66 0f 1f 44 00 00 0f 1f 44 00 00 55 48 89 e5 53 48 89 fb e8 7e 04 a0 ff b8 00 00 02 00 <f0> 0f c1 03 89 c2 c1 ea 10 66 39 c2 75 03 5b 5d c3 83 e2 fe 0f RIP [<ffffffff8168d847>] _raw_spin_lock_bh+0x17/0x50 RSP <ffff88031f587ba8> Signed-off-by: Scott Mayhew <smayhew@redhat.com> Fixes: c3d4879e ("sunrpc: Add a function to close temporary transports immediately") Reviewed-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2016-11-12 02:16:22 +08:00
static void svc_rdma_kill_temp_xprt(struct svc_xprt *);
static struct svc_xprt_ops svc_rdma_ops = {
.xpo_create = svc_rdma_create,
.xpo_recvfrom = svc_rdma_recvfrom,
.xpo_sendto = svc_rdma_sendto,
.xpo_release_rqst = svc_rdma_release_rqst,
.xpo_detach = svc_rdma_detach,
.xpo_free = svc_rdma_free,
.xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
.xpo_has_wspace = svc_rdma_has_wspace,
.xpo_accept = svc_rdma_accept,
.xpo_secure_port = svc_rdma_secure_port,
sunrpc: svc_age_temp_xprts_now should not call setsockopt non-tcp transports This fixes the following panic that can occur with NFSoRDMA. general protection fault: 0000 [#1] SMP Modules linked in: rpcrdma ib_isert iscsi_target_mod ib_iser libiscsi scsi_transport_iscsi ib_srpt target_core_mod ib_srp scsi_transport_srp scsi_tgt ib_ipoib rdma_ucm ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm mlx5_ib ib_core intel_powerclamp coretemp kvm_intel kvm sg ioatdma ipmi_devintf ipmi_ssif dcdbas iTCO_wdt iTCO_vendor_support pcspkr irqbypass sb_edac shpchp dca crc32_pclmul ghash_clmulni_intel edac_core lpc_ich aesni_intel lrw gf128mul glue_helper ablk_helper mei_me mei ipmi_si cryptd wmi ipmi_msghandler acpi_pad acpi_power_meter nfsd auth_rpcgss nfs_acl lockd grace sunrpc ip_tables xfs libcrc32c sd_mod crc_t10dif crct10dif_generic mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect sysimgblt ahci fb_sys_fops ttm libahci mlx5_core tg3 crct10dif_pclmul drm crct10dif_common ptp i2c_core libata crc32c_intel pps_core fjes dm_mirror dm_region_hash dm_log dm_mod CPU: 1 PID: 120 Comm: kworker/1:1 Not tainted 3.10.0-514.el7.x86_64 #1 Hardware name: Dell Inc. PowerEdge R320/0KM5PX, BIOS 2.4.2 01/29/2015 Workqueue: events check_lifetime task: ffff88031f506dd0 ti: ffff88031f584000 task.ti: ffff88031f584000 RIP: 0010:[<ffffffff8168d847>] [<ffffffff8168d847>] _raw_spin_lock_bh+0x17/0x50 RSP: 0018:ffff88031f587ba8 EFLAGS: 00010206 RAX: 0000000000020000 RBX: 20041fac02080072 RCX: ffff88031f587fd8 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 20041fac02080072 RBP: ffff88031f587bb0 R08: 0000000000000008 R09: ffffffff8155be77 R10: ffff880322a59b00 R11: ffffea000bf39f00 R12: 20041fac02080072 R13: 000000000000000d R14: ffff8800c4fbd800 R15: 0000000000000001 FS: 0000000000000000(0000) GS:ffff880322a40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f3c52d4547e CR3: 00000000019ba000 CR4: 00000000001407e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Stack: 20041fac02080002 ffff88031f587bd0 ffffffff81557830 20041fac02080002 ffff88031f587c78 ffff88031f587c40 ffffffff8155ae08 000000010157df32 0000000800000001 ffff88031f587c20 ffffffff81096acb ffffffff81aa37d0 Call Trace: [<ffffffff81557830>] lock_sock_nested+0x20/0x50 [<ffffffff8155ae08>] sock_setsockopt+0x78/0x940 [<ffffffff81096acb>] ? lock_timer_base.isra.33+0x2b/0x50 [<ffffffff8155397d>] kernel_setsockopt+0x4d/0x50 [<ffffffffa0386284>] svc_age_temp_xprts_now+0x174/0x1e0 [sunrpc] [<ffffffffa03b681d>] nfsd_inetaddr_event+0x9d/0xd0 [nfsd] [<ffffffff81691ebc>] notifier_call_chain+0x4c/0x70 [<ffffffff810b687d>] __blocking_notifier_call_chain+0x4d/0x70 [<ffffffff810b68b6>] blocking_notifier_call_chain+0x16/0x20 [<ffffffff815e8538>] __inet_del_ifa+0x168/0x2d0 [<ffffffff815e8cef>] check_lifetime+0x25f/0x270 [<ffffffff810a7f3b>] process_one_work+0x17b/0x470 [<ffffffff810a8d76>] worker_thread+0x126/0x410 [<ffffffff810a8c50>] ? rescuer_thread+0x460/0x460 [<ffffffff810b052f>] kthread+0xcf/0xe0 [<ffffffff810b0460>] ? kthread_create_on_node+0x140/0x140 [<ffffffff81696418>] ret_from_fork+0x58/0x90 [<ffffffff810b0460>] ? kthread_create_on_node+0x140/0x140 Code: ca 75 f1 5d c3 0f 1f 80 00 00 00 00 eb d9 66 0f 1f 44 00 00 0f 1f 44 00 00 55 48 89 e5 53 48 89 fb e8 7e 04 a0 ff b8 00 00 02 00 <f0> 0f c1 03 89 c2 c1 ea 10 66 39 c2 75 03 5b 5d c3 83 e2 fe 0f RIP [<ffffffff8168d847>] _raw_spin_lock_bh+0x17/0x50 RSP <ffff88031f587ba8> Signed-off-by: Scott Mayhew <smayhew@redhat.com> Fixes: c3d4879e ("sunrpc: Add a function to close temporary transports immediately") Reviewed-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2016-11-12 02:16:22 +08:00
