License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2011-08-31 07:41:05 +08:00
|
|
|
#include <linux/perf_event.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
|
|
|
|
#include <asm/perf_event.h>
|
|
|
|
#include <asm/msr.h>
|
2012-02-10 06:20:58 +08:00
|
|
|
#include <asm/insn.h>
|
2011-08-31 07:41:05 +08:00
|
|
|
|
2016-02-10 17:55:23 +08:00
|
|
|
#include "../perf_event.h"
|
2010-03-03 19:02:30 +08:00
|
|
|
|
|
|
|
enum {
|
|
|
|
LBR_FORMAT_32 = 0x00,
|
|
|
|
LBR_FORMAT_LIP = 0x01,
|
|
|
|
LBR_FORMAT_EIP = 0x02,
|
|
|
|
LBR_FORMAT_EIP_FLAGS = 0x03,
|
2013-06-18 08:36:51 +08:00
|
|
|
LBR_FORMAT_EIP_FLAGS2 = 0x04,
|
2015-05-11 03:22:43 +08:00
|
|
|
LBR_FORMAT_INFO = 0x05,
|
2016-04-15 15:42:47 +08:00
|
|
|
LBR_FORMAT_TIME = 0x06,
|
|
|
|
LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME,
|
2013-06-18 08:36:51 +08:00
|
|
|
};
|
|
|
|
|
2017-06-29 17:14:06 +08:00
|
|
|
static const enum {
|
2013-06-18 08:36:51 +08:00
|
|
|
LBR_EIP_FLAGS = 1,
|
|
|
|
LBR_TSX = 2,
|
|
|
|
} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
|
|
|
|
[LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
|
|
|
|
[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
|
2010-03-03 19:02:30 +08:00
|
|
|
};
|
|
|
|
|
2012-02-10 06:20:55 +08:00
|
|
|
/*
|
|
|
|
* Intel LBR_SELECT bits
|
|
|
|
* Intel Vol3a, April 2011, Section 16.7 Table 16-10
|
|
|
|
*
|
|
|
|
* Hardware branch filter (not available on all CPUs)
|
|
|
|
*/
|
|
|
|
#define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
|
|
|
|
#define LBR_USER_BIT 1 /* do not capture at ring > 0 */
|
|
|
|
#define LBR_JCC_BIT 2 /* do not capture conditional branches */
|
|
|
|
#define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
|
|
|
|
#define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
|
|
|
|
#define LBR_RETURN_BIT 5 /* do not capture near returns */
|
|
|
|
#define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
|
|
|
|
#define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
|
|
|
|
#define LBR_FAR_BIT 8 /* do not capture far branches */
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
#define LBR_CALL_STACK_BIT 9 /* enable call stack */
|
2012-02-10 06:20:55 +08:00
|
|
|
|
2015-10-21 02:46:34 +08:00
|
|
|
/*
|
|
|
|
* Following bit only exists in Linux; we mask it out before writing it to
|
|
|
|
* the actual MSR. But it helps the constraint perf code to understand
|
|
|
|
* that this is a separate configuration.
|
|
|
|
*/
|
|
|
|
#define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
|
|
|
|
|
2012-02-10 06:20:55 +08:00
|
|
|
#define LBR_KERNEL (1 << LBR_KERNEL_BIT)
|
|
|
|
#define LBR_USER (1 << LBR_USER_BIT)
|
|
|
|
#define LBR_JCC (1 << LBR_JCC_BIT)
|
|
|
|
#define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
|
|
|
|
#define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
|
|
|
|
#define LBR_RETURN (1 << LBR_RETURN_BIT)
|
|
|
|
#define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
|
|
|
|
#define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
|
|
|
|
#define LBR_FAR (1 << LBR_FAR_BIT)
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
#define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
|
2015-10-21 02:46:34 +08:00
|
|
|
#define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
|
2012-02-10 06:20:55 +08:00
|
|
|
|
|
|
|
#define LBR_PLM (LBR_KERNEL | LBR_USER)
|
|
|
|
|
2016-04-21 17:30:10 +08:00
|
|
|
#define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
|
2012-02-10 06:20:55 +08:00
|
|
|
#define LBR_NOT_SUPP -1 /* LBR filter not supported */
|
|
|
|
#define LBR_IGN 0 /* ignored */
|
|
|
|
|
|
|
|
#define LBR_ANY \
|
|
|
|
(LBR_JCC |\
|
|
|
|
LBR_REL_CALL |\
|
|
|
|
LBR_IND_CALL |\
|
|
|
|
LBR_RETURN |\
|
|
|
|
LBR_REL_JMP |\
|
|
|
|
LBR_IND_JMP |\
|
|
|
|
LBR_FAR)
|
|
|
|
|
2016-06-22 02:31:12 +08:00
|
|
|
#define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
|
|
|
|
#define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
|
|
|
|
#define LBR_FROM_FLAG_ABORT BIT_ULL(61)
|
2012-02-10 06:20:55 +08:00
|
|
|
|
2016-06-22 02:31:11 +08:00
|
|
|
#define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
|
|
|
|
|
2012-02-10 06:20:58 +08:00
|
|
|
/*
|
|
|
|
* x86control flow change classification
|
|
|
|
* x86control flow changes include branches, interrupts, traps, faults
|
|
|
|
*/
|
|
|
|
enum {
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
X86_BR_NONE = 0, /* unknown */
|
|
|
|
|
|
|
|
X86_BR_USER = 1 << 0, /* branch target is user */
|
|
|
|
X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
|
|
|
|
|
|
|
|
X86_BR_CALL = 1 << 2, /* call */
|
|
|
|
X86_BR_RET = 1 << 3, /* return */
|
|
|
|
X86_BR_SYSCALL = 1 << 4, /* syscall */
|
|
|
|
X86_BR_SYSRET = 1 << 5, /* syscall return */
|
|
|
|
X86_BR_INT = 1 << 6, /* sw interrupt */
|
|
|
|
X86_BR_IRET = 1 << 7, /* return from interrupt */
|
|
|
|
X86_BR_JCC = 1 << 8, /* conditional */
|
|
|
|
X86_BR_JMP = 1 << 9, /* jump */
|
|
|
|
X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
|
|
|
|
X86_BR_IND_CALL = 1 << 11,/* indirect calls */
|
|
|
|
X86_BR_ABORT = 1 << 12,/* transaction abort */
|
|
|
|
X86_BR_IN_TX = 1 << 13,/* in transaction */
|
|
|
|
X86_BR_NO_TX = 1 << 14,/* not in transaction */
|
2014-11-05 10:56:11 +08:00
|
|
|