.xpo_kill_temp_xprt = svc_rdma_kill_temp_xprt,
};
struct svc_xprt_class svc_rdma_class = {
.xcl_name = "rdma",
.xcl_owner = THIS_MODULE,
.xcl_ops = &svc_rdma_ops,
.xcl_max_payload = RPCSVC_MAXPAYLOAD_RDMA,
.xcl_ident = XPRT_TRANSPORT_RDMA,
};
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
static struct svc_xprt *svc_rdma_bc_create(struct svc_serv *, struct net *,
struct sockaddr *, int, int);
static void svc_rdma_bc_detach(struct svc_xprt *);
static void svc_rdma_bc_free(struct svc_xprt *);
static struct svc_xprt_ops svc_rdma_bc_ops = {
.xpo_create = svc_rdma_bc_create,
.xpo_detach = svc_rdma_bc_detach,
.xpo_free = svc_rdma_bc_free,
.xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
.xpo_secure_port = svc_rdma_secure_port,
};
struct svc_xprt_class svc_rdma_bc_class = {
.xcl_name = "rdma-bc",
.xcl_owner = THIS_MODULE,
.xcl_ops = &svc_rdma_bc_ops,
.xcl_max_payload = (1024 - RPCRDMA_HDRLEN_MIN)
};
static struct svc_xprt *svc_rdma_bc_create(struct svc_serv *serv,
struct net *net,
struct sockaddr *sa, int salen,
int flags)
{
struct svcxprt_rdma *cma_xprt;
struct svc_xprt *xprt;
cma_xprt = rdma_create_xprt(serv, 0);
if (!cma_xprt)
return ERR_PTR(-ENOMEM);
xprt = &cma_xprt->sc_xprt;
svc_xprt_init(net, &svc_rdma_bc_class, xprt, serv);
serv->sv_bc_xprt = xprt;
dprintk("svcrdma: %s(%p)\n", __func__, xprt);
return xprt;
}
static void svc_rdma_bc_detach(struct svc_xprt *xprt)
{
dprintk("svcrdma: %s(%p)\n", __func__, xprt);
}
static void svc_rdma_bc_free(struct svc_xprt *xprt)
{
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
dprintk("svcrdma: %s(%p)\n", __func__, xprt);
if (xprt)
kfree(rdma);
}
#endif /* CONFIG_SUNRPC_BACKCHANNEL */
static struct svc_rdma_op_ctxt *alloc_ctxt(struct svcxprt_rdma *xprt,
gfp_t flags)
{
struct svc_rdma_op_ctxt *ctxt;
ctxt = kmalloc(sizeof(*ctxt), flags);
if (ctxt) {
ctxt->xprt = xprt;
INIT_LIST_HEAD(&ctxt->list);
}
return ctxt;
}
static bool svc_rdma_prealloc_ctxts(struct svcxprt_rdma *xprt)
{
unsigned int i;
/* Each RPC/RDMA credit can consume a number of send
* and receive WQEs. One ctxt is allocated for each.
*/
i = xprt->sc_sq_depth + xprt->sc_rq_depth;
while (i--) {
struct svc_rdma_op_ctxt *ctxt;
ctxt = alloc_ctxt(xprt, GFP_KERNEL);
if (!ctxt) {
dprintk("svcrdma: No memory for RDMA ctxt\n");
return false;
}
list_add(&ctxt->list, &xprt->sc_ctxts);
}
return true;
}
struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt)
{
struct svc_rdma_op_ctxt *ctxt = NULL;
spin_lock(&xprt->sc_ctxt_lock);
xprt->sc_ctxt_used++;
if (list_empty(&xprt->sc_ctxts))
goto out_empty;
ctxt = list_first_entry(&xprt->sc_ctxts,
struct svc_rdma_op_ctxt, list);
list_del(&ctxt->list);
spin_unlock(&xprt->sc_ctxt_lock);
out:
ctxt->count = 0;
ctxt->mapped_sges = 0;
ctxt->frmr = NULL;
return ctxt;
out_empty:
/* Either pre-allocation missed the mark, or send
* queue accounting is broken.
*/
spin_unlock(&xprt->sc_ctxt_lock);
ctxt = alloc_ctxt(xprt, GFP_NOIO);
if (ctxt)
goto out;
spin_lock(&xprt->sc_ctxt_lock);
xprt->sc_ctxt_used--;
spin_unlock(&xprt->sc_ctxt_lock);
WARN_ONCE(1, "svcrdma: empty RDMA ctxt list?\n");
return NULL;
}
void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt)
{
struct svcxprt_rdma *xprt = ctxt->xprt;
struct ib_device *device = xprt->sc_cm_id->device;
u32 lkey = xprt->sc_pd->local_dma_lkey;
unsigned int i;
for (i = 0; i < ctxt->mapped_sges; i++) {
/*
* Unmap the DMA addr in the SGE if the lkey matches
* the local_dma_lkey, otherwise, ignore it since it is
* an FRMR lkey and will be unmapped later when the
* last WR that uses it completes.