X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
|
|
|
|
X86_BR_CALL_STACK = 1 << 16,/* call stack */
|
2015-05-15 05:09:59 +08:00
|
|
|
X86_BR_IND_JMP = 1 << 17,/* indirect jump */
|
2017-07-18 20:13:10 +08:00
|
|
|
|
|
|
|
X86_BR_TYPE_SAVE = 1 << 18,/* indicate to save branch type */
|
|
|
|
|
2012-02-10 06:20:58 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
|
2013-06-18 08:36:51 +08:00
|
|
|
#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
|
2012-02-10 06:20:58 +08:00
|
|
|
|
|
|
|
#define X86_BR_ANY \
|
|
|
|
(X86_BR_CALL |\
|
|
|
|
X86_BR_RET |\
|
|
|
|
X86_BR_SYSCALL |\
|
|
|
|
X86_BR_SYSRET |\
|
|
|
|
X86_BR_INT |\
|
|
|
|
X86_BR_IRET |\
|
|
|
|
X86_BR_JCC |\
|
|
|
|
X86_BR_JMP |\
|
|
|
|
X86_BR_IRQ |\
|
2013-06-18 08:36:51 +08:00
|
|
|
X86_BR_ABORT |\
|
2014-11-05 10:56:11 +08:00
|
|
|
X86_BR_IND_CALL |\
|
2015-05-15 05:09:59 +08:00
|
|
|
X86_BR_IND_JMP |\
|
2014-11-05 10:56:11 +08:00
|
|
|
X86_BR_ZERO_CALL)
|
2012-02-10 06:20:58 +08:00
|
|
|
|
|
|
|
#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
|
|
|
|
|
|
|
|
#define X86_BR_ANY_CALL \
|
|
|
|
(X86_BR_CALL |\
|
|
|
|
X86_BR_IND_CALL |\
|
2014-11-05 10:56:11 +08:00
|
|
|
X86_BR_ZERO_CALL |\
|
2012-02-10 06:20:58 +08:00
|
|
|
X86_BR_SYSCALL |\
|
|
|
|
X86_BR_IRQ |\
|
|
|
|
X86_BR_INT)
|
|
|
|
|
|
|
|
static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
|
|
|
|
|
2010-03-03 19:02:30 +08:00
|
|
|
/*
|
|
|
|
* We only support LBR implementations that have FREEZE_LBRS_ON_PMI
|
|
|
|
* otherwise it becomes near impossible to get a reliable stack.
|
|
|
|
*/
|
|
|
|
|
perf/x86/intel: Streamline LBR MSR handling in PMI
The perf PMI currently does unnecessary MSR accesses when
LBRs are enabled. We use LBR freezing, or when in callstack
mode force the LBRs to only filter on ring 3.
So there is no need to disable the LBRs explicitely in the
PMI handler.
Also we always unnecessarily rewrite LBR_SELECT in the LBR
handler, even though it can never change.
5) | /* write_msr: MSR_LBR_SELECT(1c8), value 0 */
5) | /* read_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
5) | /* write_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
5) | /* write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 70000000f */
5) | /* write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0 */
5) | /* write_msr: MSR_LBR_SELECT(1c8), value 0 */
5) | /* read_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
5) | /* write_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
This patch:
- Avoids disabling already frozen LBRs unnecessarily in the PMI
- Avoids changing LBR_SELECT in the PMI
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1426871484-21285-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-21 01:11:23 +08:00
|
|
|
static void __intel_pmu_lbr_enable(bool pmi)
|
2010-03-03 19:02:30 +08:00
|
|
|
{
|
x86: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
|
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
2015-03-21 01:11:24 +08:00
|
|
|
u64 debugctl, lbr_select = 0, orig_debugctl;
|
2012-02-10 06:20:57 +08:00
|
|
|
|
2015-05-11 03:22:46 +08:00
|
|
|
/*
|
|
|
|
* No need to unfreeze manually, as v4 can do that as part
|
|
|
|
* of the GLOBAL_STATUS ack.
|
|
|
|
*/
|
|
|
|
if (pmi && x86_pmu.version >= 4)
|
|
|
|
return;
|
|
|
|
|
perf/x86/intel: Streamline LBR MSR handling in PMI
The perf PMI currently does unnecessary MSR accesses when
LBRs are enabled. We use LBR freezing, or when in callstack
mode force the LBRs to only filter on ring 3.
So there is no need to disable the LBRs explicitely in the
PMI handler.
Also we always unnecessarily rewrite LBR_SELECT in the LBR
handler, even though it can never change.
5) | /* write_msr: MSR_LBR_SELECT(1c8), value 0 */
5) | /* read_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
5) | /* write_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
5) | /* write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 70000000f */
5) | /* write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0 */
5) | /* write_msr: MSR_LBR_SELECT(1c8), value 0 */
5) | /* read_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
5) | /* write_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
This patch:
- Avoids disabling already frozen LBRs unnecessarily in the PMI
- Avoids changing LBR_SELECT in the PMI
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1426871484-21285-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-21 01:11:23 +08:00
|
|
|
/*
|
|
|
|
* No need to reprogram LBR_SELECT in a PMI, as it
|
|
|
|
* did not change.
|
|
|
|
*/
|
2015-09-14 22:14:07 +08:00
|
|
|
if (cpuc->lbr_sel)
|
2015-10-21 02:46:34 +08:00
|
|
|
lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
|
2015-12-04 06:33:17 +08:00
|
|
|
if (!pmi && cpuc->lbr_sel)
|
2014-11-05 10:56:10 +08:00
|
|
|
wrmsrl(MSR_LBR_SELECT, lbr_select);
|
2010-03-03 19:02:30 +08:00
|
|
|
|
|
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
2015-03-21 01:11:24 +08:00
|
|
|
orig_debugctl = debugctl;
|
2014-11-05 10:56:10 +08:00
|
|
|
debugctl |= DEBUGCTLMSR_LBR;
|
|
|
|
/*
|
|
|
|
* LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
|
|
|
|
* If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
|
|
|
|
* may cause superfluous increase/decrease of LBR_TOS.
|
|
|
|
*/
|
|
|
|
if (!(lbr_select & LBR_CALL_STACK))
|
|
|
|
debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
|
2015-03-21 01:11:24 +08:00
|
|
|
if (orig_debugctl != debugctl)
|
|
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void __intel_pmu_lbr_disable(void)
|
|
|
|
{
|
|
|
|
u64 debugctl;
|
|
|
|
|
|
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
2010-03-25 21:51:49 +08:00
|
|
|
debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
|
2010-03-03 19:02:30 +08:00
|
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void intel_pmu_lbr_reset_32(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++)
|
|
|
|
wrmsrl(x86_pmu.lbr_from + i, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void intel_pmu_lbr_reset_64(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
|
|
wrmsrl(x86_pmu.lbr_from + i, 0);
|
|
|
|
wrmsrl(x86_pmu.lbr_to + i, 0);
|
2015-05-11 03:22:43 +08:00
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
|
|
wrmsrl(MSR_LBR_INFO_0 + i, 0);
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-08-31 07:41:05 +08:00
|
|
|
void intel_pmu_lbr_reset(void)
|
2010-03-03 19:02:30 +08:00
|
|
|
{
|
2018-06-05 23:38:46 +08:00
|
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
|
2010-03-05 20:49:35 +08:00
|
|
|
if (!x86_pmu.lbr_nr)
|
|
|
|
return;
|
|
|
|
|
2010-03-04 00:07:40 +08:00
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
|
2010-03-03 19:02:30 +08:00
|
|
|
intel_pmu_lbr_reset_32();
|
|
|
|
else
|
|
|
|
intel_pmu_lbr_reset_64();
|
2018-06-05 23:38:46 +08:00
|
|
|
|
|
|
|
cpuc->last_task_ctx = NULL;
|
|
|
|
cpuc->last_log_id = 0;
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
|
|
|
|
2014-11-05 10:56:05 +08:00
|
|
|
/*
|
|
|
|
* TOS = most recently recorded branch
|
|
|
|
*/
|
|
|
|
static inline u64 intel_pmu_lbr_tos(void)
|
|
|
|
{
|
|
|
|
u64 tos;
|
|
|
|
|
|
|
|
rdmsrl(x86_pmu.lbr_tos, tos);
|
|
|
|
return tos;
|
|
|
|
}
|
|
|
|
|
|
|
|
enum {
|
|
|
|
LBR_NONE,
|
|
|
|
LBR_VALID,
|
|
|
|
};
|
|
|
|
|
2016-06-22 02:31:11 +08:00
|
|
|
/*
|
|
|
|
* For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
|
|
|
|
* MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
|
|
|
|
* TSX is not supported they have no consistent behavior:
|
|
|
|
*
|
|
|
|
* - For wrmsr(), bits 61:62 are considered part of the sign extension.
|
|
|
|
* - For HW updates (branch captures) bits 61:62 are always OFF and are not
|
|
|
|
* part of the sign extension.
|
|
|
|
*
|
|
|
|
* Therefore, if:
|
|
|
|
*
|
|
|
|
* 1) LBR has TSX format
|
|
|
|
* 2) CPU has no TSX support enabled
|
|
|
|
*
|
|
|
|
* ... then any value passed to wrmsr() must be sign extended to 63 bits and any
|
|
|
|
* value from rdmsr() must be converted to have a 61 bits sign extension,
|
|
|
|
* ignoring the TSX flags.
|
|
|
|
*/
|
|
|
|
static inline bool lbr_from_signext_quirk_needed(void)
|
|
|
|
{
|
|
|
|
int lbr_format = x86_pmu.intel_cap.lbr_format;
|
|
|
|
bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
|
|
|
|
boot_cpu_has(X86_FEATURE_RTM);
|
|
|
|
|
|
|
|
return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
|
|
|
|
}
|
|
|
|
|
|
|
|
DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
|
|
|
|
|
|
|
|
/* If quirk is enabled, ensure sign extension is 63 bits: */
|
|
|
|
inline u64 lbr_from_signext_quirk_wr(u64 val)
|
|
|
|
{
|
|
|
|
if (static_branch_unlikely(&lbr_from_quirk_key)) {
|
|
|
|
/*
|
|
|
|
* Sign extend into bits 61:62 while preserving bit 63.
|
|
|
|
*
|
|
|
|
* Quirk is enabled when TSX is disabled. Therefore TSX bits
|
|
|
|
* in val are always OFF and must be changed to be sign
|
|
|
|
* extension bits. Since bits 59:60 are guaranteed to be
|
|
|
|
* part of the sign extension bits, we can just copy them
|
|
|
|
* to 61:62.
|
|
|
|
*/
|
|
|
|
val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
|
|
|
|
}
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
2016-06-22 02:31:13 +08:00
|
|
|
/*
|
|
|
|
* If quirk is needed, ensure sign extension is 61 bits:
|
|
|
|
*/
|
2017-06-29 17:14:06 +08:00
|
|
|
static u64 lbr_from_signext_quirk_rd(u64 val)
|
2016-06-22 02:31:13 +08:00
|
|
|
{
|
2016-06-23 16:44:49 +08:00
|
|
|
if (static_branch_unlikely(&lbr_from_quirk_key)) {
|
2016-06-22 02:31:13 +08:00
|
|
|
/*
|
|
|
|
* Quirk is on when TSX is not enabled. Therefore TSX
|
|
|
|
* flags must be read as OFF.
|
|
|
|
*/
|
|
|
|
val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
|
2016-06-23 16:44:49 +08:00
|
|
|
}
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void wrlbr_from(unsigned int idx, u64 val)
|
|
|
|
{
|
|
|
|
val = lbr_from_signext_quirk_wr(val);
|
|
|
|
wrmsrl(x86_pmu.lbr_from + idx, val);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void wrlbr_to(unsigned int idx, u64 val)
|
|
|
|
{
|
|
|
|
wrmsrl(x86_pmu.lbr_to + idx, val);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u64 rdlbr_from(unsigned int idx)
|
|
|
|
{
|
|
|
|
u64 val;
|
|
|
|
|
|
|
|
rdmsrl(x86_pmu.lbr_from + idx, val);
|
|
|
|
|
|
|
|
return lbr_from_signext_quirk_rd(val);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u64 rdlbr_to(unsigned int idx)
|
|
|
|
{
|
|
|
|
u64 val;
|
|
|
|
|
2016-06-30 17:49:08 +08:00
|
|
|
rdmsrl(x86_pmu.lbr_to + idx, val);
|
2016-06-23 16:44:49 +08:00
|
|
|
|
2016-06-22 02:31:13 +08:00
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
2014-11-05 10:56:05 +08:00
|
|
|
static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
|
|
|
|
{
|
2018-06-05 23:38:46 +08:00
|
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
2014-11-05 10:56:05 +08:00
|
|
|
int i;
|
|
|
|
unsigned lbr_idx, mask;
|
|
|
|
u64 tos;
|
|
|
|
|
|
|
|
if (task_ctx->lbr_callstack_users == 0 ||
|
|
|
|
task_ctx->lbr_stack_state == LBR_NONE) {
|
|
|
|
intel_pmu_lbr_reset();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2015-10-21 02:46:33 +08:00
|
|
|
tos = task_ctx->tos;
|
2018-06-05 23:38:46 +08:00
|
|
|
/*
|
|
|
|
* Does not restore the LBR registers, if
|
|
|
|
* - No one else touched them, and
|
|
|
|
* - Did not enter C6
|
|
|
|
*/
|
|
|
|
if ((task_ctx == cpuc->last_task_ctx) &&
|
|
|
|
(task_ctx->log_id == cpuc->last_log_id) &&
|
|
|
|
rdlbr_from(tos)) {
|
|
|
|
task_ctx->lbr_stack_state = LBR_NONE;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
mask = x86_pmu.lbr_nr - 1;
|
perf/x86/intel/lbr: Fix incomplete LBR call stack
LBR has a limited stack size. If a task has a deeper call stack than
LBR's stack size, only the overflowed part is reported. A complete call
stack may not be reconstructed by perf tool.