*/
if (ctxt->sge[i].lkey == lkey)
ib_dma_unmap_page(device,
ctxt->sge[i].addr,
ctxt->sge[i].length,
ctxt->direction);
}
ctxt->mapped_sges = 0;
}
void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages)
{
struct svcxprt_rdma *xprt = ctxt->xprt;
int i;
if (free_pages)
for (i = 0; i < ctxt->count; i++)
put_page(ctxt->pages[i]);
spin_lock(&xprt->sc_ctxt_lock);
xprt->sc_ctxt_used--;
list_add(&ctxt->list, &xprt->sc_ctxts);
spin_unlock(&xprt->sc_ctxt_lock);
}
static void svc_rdma_destroy_ctxts(struct svcxprt_rdma *xprt)
{
while (!list_empty(&xprt->sc_ctxts)) {
struct svc_rdma_op_ctxt *ctxt;
ctxt = list_first_entry(&xprt->sc_ctxts,
struct svc_rdma_op_ctxt, list);
list_del(&ctxt->list);
kfree(ctxt);
}
}
static struct svc_rdma_req_map *alloc_req_map(gfp_t flags)
{
struct svc_rdma_req_map *map;
map = kmalloc(sizeof(*map), flags);
if (map)
INIT_LIST_HEAD(&map->free);
return map;
}
static bool svc_rdma_prealloc_maps(struct svcxprt_rdma *xprt)
{
unsigned int i;
/* One for each receive buffer on this connection. */
i = xprt->sc_max_requests;
while (i--) {
struct svc_rdma_req_map *map;
map = alloc_req_map(GFP_KERNEL);
if (!map) {
dprintk("svcrdma: No memory for request map\n");
return false;
}
list_add(&map->free, &xprt->sc_maps);
}
return true;
}
struct svc_rdma_req_map *svc_rdma_get_req_map(struct svcxprt_rdma *xprt)
{
struct svc_rdma_req_map *map = NULL;
spin_lock(&xprt->sc_map_lock);
if (list_empty(&xprt->sc_maps))
goto out_empty;
map = list_first_entry(&xprt->sc_maps,
struct svc_rdma_req_map, free);
list_del_init(&map->free);
spin_unlock(&xprt->sc_map_lock);
out:
map->count = 0;
return map;
out_empty:
spin_unlock(&xprt->sc_map_lock);
/* Pre-allocation amount was incorrect */
map = alloc_req_map(GFP_NOIO);
if (map)
goto out;
WARN_ONCE(1, "svcrdma: empty request map list?\n");
return NULL;
}
void svc_rdma_put_req_map(struct svcxprt_rdma *xprt,
struct svc_rdma_req_map *map)
{
spin_lock(&xprt->sc_map_lock);
list_add(&map->free, &xprt->sc_maps);
spin_unlock(&xprt->sc_map_lock);
}
static void svc_rdma_destroy_maps(struct svcxprt_rdma *xprt)
{
while (!list_empty(&xprt->sc_maps)) {
struct svc_rdma_req_map *map;
map = list_first_entry(&xprt->sc_maps,
struct svc_rdma_req_map, free);
list_del(&map->free);
kfree(map);
}
}
/* QP event handler */
static void qp_event_handler(struct ib_event *event, void *context)
{
struct svc_xprt *xprt = context;
switch (event->event) {
/* These are considered benign events */
case IB_EVENT_PATH_MIG:
case IB_EVENT_COMM_EST:
case IB_EVENT_SQ_DRAINED:
case IB_EVENT_QP_LAST_WQE_REACHED:
dprintk("svcrdma: QP event %s (%d) received for QP=%p\n",
ib_event_msg(event->event), event->event,
event->element.qp);
break;
/* These are considered fatal events */
case IB_EVENT_PATH_MIG_ERR:
case IB_EVENT_QP_FATAL:
case IB_EVENT_QP_REQ_ERR:
case IB_EVENT_QP_ACCESS_ERR:
case IB_EVENT_DEVICE_FATAL:
default:
dprintk("svcrdma: QP ERROR event %s (%d) received for QP=%p, "
"closing transport\n",
ib_event_msg(event->event), event->event,
event->element.qp);
set_bit(XPT_CLOSE, &xprt->xpt_flags);
break;
}
}
/**
* svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
* @cq: completion queue
* @wc: completed WR
*
*/
static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
{
struct svcxprt_rdma *xprt = cq->cq_context;
struct ib_cqe *cqe = wc->wr_cqe;
struct svc_rdma_op_ctxt *ctxt;
/* WARNING: Only wc->wr_cqe and wc->status are reliable */
ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe);
svc_rdma_unmap_dma(ctxt);
if (wc->status != IB_WC_SUCCESS)
goto flushed;
/* All wc fields are now known to be valid */
ctxt->byte_len = wc->byte_len;
spin_lock(&xprt->sc_rq_dto_lock);
list_add_tail(&ctxt->list, &xprt->sc_rq_dto_q);
spin_unlock(&xprt->sc_rq_dto_lock);
set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
if (test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags))
goto out;
svc_xprt_enqueue(&xprt->sc_xprt);
goto out;
flushed:
if (wc->status != IB_WC_WR_FLUSH_ERR)
pr_warn("svcrdma: receive: %s (%u/0x%x)\n",
ib_wc_status_msg(wc->status),
wc->status, wc->vendor_err);
set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
svc_rdma_put_context(ctxt, 1);
out:
svc_xprt_put(&xprt->sc_xprt);
}
static void svc_rdma_send_wc_common(struct svcxprt_rdma *xprt,
struct ib_wc *wc,
const char *opname)
{
if (wc->status != IB_WC_SUCCESS)
goto err;
out:
atomic_inc(&xprt->sc_sq_avail);
wake_up(&xprt->sc_send_wait);
return;
err:
set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
if (wc->status != IB_WC_WR_FLUSH_ERR)
pr_err("svcrdma: %s: %s (%u/0x%x)\n",
opname, ib_wc_status_msg(wc->status),
wc->status, wc->vendor_err);
goto out;
}
static void svc_rdma_send_wc_common_put(struct ib_cq *cq, struct ib_wc *wc,
const char *opname)
{
struct svcxprt_rdma *xprt = cq->cq_context;
svc_rdma_send_wc_common(xprt, wc, opname);
svc_xprt_put(&xprt->sc_xprt);
}
/**
* svc_rdma_wc_send - Invoked by RDMA provider for each polled Send WC
* @cq: completion queue
* @wc: completed WR
*
*/
void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
{
struct ib_cqe *cqe = wc->wr_cqe;
struct svc_rdma_op_ctxt *ctxt;
svc_rdma_send_wc_common_put(cq, wc, "send");
ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe);
svc_rdma_unmap_dma(ctxt);
svc_rdma_put_context(ctxt, 1);
}
/**
* svc_rdma_wc_write - Invoked by RDMA provider for each polled Write WC
* @cq: completion queue
* @wc: completed WR
*
*/
void svc_rdma_wc_write(struct ib_cq *cq, struct ib_wc *wc)
{
struct ib_cqe *cqe = wc->wr_cqe;
struct svc_rdma_op_ctxt *ctxt;
svc_rdma_send_wc_common_put(cq, wc, "write");
ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe);
svc_rdma_unmap_dma(ctxt);
svc_rdma_put_context(ctxt, 0);
}
/**
* svc_rdma_wc_reg - Invoked by RDMA provider for each polled FASTREG WC
* @cq: completion queue
* @wc: completed WR
*
*/
void svc_rdma_wc_reg(struct ib_cq *cq, struct ib_wc *wc)
{
svc_rdma_send_wc_common_put(cq, wc, "fastreg");
}
/**
* svc_rdma_wc_read - Invoked by RDMA provider for each polled Read WC
* @cq: completion queue
* @wc: completed WR
*
*/
void svc_rdma_wc_read(struct ib_cq *cq, struct ib_wc *wc)
{
struct svcxprt_rdma *xprt = cq->cq_context;
struct ib_cqe *cqe = wc->wr_cqe;
struct svc_rdma_op_ctxt *ctxt;
svc_rdma_send_wc_common(xprt, wc, "read");
ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe);
svc_rdma_unmap_dma(ctxt);
svc_rdma_put_frmr(xprt, ctxt->frmr);
if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) {
struct svc_rdma_op_ctxt *read_hdr;
read_hdr = ctxt->read_hdr;
spin_lock(&xprt->sc_rq_dto_lock);
list_add_tail(&read_hdr->list,
&xprt->sc_read_complete_q);
spin_unlock(&xprt->sc_rq_dto_lock);
set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
svc_xprt_enqueue(&xprt->sc_xprt);
}
svc_rdma_put_context(ctxt, 0);
svc_xprt_put(&xprt->sc_xprt);
}
/**
* svc_rdma_wc_inv - Invoked by RDMA provider for each polled LOCAL_INV WC
* @cq: completion queue
* @wc: completed WR
*
*/
void svc_rdma_wc_inv(struct ib_cq *cq, struct ib_wc *wc)
{
svc_rdma_send_wc_common_put(cq, wc, "localInv");
}
static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv,
int listener)
{
struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
if (!cma_xprt)
return NULL;
svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv);
INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
INIT_LIST_HEAD(&cma_xprt->sc_frmr_q);
INIT_LIST_HEAD(&cma_xprt->sc_ctxts);
INIT_LIST_HEAD(&cma_xprt->sc_maps);
init_waitqueue_head(&cma_xprt->sc_send_wait);
spin_lock_init(&cma_xprt->sc_lock);
spin_lock_init(&cma_xprt->sc_rq_dto_lock);
spin_lock_init(&cma_xprt->sc_frmr_q_lock);
spin_lock_init(&cma_xprt->sc_ctxt_lock);
spin_lock_init(&cma_xprt->sc_map_lock);
/*
* Note that this implies that the underlying transport support
* has some form of congestion control (see RFC 7530 section 3.1
* paragraph 2). For now, we assume that all supported RDMA
* transports are suitable here.
*/
set_bit(XPT_CONG_CTRL, &cma_xprt->sc_xprt.xpt_flags);
if (listener)
set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
return cma_xprt;
}
int svc_rdma_post_recv(struct svcxprt_rdma *xprt, gfp_t flags)
{
struct ib_recv_wr recv_wr, *bad_recv_wr;
struct svc_rdma_op_ctxt *ctxt;
struct page *page;
dma_addr_t pa;
int sge_no;
int buflen;
int ret;
ctxt = svc_rdma_get_context(xprt);
buflen = 0;
ctxt->direction = DMA_FROM_DEVICE;
ctxt->cqe.done = svc_rdma_wc_receive;
for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) {
if (sge_no >= xprt->sc_max_sge) {
pr_err("svcrdma: Too many sges (%d)\n", sge_no);
goto err_put_ctxt;
}
page = alloc_page(flags);
if (!page)
goto err_put_ctxt;
ctxt->pages[sge_no] = page;
pa = ib_dma_map_page(xprt->sc_cm_id->device,
page, 0, PAGE_SIZE,
DMA_FROM_DEVICE);
if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa))
goto err_put_ctxt;
svc_rdma_count_mappings(xprt, ctxt);
ctxt->sge[sge_no].addr = pa;
ctxt->sge[sge_no].length = PAGE_SIZE;
ctxt->sge[sge_no].lkey = xprt->sc_pd->local_dma_lkey;
ctxt->count = sge_no + 1;
buflen += PAGE_SIZE;
}
recv_wr.next = NULL;
recv_wr.sg_list = &ctxt->sge[0];
recv_wr.num_sge = ctxt->count;
recv_wr.wr_cqe = &ctxt->cqe;
svc_xprt_get(&xprt->sc_xprt);
ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr);
if (ret) {
svc_rdma_unmap_dma(ctxt);
svc_rdma_put_context(ctxt, 1);
svc_xprt_put(&xprt->sc_xprt);
}
return ret;
err_put_ctxt:
svc_rdma_unmap_dma(ctxt);
svc_rdma_put_context(ctxt, 1);
return -ENOMEM;
}
int svc_rdma_repost_recv(struct svcxprt_rdma *xprt, gfp_t flags)
{
int ret = 0;
ret = svc_rdma_post_recv(xprt, flags);
if (ret) {
pr_err("svcrdma: could not post a receive buffer, err=%d.\n",
ret);
pr_err("svcrdma: closing transport %p.\n", xprt);
set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
ret = -ENOTCONN;
}
return ret;
}
static void
svc_rdma_parse_connect_private(struct svcxprt_rdma *newxprt,
struct rdma_conn_param *param)
{
const struct rpcrdma_connect_private *pmsg = param->private_data;
if (pmsg &&
pmsg->cp_magic == rpcrdma_cmp_magic &&
pmsg->cp_version == RPCRDMA_CMP_VERSION) {
newxprt->sc_snd_w_inv = pmsg->cp_flags &
RPCRDMA_CMP_F_SND_W_INV_OK;
dprintk("svcrdma: client send_size %u, recv_size %u "
"remote inv %ssupported\n",
rpcrdma_decode_buffer_size(pmsg->cp_send_size),
rpcrdma_decode_buffer_size(pmsg->cp_recv_size),
newxprt->sc_snd_w_inv ? "" : "un");
}
}
/*
* This function handles the CONNECT_REQUEST event on a listening
* endpoint. It is passed the cma_id for the _new_ connection. The context in
* this cma_id is inherited from the listening cma_id and is the svc_xprt
* structure for the listening endpoint.
*
* This function creates a new xprt for the new connection and enqueues it on
* the accept queue for the listent xprt. When the listen thread is kicked, it
* will call the recvfrom method on the listen xprt which will accept the new
* connection.