Current code doesn't access all LBR registers. It only read the ones
below the TOS. The LBR registers above the TOS will be discarded
unconditionally.
When a CALL is captured, the TOS is incremented by 1 , modulo max LBR
stack size. The LBR HW only records the call stack information to the
register which the TOS points to. It will not touch other LBR
registers. So the registers above the TOS probably still store the valid
call stack information for an overflowed call stack, which need to be
reported.
To retrieve complete call stack information, we need to start from TOS,
read all LBR registers until an invalid entry is detected.
0s can be used to detect the invalid entry, because:
- When a RET is captured, the HW zeros the LBR register which TOS points
to, then decreases the TOS.
- The LBR registers are reset to 0 when adding a new LBR event or
scheduling an existing LBR event.
- A taken branch at IP 0 is not expected
The context switch code is also modified to save/restore all valid LBR
registers. Furthermore, the LBR registers, which don't have valid call
stack information, need to be reset in restore, because they may be
polluted while swapped out.
Here is a small test program, tchain_deep.
Its call stack is deeper than 32.
noinline void f33(void)
{
int i;
for (i = 0; i < 10000000;) {
if (i%2)
i++;
else
i++;
}
}
noinline void f32(void)
{
f33();
}
noinline void f31(void)
{
f32();
}
... ...
noinline void f1(void)
{
f2();
}
int main()
{
f1();
}
Here is the test result on SKX. The max stack size of SKX is 32.
Without the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
#
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ .................
#
100.00% 99.99% tchain_deep tchain_deep [.] f33
|
--99.99%--f30
f31
f32
f33
With the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ ..................
#
99.99% 0.00% tchain_deep tchain_deep [.] f1
|
---f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
f31
f32
f33
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lore.kernel.org/lkml/1528213126-4312-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-05 23:38:45 +08:00
|
|
|
for (i = 0; i < task_ctx->valid_lbrs; i++) {
|
2014-11-05 10:56:05 +08:00
|
|
|
lbr_idx = (tos - i) & mask;
|
2016-06-23 16:44:49 +08:00
|
|
|
wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
|
|
|
|
wrlbr_to (lbr_idx, task_ctx->lbr_to[i]);
|
|
|
|
|
2015-05-11 03:22:43 +08:00
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
2015-05-28 12:13:17 +08:00
|
|
|
wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
|
2014-11-05 10:56:05 +08:00
|
|
|
}
|
perf/x86/intel/lbr: Fix incomplete LBR call stack
LBR has a limited stack size. If a task has a deeper call stack than
LBR's stack size, only the overflowed part is reported. A complete call
stack may not be reconstructed by perf tool.
Current code doesn't access all LBR registers. It only read the ones
below the TOS. The LBR registers above the TOS will be discarded
unconditionally.
When a CALL is captured, the TOS is incremented by 1 , modulo max LBR
stack size. The LBR HW only records the call stack information to the
register which the TOS points to. It will not touch other LBR
registers. So the registers above the TOS probably still store the valid
call stack information for an overflowed call stack, which need to be
reported.
To retrieve complete call stack information, we need to start from TOS,
read all LBR registers until an invalid entry is detected.
0s can be used to detect the invalid entry, because:
- When a RET is captured, the HW zeros the LBR register which TOS points
to, then decreases the TOS.
- The LBR registers are reset to 0 when adding a new LBR event or
scheduling an existing LBR event.
- A taken branch at IP 0 is not expected
The context switch code is also modified to save/restore all valid LBR
registers. Furthermore, the LBR registers, which don't have valid call
stack information, need to be reset in restore, because they may be
polluted while swapped out.
Here is a small test program, tchain_deep.
Its call stack is deeper than 32.
noinline void f33(void)
{
int i;
for (i = 0; i < 10000000;) {
if (i%2)
i++;
else
i++;
}
}
noinline void f32(void)
{
f33();
}
noinline void f31(void)
{
f32();
}
... ...
noinline void f1(void)
{
f2();
}
int main()
{
f1();
}
Here is the test result on SKX. The max stack size of SKX is 32.
Without the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
#
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ .................
#
100.00% 99.99% tchain_deep tchain_deep [.] f33
|
--99.99%--f30
f31
f32
f33
With the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ ..................
#
99.99% 0.00% tchain_deep tchain_deep [.] f1
|
---f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
f31
f32
f33
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lore.kernel.org/lkml/1528213126-4312-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-05 23:38:45 +08:00
|
|
|
|
|
|
|
for (; i < x86_pmu.lbr_nr; i++) {
|
|
|
|
lbr_idx = (tos - i) & mask;
|
|
|
|
wrlbr_from(lbr_idx, 0);
|
|
|
|
wrlbr_to(lbr_idx, 0);
|
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
|
|
wrmsrl(MSR_LBR_INFO_0 + lbr_idx, 0);
|
|
|
|
}
|
|
|
|
|
2015-10-21 02:46:33 +08:00
|
|
|
wrmsrl(x86_pmu.lbr_tos, tos);
|
2014-11-05 10:56:05 +08:00
|
|
|
task_ctx->lbr_stack_state = LBR_NONE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
|
|
|
|
{
|
2018-06-05 23:38:46 +08:00
|
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
2014-11-05 10:56:05 +08:00
|
|
|
unsigned lbr_idx, mask;
|
perf/x86/intel/lbr: Fix incomplete LBR call stack
LBR has a limited stack size. If a task has a deeper call stack than
LBR's stack size, only the overflowed part is reported. A complete call
stack may not be reconstructed by perf tool.
Current code doesn't access all LBR registers. It only read the ones
below the TOS. The LBR registers above the TOS will be discarded
unconditionally.
When a CALL is captured, the TOS is incremented by 1 , modulo max LBR
stack size. The LBR HW only records the call stack information to the
register which the TOS points to. It will not touch other LBR
registers. So the registers above the TOS probably still store the valid
call stack information for an overflowed call stack, which need to be
reported.