*/
static void handle_connect_req(struct rdma_cm_id *new_cma_id,
struct rdma_conn_param *param)
{
struct svcxprt_rdma *listen_xprt = new_cma_id->context;
struct svcxprt_rdma *newxprt;
struct sockaddr *sa;
/* Create a new transport */
newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0);
if (!newxprt) {
dprintk("svcrdma: failed to create new transport\n");
return;
}
newxprt->sc_cm_id = new_cma_id;
new_cma_id->context = newxprt;
dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n",
newxprt, newxprt->sc_cm_id, listen_xprt);
svc_rdma_parse_connect_private(newxprt, param);
/* Save client advertised inbound read limit for use later in accept. */
newxprt->sc_ord = param->initiator_depth;
/* Set the local and remote addresses in the transport */
sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
/*
* Enqueue the new transport on the accept queue of the listening
* transport
*/
spin_lock_bh(&listen_xprt->sc_lock);
list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
spin_unlock_bh(&listen_xprt->sc_lock);
set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
svc_xprt_enqueue(&listen_xprt->sc_xprt);
}
/*
* Handles events generated on the listening endpoint. These events will be
* either be incoming connect requests or adapter removal events.
*/
static int rdma_listen_handler(struct rdma_cm_id *cma_id,
struct rdma_cm_event *event)
{
struct svcxprt_rdma *xprt = cma_id->context;
int ret = 0;
switch (event->event) {
case RDMA_CM_EVENT_CONNECT_REQUEST:
dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
"event = %s (%d)\n", cma_id, cma_id->context,
rdma_event_msg(event->event), event->event);
handle_connect_req(cma_id, &event->param.conn);
break;
case RDMA_CM_EVENT_ESTABLISHED:
/* Accept complete */
dprintk("svcrdma: Connection completed on LISTEN xprt=%p, "
"cm_id=%p\n", xprt, cma_id);
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n",
xprt, cma_id);
if (xprt)
set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
break;
default:
dprintk("svcrdma: Unexpected event on listening endpoint %p, "
"event = %s (%d)\n", cma_id,
rdma_event_msg(event->event), event->event);
break;
}
return ret;
}
static int rdma_cma_handler(struct rdma_cm_id *cma_id,
struct rdma_cm_event *event)
{
struct svc_xprt *xprt = cma_id->context;
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
switch (event->event) {
case RDMA_CM_EVENT_ESTABLISHED:
/* Accept complete */
svc_xprt_get(xprt);
dprintk("svcrdma: Connection completed on DTO xprt=%p, "
"cm_id=%p\n", xprt, cma_id);
clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
svc_xprt_enqueue(xprt);
break;
case RDMA_CM_EVENT_DISCONNECTED:
dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
xprt, cma_id);
if (xprt) {
set_bit(XPT_CLOSE, &xprt->xpt_flags);
svc_xprt_enqueue(xprt);
svc_xprt_put(xprt);
}
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
"event = %s (%d)\n", cma_id, xprt,
rdma_event_msg(event->event), event->event);
if (xprt) {
set_bit(XPT_CLOSE, &xprt->xpt_flags);
svc_xprt_enqueue(xprt);
svc_xprt_put(xprt);
}
break;
default:
dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
"event = %s (%d)\n", cma_id,
rdma_event_msg(event->event), event->event);
break;
}
return 0;
}
/*
* Create a listening RDMA service endpoint.
*/
static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
struct net *net,
struct sockaddr *sa, int salen,
int flags)
{
struct rdma_cm_id *listen_id;
struct svcxprt_rdma *cma_xprt;
int ret;
dprintk("svcrdma: Creating RDMA socket\n");
if ((sa->sa_family != AF_INET) && (sa->sa_family != AF_INET6)) {
dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family);
return ERR_PTR(-EAFNOSUPPORT);
}
cma_xprt = rdma_create_xprt(serv, 1);
if (!cma_xprt)
return ERR_PTR(-ENOMEM);
listen_id = rdma_create_id(&init_net, rdma_listen_handler, cma_xprt,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(listen_id)) {
ret = PTR_ERR(listen_id);
dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
goto err0;
}
/* Allow both IPv4 and IPv6 sockets to bind a single port
* at the same time.
*/
#if IS_ENABLED(CONFIG_IPV6)
ret = rdma_set_afonly(listen_id, 1);
if (ret) {
dprintk("svcrdma: rdma_set_afonly failed = %d\n", ret);
goto err1;
}
#endif
ret = rdma_bind_addr(listen_id, sa);
if (ret) {
dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
goto err1;
}
cma_xprt->sc_cm_id = listen_id;
ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
if (ret) {
dprintk("svcrdma: rdma_listen failed = %d\n", ret);
goto err1;
}
/*
* We need to use the address from the cm_id in case the
* caller specified 0 for the port number.
*/
sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
return &cma_xprt->sc_xprt;
err1:
rdma_destroy_id(listen_id);
err0:
kfree(cma_xprt);
return ERR_PTR(ret);
}
static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt)
{
struct ib_mr *mr;
struct scatterlist *sg;
struct svc_rdma_fastreg_mr *frmr;
u32 num_sg;
frmr = kmalloc(sizeof(*frmr), GFP_KERNEL);
if (!frmr)
goto err;
num_sg = min_t(u32, RPCSVC_MAXPAGES, xprt->sc_frmr_pg_list_len);
mr = ib_alloc_mr(xprt->sc_pd, IB_MR_TYPE_MEM_REG, num_sg);
if (IS_ERR(mr))
goto err_free_frmr;
sg = kcalloc(RPCSVC_MAXPAGES, sizeof(*sg), GFP_KERNEL);
if (!sg)
goto err_free_mr;
sg_init_table(sg, RPCSVC_MAXPAGES);
frmr->mr = mr;
frmr->sg = sg;
INIT_LIST_HEAD(&frmr->frmr_list);
return frmr;
err_free_mr:
ib_dereg_mr(mr);
err_free_frmr:
kfree(frmr);
err:
return ERR_PTR(-ENOMEM);
}
static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt)
{
struct svc_rdma_fastreg_mr *frmr;
while (!list_empty(&xprt->sc_frmr_q)) {
frmr = list_entry(xprt->sc_frmr_q.next,
struct svc_rdma_fastreg_mr, frmr_list);
list_del_init(&frmr->frmr_list);
kfree(frmr->sg);
ib_dereg_mr(frmr->mr);
kfree(frmr);
}
}
struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma)
{
struct svc_rdma_fastreg_mr *frmr = NULL;
spin_lock(&rdma->sc_frmr_q_lock);
if (!list_empty(&rdma->sc_frmr_q)) {
frmr = list_entry(rdma->sc_frmr_q.next,
struct svc_rdma_fastreg_mr, frmr_list);
list_del_init(&frmr->frmr_list);
frmr->sg_nents = 0;
}
spin_unlock(&rdma->sc_frmr_q_lock);
if (frmr)
return frmr;
return rdma_alloc_frmr(rdma);
}
void svc_rdma_put_frmr(struct svcxprt_rdma *rdma,
struct svc_rdma_fastreg_mr *frmr)
{
if (frmr) {
ib_dma_unmap_sg(rdma->sc_cm_id->device,
frmr->sg, frmr->sg_nents, frmr->direction);
spin_lock(&rdma->sc_frmr_q_lock);
WARN_ON_ONCE(!list_empty(&frmr->frmr_list));
list_add(&frmr->frmr_list, &rdma->sc_frmr_q);
spin_unlock(&rdma->sc_frmr_q_lock);
}
}
/*
* This is the xpo_recvfrom function for listening endpoints. Its
* purpose is to accept incoming connections. The CMA callback handler
* has already created a new transport and attached it to the new CMA
* ID.