To retrieve complete call stack information, we need to start from TOS,
read all LBR registers until an invalid entry is detected.
0s can be used to detect the invalid entry, because:
- When a RET is captured, the HW zeros the LBR register which TOS points
to, then decreases the TOS.
- The LBR registers are reset to 0 when adding a new LBR event or
scheduling an existing LBR event.
- A taken branch at IP 0 is not expected
The context switch code is also modified to save/restore all valid LBR
registers. Furthermore, the LBR registers, which don't have valid call
stack information, need to be reset in restore, because they may be
polluted while swapped out.
Here is a small test program, tchain_deep.
Its call stack is deeper than 32.
noinline void f33(void)
{
int i;
for (i = 0; i < 10000000;) {
if (i%2)
i++;
else
i++;
}
}
noinline void f32(void)
{
f33();
}
noinline void f31(void)
{
f32();
}
... ...
noinline void f1(void)
{
f2();
}
int main()
{
f1();
}
Here is the test result on SKX. The max stack size of SKX is 32.
Without the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
#
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ .................
#
100.00% 99.99% tchain_deep tchain_deep [.] f33
|
--99.99%--f30
f31
f32
f33
With the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ ..................
#
99.99% 0.00% tchain_deep tchain_deep [.] f1
|
---f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
f31
f32
f33
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lore.kernel.org/lkml/1528213126-4312-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-05 23:38:45 +08:00
|
|
|
u64 tos, from;
|
2016-06-23 16:44:49 +08:00
|
|
|
int i;
|
2014-11-05 10:56:05 +08:00
|
|
|
|
|
|
|
if (task_ctx->lbr_callstack_users == 0) {
|
|
|
|
task_ctx->lbr_stack_state = LBR_NONE;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
mask = x86_pmu.lbr_nr - 1;
|
|
|
|
tos = intel_pmu_lbr_tos();
|
perf/x86/intel/lbr: Fix incomplete LBR call stack
LBR has a limited stack size. If a task has a deeper call stack than
LBR's stack size, only the overflowed part is reported. A complete call
stack may not be reconstructed by perf tool.
Current code doesn't access all LBR registers. It only read the ones
below the TOS. The LBR registers above the TOS will be discarded
unconditionally.
When a CALL is captured, the TOS is incremented by 1 , modulo max LBR
stack size. The LBR HW only records the call stack information to the
register which the TOS points to. It will not touch other LBR
registers. So the registers above the TOS probably still store the valid
call stack information for an overflowed call stack, which need to be
reported.
To retrieve complete call stack information, we need to start from TOS,
read all LBR registers until an invalid entry is detected.
0s can be used to detect the invalid entry, because:
- When a RET is captured, the HW zeros the LBR register which TOS points
to, then decreases the TOS.
- The LBR registers are reset to 0 when adding a new LBR event or
scheduling an existing LBR event.
- A taken branch at IP 0 is not expected
The context switch code is also modified to save/restore all valid LBR
registers. Furthermore, the LBR registers, which don't have valid call
stack information, need to be reset in restore, because they may be
polluted while swapped out.
Here is a small test program, tchain_deep.
Its call stack is deeper than 32.
noinline void f33(void)
{
int i;
for (i = 0; i < 10000000;) {
if (i%2)
i++;
else
i++;
}
}
noinline void f32(void)
{
f33();
}
noinline void f31(void)
{
f32();
}
... ...
noinline void f1(void)
{
f2();
}
int main()
{
f1();
}
Here is the test result on SKX. The max stack size of SKX is 32.
Without the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
#
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ .................
#
100.00% 99.99% tchain_deep tchain_deep [.] f33
|
--99.99%--f30
f31
f32
f33
With the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ ..................
#
99.99% 0.00% tchain_deep tchain_deep [.] f1
|
---f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
f31
f32
f33
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lore.kernel.org/lkml/1528213126-4312-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-05 23:38:45 +08:00
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
2014-11-05 10:56:05 +08:00
|
|
|
lbr_idx = (tos - i) & mask;
|
perf/x86/intel/lbr: Fix incomplete LBR call stack
LBR has a limited stack size. If a task has a deeper call stack than
LBR's stack size, only the overflowed part is reported. A complete call
stack may not be reconstructed by perf tool.
Current code doesn't access all LBR registers. It only read the ones
below the TOS. The LBR registers above the TOS will be discarded
unconditionally.
When a CALL is captured, the TOS is incremented by 1 , modulo max LBR
stack size. The LBR HW only records the call stack information to the
register which the TOS points to. It will not touch other LBR
registers. So the registers above the TOS probably still store the valid
call stack information for an overflowed call stack, which need to be
reported.
To retrieve complete call stack information, we need to start from TOS,
read all LBR registers until an invalid entry is detected.
0s can be used to detect the invalid entry, because:
- When a RET is captured, the HW zeros the LBR register which TOS points
to, then decreases the TOS.
- The LBR registers are reset to 0 when adding a new LBR event or
scheduling an existing LBR event.
- A taken branch at IP 0 is not expected
The context switch code is also modified to save/restore all valid LBR
registers. Furthermore, the LBR registers, which don't have valid call
stack information, need to be reset in restore, because they may be
polluted while swapped out.
Here is a small test program, tchain_deep.
Its call stack is deeper than 32.
noinline void f33(void)
{
int i;
for (i = 0; i < 10000000;) {
if (i%2)
i++;
else
i++;
}
}
noinline void f32(void)
{
f33();
}
noinline void f31(void)
{
f32();
}
... ...
noinline void f1(void)
{
f2();
}
int main()
{
f1();
}
Here is the test result on SKX. The max stack size of SKX is 32.
Without the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
#
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ .................
#
100.00% 99.99% tchain_deep tchain_deep [.] f33
|
--99.99%--f30
f31
f32
f33
With the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ ..................
#
99.99% 0.00% tchain_deep tchain_deep [.] f1
|
---f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
f31
f32
f33
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lore.kernel.org/lkml/1528213126-4312-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-05 23:38:45 +08:00
|
|
|
from = rdlbr_from(lbr_idx);
|
|
|
|
if (!from)
|
|
|
|
break;
|
|
|
|
task_ctx->lbr_from[i] = from;
|
2016-06-23 16:44:49 +08:00
|
|
|
task_ctx->lbr_to[i] = rdlbr_to(lbr_idx);
|
2015-05-11 03:22:43 +08:00
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
2015-05-28 12:13:17 +08:00
|
|
|
rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
|
2014-11-05 10:56:05 +08:00
|
|
|
}
|
perf/x86/intel/lbr: Fix incomplete LBR call stack
LBR has a limited stack size. If a task has a deeper call stack than
LBR's stack size, only the overflowed part is reported. A complete call
stack may not be reconstructed by perf tool.
Current code doesn't access all LBR registers. It only read the ones
below the TOS. The LBR registers above the TOS will be discarded
unconditionally.
When a CALL is captured, the TOS is incremented by 1 , modulo max LBR
stack size. The LBR HW only records the call stack information to the
register which the TOS points to. It will not touch other LBR
registers. So the registers above the TOS probably still store the valid
call stack information for an overflowed call stack, which need to be
reported.
To retrieve complete call stack information, we need to start from TOS,
read all LBR registers until an invalid entry is detected.
0s can be used to detect the invalid entry, because:
- When a RET is captured, the HW zeros the LBR register which TOS points
to, then decreases the TOS.
- The LBR registers are reset to 0 when adding a new LBR event or
scheduling an existing LBR event.
- A taken branch at IP 0 is not expected
The context switch code is also modified to save/restore all valid LBR
registers. Furthermore, the LBR registers, which don't have valid call
stack information, need to be reset in restore, because they may be
polluted while swapped out.
Here is a small test program, tchain_deep.
Its call stack is deeper than 32.
noinline void f33(void)
{
int i;
for (i = 0; i < 10000000;) {
if (i%2)
i++;
else
i++;
}
}
noinline void f32(void)
{
f33();
}
noinline void f31(void)
{
f32();
}
... ...
noinline void f1(void)
{
f2();
}
int main()
{
f1();
}
Here is the test result on SKX. The max stack size of SKX is 32.
Without the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
#
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ .................
#
100.00% 99.99% tchain_deep tchain_deep [.] f33
|
--99.99%--f30
f31
f32
f33
With the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ ..................
#
99.99% 0.00% tchain_deep tchain_deep [.] f1
|
---f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
f31
f32
f33
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lore.kernel.org/lkml/1528213126-4312-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-05 23:38:45 +08:00
|
|
|
task_ctx->valid_lbrs = i;
|
2015-10-21 02:46:33 +08:00
|
|
|
task_ctx->tos = tos;
|
2014-11-05 10:56:05 +08:00
|
|
|
task_ctx->lbr_stack_state = LBR_VALID;
|
2018-06-05 23:38:46 +08:00
|
|
|
|
|
|
|
cpuc->last_task_ctx = task_ctx;
|
|
|
|
cpuc->last_log_id = ++task_ctx->log_id;
|
2014-11-05 10:56:05 +08:00
|
|
|
}
|
|
|
|
|
2014-11-05 10:55:59 +08:00
|
|
|
void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
|
|
|
|
{
|
perf/x86/intel: Add proper condition to run sched_task callbacks
We have 2 functions using the same sched_task callback:
- PEBS drain for free running counters
- LBR save/store
Both of them are called from intel_pmu_sched_task() and
either of them can be unwillingly triggered when the
other one is configured to run.
Let's say there's PEBS drain configured in sched_task
callback for the event, but in the callback itself
(intel_pmu_sched_task()) we will also run the code for
LBR save/restore, which we did not ask for, but the
code in intel_pmu_sched_task() does not check for that.
This can lead to extra cycles in some perf monitoring,
like when we monitor PEBS event without LBR data.
# perf record --no-timestamp -c 10000 -e cycles:p ./perf bench sched pipe -l 1000000
(We need PEBS, non freq/non timestamp event to enable
the sched_task callback)
The perf stat of cycles and msr:write_msr for above
command before the change:
...
Performance counter stats for './perf record --no-timestamp -c 10000 -e cycles:p \
./perf bench sched pipe -l 1000000' (5 runs):
18,519,557,441 cycles:k
91,195,527 msr:write_msr
29.334476406 seconds time elapsed
And after the change:
...
Performance counter stats for './perf record --no-timestamp -c 10000 -e cycles:p \
./perf bench sched pipe -l 1000000' (5 runs):
18,704,973,540 cycles:k
27,184,720 msr:write_msr
16.977875900 seconds time elapsed
There's no affect on cycles:k because the sched_task happens
with events switched off, however the msr:write_msr tracepoint
counter together with almost 50% of time speedup show the
improvement.
Monitoring LBR event and having extra PEBS drain processing
in sched_task callback showed just a little speedup, because
the drain function does not do much extra work in case there
is no PEBS data.
Adding conditions to recognize the configured work that needs
to be done in the x86_pmu's sched_task callback.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Link: http://lkml.kernel.org/r/20170719075247.GA27506@krava
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-19 15:52:47 +08:00
|
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
2014-11-05 10:56:05 +08:00
|
|
|
struct x86_perf_task_context *task_ctx;
|
2014-11-05 10:55:59 +08:00
|
|
|
|
perf/x86/intel: Add proper condition to run sched_task callbacks
We have 2 functions using the same sched_task callback:
- PEBS drain for free running counters
- LBR save/store
Both of them are called from intel_pmu_sched_task() and
either of them can be unwillingly triggered when the
other one is configured to run.
Let's say there's PEBS drain configured in sched_task
callback for the event, but in the callback itself
(intel_pmu_sched_task()) we will also run the code for
LBR save/restore, which we did not ask for, but the
code in intel_pmu_sched_task() does not check for that.
This can lead to extra cycles in some perf monitoring,
like when we monitor PEBS event without LBR data.
# perf record --no-timestamp -c 10000 -e cycles:p ./perf bench sched pipe -l 1000000
(We need PEBS, non freq/non timestamp event to enable
the sched_task callback)
The perf stat of cycles and msr:write_msr for above
command before the change:
...
Performance counter stats for './perf record --no-timestamp -c 10000 -e cycles:p \
./perf bench sched pipe -l 1000000' (5 runs):
18,519,557,441 cycles:k
91,195,527 msr:write_msr
29.334476406 seconds time elapsed
And after the change:
...
Performance counter stats for './perf record --no-timestamp -c 10000 -e cycles:p \
./perf bench sched pipe -l 1000000' (5 runs):
18,704,973,540 cycles:k
27,184,720 msr:write_msr
16.977875900 seconds time elapsed
There's no affect on cycles:k because the sched_task happens
with events switched off, however the msr:write_msr tracepoint
counter together with almost 50% of time speedup show the
improvement.
Monitoring LBR event and having extra PEBS drain processing
in sched_task callback showed just a little speedup, because
the drain function does not do much extra work in case there
is no PEBS data.