*
* There is a queue of pending connections hung on the listening
* transport. This queue contains the new svc_xprt structure. This
* function takes svc_xprt structures off the accept_q and completes
* the connection.
*/
static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
{
struct svcxprt_rdma *listen_rdma;
struct svcxprt_rdma *newxprt = NULL;
struct rdma_conn_param conn_param;
struct rpcrdma_connect_private pmsg;
struct ib_qp_init_attr qp_attr;
struct ib_device *dev;
struct sockaddr *sap;
unsigned int i;
int ret = 0;
listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
clear_bit(XPT_CONN, &xprt->xpt_flags);
/* Get the next entry off the accept list */
spin_lock_bh(&listen_rdma->sc_lock);
if (!list_empty(&listen_rdma->sc_accept_q)) {
newxprt = list_entry(listen_rdma->sc_accept_q.next,
struct svcxprt_rdma, sc_accept_q);
list_del_init(&newxprt->sc_accept_q);
}
if (!list_empty(&listen_rdma->sc_accept_q))
set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
spin_unlock_bh(&listen_rdma->sc_lock);
if (!newxprt)
return NULL;
dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
newxprt, newxprt->sc_cm_id);
dev = newxprt->sc_cm_id->device;
/* Qualify the transport resource defaults with the
* capabilities of this particular device */
newxprt->sc_max_sge = min((size_t)dev->attrs.max_sge,
(size_t)RPCSVC_MAXPAGES);
newxprt->sc_max_sge_rd = min_t(size_t, dev->attrs.max_sge_rd,
RPCSVC_MAXPAGES);
newxprt->sc_max_req_size = svcrdma_max_req_size;
newxprt->sc_max_requests = min_t(u32, dev->attrs.max_qp_wr,
svcrdma_max_requests);
newxprt->sc_fc_credits = cpu_to_be32(newxprt->sc_max_requests);
newxprt->sc_max_bc_requests = min_t(u32, dev->attrs.max_qp_wr,
svcrdma_max_bc_requests);
newxprt->sc_rq_depth = newxprt->sc_max_requests +
newxprt->sc_max_bc_requests;
newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_rq_depth;
atomic_set(&newxprt->sc_sq_avail, newxprt->sc_sq_depth);
if (!svc_rdma_prealloc_ctxts(newxprt))
goto errout;
if (!svc_rdma_prealloc_maps(newxprt))
goto errout;
/*
* Limit ORD based on client limit, local device limit, and
* configured svcrdma limit.
*/
newxprt->sc_ord = min_t(size_t, dev->attrs.max_qp_rd_atom, newxprt->sc_ord);
newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord);
newxprt->sc_pd = ib_alloc_pd(dev, 0);
if (IS_ERR(newxprt->sc_pd)) {
dprintk("svcrdma: error creating PD for connect request\n");
goto errout;
}
newxprt->sc_sq_cq = ib_alloc_cq(dev, newxprt, newxprt->sc_sq_depth,
0, IB_POLL_WORKQUEUE);
if (IS_ERR(newxprt->sc_sq_cq)) {
dprintk("svcrdma: error creating SQ CQ for connect request\n");
goto errout;
}
newxprt->sc_rq_cq = ib_alloc_cq(dev, newxprt, newxprt->sc_rq_depth,
0, IB_POLL_WORKQUEUE);
if (IS_ERR(newxprt->sc_rq_cq)) {
dprintk("svcrdma: error creating RQ CQ for connect request\n");
goto errout;
}
memset(&qp_attr, 0, sizeof qp_attr);
qp_attr.event_handler = qp_event_handler;
qp_attr.qp_context = &newxprt->sc_xprt;
qp_attr.cap.max_send_wr = newxprt->sc_sq_depth;
qp_attr.cap.max_recv_wr = newxprt->sc_rq_depth;
qp_attr.cap.max_send_sge = newxprt->sc_max_sge;
qp_attr.cap.max_recv_sge = newxprt->sc_max_sge;
qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
qp_attr.qp_type = IB_QPT_RC;
qp_attr.send_cq = newxprt->sc_sq_cq;
qp_attr.recv_cq = newxprt->sc_rq_cq;
dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n",
newxprt->sc_cm_id, newxprt->sc_pd);
dprintk(" cap.max_send_wr = %d, cap.max_recv_wr = %d\n",
qp_attr.cap.max_send_wr, qp_attr.cap.max_recv_wr);
dprintk(" cap.max_send_sge = %d, cap.max_recv_sge = %d\n",
qp_attr.cap.max_send_sge, qp_attr.cap.max_recv_sge);
ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
if (ret) {
dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
goto errout;
}
newxprt->sc_qp = newxprt->sc_cm_id->qp;
/*
* Use the most secure set of MR resources based on the
* transport type and available memory management features in
* the device. Here's the table implemented below:
*
* Fast Global DMA Remote WR
* Reg LKEY MR Access
* Sup'd Sup'd Needed Needed
*
* IWARP N N Y Y
* N Y Y Y
* Y N Y N
* Y Y N -
*
* IB N N Y N
* N Y N -
* Y N Y N
* Y Y N -
*
* NB: iWARP requires remote write access for the data sink
* of an RDMA_READ. IB does not.