Adding conditions to recognize the configured work that needs
to be done in the x86_pmu's sched_task callback.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Link: http://lkml.kernel.org/r/20170719075247.GA27506@krava
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-19 15:52:47 +08:00
|
|
|
if (!cpuc->lbr_users)
|
|
|
|
return;
|
|
|
|
|
2014-11-05 10:56:05 +08:00
|
|
|
/*
|
|
|
|
* If LBR callstack feature is enabled and the stack was saved when
|
|
|
|
* the task was scheduled out, restore the stack. Otherwise flush
|
|
|
|
* the LBR stack.
|
|
|
|
*/
|
|
|
|
task_ctx = ctx ? ctx->task_ctx_data : NULL;
|
|
|
|
if (task_ctx) {
|
2016-07-08 01:37:52 +08:00
|
|
|
if (sched_in)
|
2014-11-05 10:56:05 +08:00
|
|
|
__intel_pmu_lbr_restore(task_ctx);
|
2016-07-08 01:37:52 +08:00
|
|
|
else
|
2014-11-05 10:56:05 +08:00
|
|
|
__intel_pmu_lbr_save(task_ctx);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2014-11-05 10:55:59 +08:00
|
|
|
/*
|
2016-07-08 01:37:52 +08:00
|
|
|
* Since a context switch can flip the address space and LBR entries
|
|
|
|
* are not tagged with an identifier, we need to wipe the LBR, even for
|
|
|
|
* per-cpu events. You simply cannot resolve the branches from the old
|
|
|
|
* address space.
|
|
|
|
*/
|
|
|
|
if (sched_in)
|
2014-11-05 10:55:59 +08:00
|
|
|
intel_pmu_lbr_reset();
|
|
|
|
}
|
|
|
|
|
2014-11-05 10:56:04 +08:00
|
|
|
static inline bool branch_user_callstack(unsigned br_sel)
|
|
|
|
{
|
|
|
|
return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
|
|
|
|
}
|
|
|
|
|
perf/x86: Ensure perf_sched_cb_{inc,dec}() is only called from pmu::{add,del}()
Currently perf_sched_cb_{inc,dec}() are called from
pmu::{start,stop}(), which has the problem that this can happen from
NMI context, this is making it hard to optimize perf_pmu_sched_task().
Furthermore, we really only need this accounting on pmu::{add,del}(),
so doing it from pmu::{start,stop}() is doing more work than we really
need.
Introduce x86_pmu::{add,del}() and wire up the LBR and PEBS.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-07 00:02:43 +08:00
|
|
|
void intel_pmu_lbr_add(struct perf_event *event)
|
2010-03-03 19:02:30 +08:00
|
|
|
{
|
x86: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
|
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
2014-11-05 10:56:04 +08:00
|
|
|
struct x86_perf_task_context *task_ctx;
|
2010-03-03 19:02:30 +08:00
|
|
|
|
|
|
|
if (!x86_pmu.lbr_nr)
|
|
|
|
return;
|
|
|
|
|
2012-02-10 06:20:58 +08:00
|
|
|
cpuc->br_sel = event->hw.branch_reg.reg;
|
2010-03-03 19:02:30 +08:00
|
|
|
|
2016-07-08 01:37:52 +08:00
|
|
|
if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
|
2014-11-05 10:56:04 +08:00
|
|
|
task_ctx = event->ctx->task_ctx_data;
|
|
|
|
task_ctx->lbr_callstack_users++;
|
|
|
|
}
|
|
|
|
|
2016-07-08 01:37:52 +08:00
|
|
|
/*
|
|
|
|
* Request pmu::sched_task() callback, which will fire inside the
|
|
|
|
* regular perf event scheduling, so that call will:
|
|
|
|
*
|
|
|
|
* - restore or wipe; when LBR-callstack,
|
|
|
|
* - wipe; otherwise,
|
|
|
|
*
|
|
|
|
* when this is from __perf_event_task_sched_in().
|
|
|
|
*
|
|
|
|
* However, if this is from perf_install_in_context(), no such callback
|
|
|
|
* will follow and we'll need to reset the LBR here if this is the
|
|
|
|
* first LBR event.
|
|
|
|
*
|
|
|
|
* The problem is, we cannot tell these cases apart... but we can
|
|
|
|
* exclude the biggest chunk of cases by looking at
|
|
|
|
* event->total_time_running. An event that has accrued runtime cannot
|
|
|
|
* be 'new'. Conversely, a new event can get installed through the
|
|
|
|
* context switch path for the first time.
|
|
|
|
*/
|
2014-11-05 10:55:59 +08:00
|
|
|
perf_sched_cb_inc(event->ctx->pmu);
|
2016-07-08 01:37:52 +08:00
|
|
|
if (!cpuc->lbr_users++ && !event->total_time_running)
|
|
|
|
intel_pmu_lbr_reset();
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
|
|
|
|
perf/x86: Ensure perf_sched_cb_{inc,dec}() is only called from pmu::{add,del}()
Currently perf_sched_cb_{inc,dec}() are called from
pmu::{start,stop}(), which has the problem that this can happen from
NMI context, this is making it hard to optimize perf_pmu_sched_task().
Furthermore, we really only need this accounting on pmu::{add,del}(),
so doing it from pmu::{start,stop}() is doing more work than we really
need.
Introduce x86_pmu::{add,del}() and wire up the LBR and PEBS.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-07 00:02:43 +08:00
|
|
|
void intel_pmu_lbr_del(struct perf_event *event)
|
2010-03-03 19:02:30 +08:00
|
|
|
{
|
x86: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
|
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
2014-11-05 10:56:04 +08:00
|
|
|
struct x86_perf_task_context *task_ctx;
|
2010-03-03 19:02:30 +08:00
|
|
|
|
|
|
|
if (!x86_pmu.lbr_nr)
|
|
|
|
return;
|
|
|
|
|
2016-10-14 15:29:08 +08:00
|
|
|
if (branch_user_callstack(cpuc->br_sel) &&
|
|
|
|
event->ctx->task_ctx_data) {
|
2014-11-05 10:56:04 +08:00
|
|
|
task_ctx = event->ctx->task_ctx_data;
|
|
|
|
task_ctx->lbr_callstack_users--;
|
|
|
|
}
|
|
|
|
|
2010-03-03 19:02:30 +08:00
|
|
|
cpuc->lbr_users--;
|
2010-03-08 20:51:12 +08:00
|
|
|
WARN_ON_ONCE(cpuc->lbr_users < 0);
|
2014-11-05 10:55:59 +08:00
|
|
|
perf_sched_cb_dec(event->ctx->pmu);
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
|
|
|
|
perf/x86/intel: Streamline LBR MSR handling in PMI
The perf PMI currently does unnecessary MSR accesses when
LBRs are enabled. We use LBR freezing, or when in callstack
mode force the LBRs to only filter on ring 3.
So there is no need to disable the LBRs explicitely in the
PMI handler.
Also we always unnecessarily rewrite LBR_SELECT in the LBR
handler, even though it can never change.