*/
newxprt->sc_reader = rdma_read_chunk_lcl;
if (dev->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
newxprt->sc_frmr_pg_list_len =
dev->attrs.max_fast_reg_page_list_len;
newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG;
newxprt->sc_reader = rdma_read_chunk_frmr;
} else
newxprt->sc_snd_w_inv = false;
/*
* Determine if a DMA MR is required and if so, what privs are required
*/
if (!rdma_protocol_iwarp(dev, newxprt->sc_cm_id->port_num) &&
!rdma_ib_or_roce(dev, newxprt->sc_cm_id->port_num))
goto errout;
if (rdma_protocol_iwarp(dev, newxprt->sc_cm_id->port_num))
newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV;
/* Post receive buffers */
for (i = 0; i < newxprt->sc_max_requests; i++) {
ret = svc_rdma_post_recv(newxprt, GFP_KERNEL);
if (ret) {
dprintk("svcrdma: failure posting receive buffers\n");
goto errout;
}
}
/* Swap out the handler */
newxprt->sc_cm_id->event_handler = rdma_cma_handler;
/* Construct RDMA-CM private message */
pmsg.cp_magic = rpcrdma_cmp_magic;
pmsg.cp_version = RPCRDMA_CMP_VERSION;
pmsg.cp_flags = 0;
pmsg.cp_send_size = pmsg.cp_recv_size =
rpcrdma_encode_buffer_size(newxprt->sc_max_req_size);
/* Accept Connection */
set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
memset(&conn_param, 0, sizeof conn_param);
conn_param.responder_resources = 0;
conn_param.initiator_depth = newxprt->sc_ord;
conn_param.private_data = &pmsg;
conn_param.private_data_len = sizeof(pmsg);
ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
if (ret) {
dprintk("svcrdma: failed to accept new connection, ret=%d\n",
ret);
goto errout;
}
dprintk("svcrdma: new connection %p accepted:\n", newxprt);
sap = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
dprintk(" local address : %pIS:%u\n", sap, rpc_get_port(sap));
sap = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
dprintk(" remote address : %pIS:%u\n", sap, rpc_get_port(sap));
dprintk(" max_sge : %d\n", newxprt->sc_max_sge);
dprintk(" max_sge_rd : %d\n", newxprt->sc_max_sge_rd);
dprintk(" sq_depth : %d\n", newxprt->sc_sq_depth);
dprintk(" max_requests : %d\n", newxprt->sc_max_requests);
dprintk(" ord : %d\n", newxprt->sc_ord);
return &newxprt->sc_xprt;
errout:
dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
/* Take a reference in case the DTO handler runs */
svc_xprt_get(&newxprt->sc_xprt);
if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
ib_destroy_qp(newxprt->sc_qp);
rdma_destroy_id(newxprt->sc_cm_id);
/* This call to put will destroy the transport */
svc_xprt_put(&newxprt->sc_xprt);
return NULL;
}
static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
{
}
/*
* When connected, an svc_xprt has at least two references:
*
* - A reference held by the cm_id between the ESTABLISHED and
* DISCONNECTED events. If the remote peer disconnected first, this
* reference could be gone.
*
* - A reference held by the svc_recv code that called this function
* as part of close processing.
*
* At a minimum one references should still be held.
*/
static void svc_rdma_detach(struct svc_xprt *xprt)
{
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
dprintk("svc: svc_rdma_detach(%p)\n", xprt);
/* Disconnect and flush posted WQE */
rdma_disconnect(rdma->sc_cm_id);
}
static void __svc_rdma_free(struct work_struct *work)
{
struct svcxprt_rdma *rdma =
container_of(work, struct svcxprt_rdma, sc_work);
struct svc_xprt *xprt = &rdma->sc_xprt;
dprintk("svcrdma: %s(%p)\n", __func__, rdma);
if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
ib_drain_qp(rdma->sc_qp);
/* We should only be called from kref_put */
if (kref_read(&xprt->xpt_ref) != 0)
pr_err("svcrdma: sc_xprt still in use? (%d)\n",
kref_read(&xprt->xpt_ref));
/*
* Destroy queued, but not processed read completions. Note
* that this cleanup has to be done before destroying the
* cm_id because the device ptr is needed to unmap the dma in
* svc_rdma_put_context.
*/
while (!list_empty(&rdma->sc_read_complete_q)) {
struct svc_rdma_op_ctxt *ctxt;
ctxt = list_first_entry(&rdma->sc_read_complete_q,
struct svc_rdma_op_ctxt, list);
list_del(&ctxt->list);
svc_rdma_put_context(ctxt, 1);
}
/* Destroy queued, but not processed recv completions */
while (!list_empty(&rdma->sc_rq_dto_q)) {
struct svc_rdma_op_ctxt *ctxt;
ctxt = list_first_entry(&rdma->sc_rq_dto_q,
struct svc_rdma_op_ctxt, list);
list_del(&ctxt->list);
svc_rdma_put_context(ctxt, 1);
}
/* Warn if we leaked a resource or under-referenced */
if (rdma->sc_ctxt_used != 0)
pr_err("svcrdma: ctxt still in use? (%d)\n",
rdma->sc_ctxt_used);
/* Final put of backchannel client transport */
if (xprt->xpt_bc_xprt) {
xprt_put(xprt->xpt_bc_xprt);
xprt->xpt_bc_xprt = NULL;
}
rdma_dealloc_frmr_q(rdma);
svc_rdma_destroy_ctxts(rdma);
svc_rdma_destroy_maps(rdma);
/* Destroy the QP if present (not a listener) */
if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
ib_destroy_qp(rdma->sc_qp);
if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
ib_free_cq(rdma->sc_sq_cq);
if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
ib_free_cq(rdma->sc_rq_cq);
if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
ib_dealloc_pd(rdma->sc_pd);
/* Destroy the CM ID */
rdma_destroy_id(rdma->sc_cm_id);
kfree(rdma);
}
static void svc_rdma_free(struct svc_xprt *xprt)
{
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
INIT_WORK(&rdma->sc_work, __svc_rdma_free);
queue_work(svc_rdma_wq, &rdma->sc_work);
}
static int svc_rdma_has_wspace(struct svc_xprt *xprt)
{
struct svcxprt_rdma *rdma =
container_of(xprt, struct svcxprt_rdma, sc_xprt);
/*
* If there are already waiters on the SQ,
* return false.
*/
if (waitqueue_active(&rdma->sc_send_wait))
return 0;
/* Otherwise return true. */
return 1;
}
static int svc_rdma_secure_port(struct svc_rqst *rqstp)
{
return 1;
}
sunrpc: svc_age_temp_xprts_now should not call setsockopt non-tcp transports This fixes the following panic that can occur with NFSoRDMA. general protection fault: 0000 [#1] SMP Modules linked in: rpcrdma ib_isert iscsi_target_mod ib_iser libiscsi scsi_transport_iscsi ib_srpt target_core_mod ib_srp scsi_transport_srp scsi_tgt ib_ipoib rdma_ucm ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm mlx5_ib ib_core intel_powerclamp coretemp kvm_intel kvm sg ioatdma ipmi_devintf ipmi_ssif dcdbas iTCO_wdt iTCO_vendor_support pcspkr irqbypass sb_edac shpchp dca crc32_pclmul ghash_clmulni_intel edac_core lpc_ich aesni_intel lrw gf128mul glue_helper ablk_helper mei_me mei ipmi_si cryptd wmi ipmi_msghandler acpi_pad acpi_power_meter nfsd auth_rpcgss nfs_acl lockd grace sunrpc ip_tables xfs libcrc32c sd_mod crc_t10dif crct10dif_generic mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect sysimgblt ahci fb_sys_fops ttm libahci mlx5_core tg3 crct10dif_pclmul drm crct10dif_common ptp i2c_core libata crc32c_intel pps_core fjes dm_mirror dm_region_hash dm_log dm_mod CPU: 1 PID: 120 Comm: kworker/1:1 Not tainted 3.10.0-514.el7.x86_64 #1 Hardware name: Dell Inc. PowerEdge R320/0KM5PX, BIOS 2.4.2 01/29/2015 Workqueue: events check_lifetime task: ffff88031f506dd0 ti: ffff88031f584000 task.ti: ffff88031f584000 RIP: 0010:[<ffffffff8168d847>] [<ffffffff8168d847>] _raw_spin_lock_bh+0x17/0x50 RSP: 0018:ffff88031f587ba8 EFLAGS: 00010206 RAX: 0000000000020000 RBX: 20041fac02080072 RCX: ffff88031f587fd8 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 20041fac02080072 RBP: ffff88031f587bb0 R08: 0000000000000008 R09: ffffffff8155be77 R10: ffff880322a59b00 R11: ffffea000bf39f00 R12: 20041fac02080072 R13: 000000000000000d R14: ffff8800c4fbd800 R15: 0000000000000001 FS: 0000000000000000(0000) GS:ffff880322a40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f3c52d4547e CR3: 00000000019ba000 CR4: 00000000001407e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Stack: 20041fac02080002 ffff88031f587bd0 ffffffff81557830 20041fac02080002 ffff88031f587c78 ffff88031f587c40 ffffffff8155ae08 000000010157df32 0000000800000001 ffff88031f587c20 ffffffff81096acb ffffffff81aa37d0 Call Trace: [<ffffffff81557830>] lock_sock_nested+0x20/0x50 [<ffffffff8155ae08>] sock_setsockopt+0x78/0x940 [<ffffffff81096acb>] ? lock_timer_base.isra.33+0x2b/0x50 [<ffffffff8155397d>] kernel_setsockopt+0x4d/0x50 [<ffffffffa0386284>] svc_age_temp_xprts_now+0x174/0x1e0 [sunrpc] [<ffffffffa03b681d>] nfsd_inetaddr_event+0x9d/0xd0 [nfsd] [<ffffffff81691ebc>] notifier_call_chain+0x4c/0x70 [<ffffffff810b687d>] __blocking_notifier_call_chain+0x4d/0x70 [<ffffffff810b68b6>] blocking_notifier_call_chain+0x16/0x20 [<ffffffff815e8538>] __inet_del_ifa+0x168/0x2d0 [<ffffffff815e8cef>] check_lifetime+0x25f/0x270 [<ffffffff810a7f3b>] process_one_work+0x17b/0x470 [<ffffffff810a8d76>] worker_thread+0x126/0x410 [<ffffffff810a8c50>] ? rescuer_thread+0x460/0x460 [<ffffffff810b052f>] kthread+0xcf/0xe0 [<ffffffff810b0460>] ? kthread_create_on_node+0x140/0x140 [<ffffffff81696418>] ret_from_fork+0x58/0x90 [<ffffffff810b0460>] ? kthread_create_on_node+0x140/0x140 Code: ca 75 f1 5d c3 0f 1f 80 00 00 00 00 eb d9 66 0f 1f 44 00 00 0f 1f 44 00 00 55 48 89 e5 53 48 89 fb e8 7e 04 a0 ff b8 00 00 02 00 <f0> 0f c1 03 89 c2 c1 ea 10 66 39 c2 75 03 5b 5d c3 83 e2 fe 0f RIP [<ffffffff8168d847>] _raw_spin_lock_bh+0x17/0x50 RSP <ffff88031f587ba8> Signed-off-by: Scott Mayhew <smayhew@redhat.com> Fixes: c3d4879e ("sunrpc: Add a function to close temporary transports immediately") Reviewed-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2016-11-12 02:16:22 +08:00
static void svc_rdma_kill_temp_xprt(struct svc_xprt *xprt)
{
}
int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr)
{
struct ib_send_wr *bad_wr, *n_wr;
int wr_count;
int i;
int ret;
if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
return -ENOTCONN;
wr_count = 1;
for (n_wr = wr->next; n_wr; n_wr = n_wr->next)
wr_count++;
/* If the SQ is full, wait until an SQ entry is available */
while (1) {
if ((atomic_sub_return(wr_count, &xprt->sc_sq_avail) < 0)) {
atomic_inc(&rdma_stat_sq_starve);
/* Wait until SQ WR available if SQ still full */
atomic_add(wr_count, &xprt->sc_sq_avail);
wait_event(xprt->sc_send_wait,
atomic_read(&xprt->sc_sq_avail) > wr_count);
if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
return -ENOTCONN;
continue;
}
/* Take a transport ref for each WR posted */
for (i = 0; i < wr_count; i++)
svc_xprt_get(&xprt->sc_xprt);
/* Bump used SQ WR count and post */
ret = ib_post_send(xprt->sc_qp, wr, &bad_wr);
if (ret) {
set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
for (i = 0; i < wr_count; i ++)
svc_xprt_put(&xprt->sc_xprt);
dprintk("svcrdma: failed to post SQ WR rc=%d\n", ret);
dprintk(" sc_sq_avail=%d, sc_sq_depth=%d\n",
atomic_read(&xprt->sc_sq_avail),
xprt->sc_sq_depth);
wake_up(&xprt->sc_send_wait);
}
break;
}
return ret;
}