5) | /* write_msr: MSR_LBR_SELECT(1c8), value 0 */
5) | /* read_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
5) | /* write_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
5) | /* write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 70000000f */
5) | /* write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0 */
5) | /* write_msr: MSR_LBR_SELECT(1c8), value 0 */
5) | /* read_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
5) | /* write_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
This patch:
- Avoids disabling already frozen LBRs unnecessarily in the PMI
- Avoids changing LBR_SELECT in the PMI
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1426871484-21285-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-21 01:11:23 +08:00
|
|
|
void intel_pmu_lbr_enable_all(bool pmi)
|
2010-03-03 19:02:30 +08:00
|
|
|
{
|
x86: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
|
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
2010-03-03 19:02:30 +08:00
|
|
|
|
|
|
|
if (cpuc->lbr_users)
|
perf/x86/intel: Streamline LBR MSR handling in PMI
The perf PMI currently does unnecessary MSR accesses when
LBRs are enabled. We use LBR freezing, or when in callstack
mode force the LBRs to only filter on ring 3.
So there is no need to disable the LBRs explicitely in the
PMI handler.
Also we always unnecessarily rewrite LBR_SELECT in the LBR
handler, even though it can never change.
5) | /* write_msr: MSR_LBR_SELECT(1c8), value 0 */
5) | /* read_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
5) | /* write_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
5) | /* write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 70000000f */
5) | /* write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0 */
5) | /* write_msr: MSR_LBR_SELECT(1c8), value 0 */
5) | /* read_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
5) | /* write_msr: MSR_IA32_DEBUGCTLMSR(1d9), value 1801 */
This patch:
- Avoids disabling already frozen LBRs unnecessarily in the PMI
- Avoids changing LBR_SELECT in the PMI
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1426871484-21285-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-21 01:11:23 +08:00
|
|
|
__intel_pmu_lbr_enable(pmi);
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
|
|
|
|
2011-08-31 07:41:05 +08:00
|
|
|
void intel_pmu_lbr_disable_all(void)
|
2010-03-03 19:02:30 +08:00
|
|
|
{
|
x86: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
|
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
2010-03-03 19:02:30 +08:00
|
|
|
|
|
|
|
if (cpuc->lbr_users)
|
|
|
|
__intel_pmu_lbr_disable();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
|
|
|
|
{
|
|
|
|
unsigned long mask = x86_pmu.lbr_nr - 1;
|
|
|
|
u64 tos = intel_pmu_lbr_tos();
|
|
|
|
int i;
|
|
|
|
|
2010-03-09 18:51:02 +08:00
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
2010-03-03 19:02:30 +08:00
|
|
|
unsigned long lbr_idx = (tos - i) & mask;
|
|
|
|
union {
|
|
|
|
struct {
|
|
|
|
u32 from;
|
|
|
|
u32 to;
|
|
|
|
};
|
|
|
|
u64 lbr;
|
|
|
|
} msr_lastbranch;
|
|
|
|
|
|
|
|
rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
|
|
|
|
|
perf: Add generic taken branch sampling support
This patch adds the ability to sample taken branches to the
perf_event interface.
The ability to capture taken branches is very useful for all
sorts of analysis. For instance, basic block profiling, call
counts, statistical call graph.
This new capability requires hardware assist and as such may
not be available on all HW platforms. On Intel x86 it is
implemented on top of the Last Branch Record (LBR) facility.
To enable taken branches sampling, the PERF_SAMPLE_BRANCH_STACK
bit must be set in attr->sample_type.
Sampled taken branches may be filtered by type and/or priv
levels.
The patch adds a new field, called branch_sample_type, to the
perf_event_attr structure. It contains a bitmask of filters
to apply to the sampled taken branches.
Filters may be implemented in HW. If the HW filter does not exist
or is not good enough, some arch may also implement a SW filter.
The following generic filters are currently defined:
- PERF_SAMPLE_USER
only branches whose targets are at the user level
- PERF_SAMPLE_KERNEL
only branches whose targets are at the kernel level
- PERF_SAMPLE_HV
only branches whose targets are at the hypervisor level
- PERF_SAMPLE_ANY
any type of branches (subject to priv levels filters)
- PERF_SAMPLE_ANY_CALL
any call branches (may incl. syscall on some arch)
- PERF_SAMPLE_ANY_RET
any return branches (may incl. syscall returns on some arch)
- PERF_SAMPLE_IND_CALL
indirect call branches
Obviously filter may be combined. The priv level bits are optional.
If not provided, the priv level of the associated event are used. It
is possible to collect branches at a priv level different from the
associated event. Use of kernel, hv priv levels is subject to permissions
and availability (hv).
The number of taken branch records present in each sample may vary based
on HW, the type of sampled branches, the executed code. Therefore
each sample contains the number of taken branches it contains.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1328826068-11713-2-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-10 06:20:51 +08:00
|
|
|
cpuc->lbr_entries[i].from = msr_lastbranch.from;
|
|
|
|
cpuc->lbr_entries[i].to = msr_lastbranch.to;
|
|
|
|
cpuc->lbr_entries[i].mispred = 0;
|
|
|
|
cpuc->lbr_entries[i].predicted = 0;
|
2017-04-11 16:10:28 +08:00
|
|
|
cpuc->lbr_entries[i].in_tx = 0;
|
|
|
|
cpuc->lbr_entries[i].abort = 0;
|
|
|
|
cpuc->lbr_entries[i].cycles = 0;
|
2017-07-18 20:13:10 +08:00
|
|
|
cpuc->lbr_entries[i].type = 0;
|
perf: Add generic taken branch sampling support
This patch adds the ability to sample taken branches to the
perf_event interface.
The ability to capture taken branches is very useful for all
sorts of analysis. For instance, basic block profiling, call
counts, statistical call graph.
This new capability requires hardware assist and as such may
not be available on all HW platforms. On Intel x86 it is
implemented on top of the Last Branch Record (LBR) facility.
To enable taken branches sampling, the PERF_SAMPLE_BRANCH_STACK
bit must be set in attr->sample_type.
Sampled taken branches may be filtered by type and/or priv
levels.
The patch adds a new field, called branch_sample_type, to the
perf_event_attr structure. It contains a bitmask of filters
to apply to the sampled taken branches.
Filters may be implemented in HW. If the HW filter does not exist
or is not good enough, some arch may also implement a SW filter.
The following generic filters are currently defined:
- PERF_SAMPLE_USER
only branches whose targets are at the user level
- PERF_SAMPLE_KERNEL
only branches whose targets are at the kernel level
- PERF_SAMPLE_HV
only branches whose targets are at the hypervisor level
- PERF_SAMPLE_ANY
any type of branches (subject to priv levels filters)
- PERF_SAMPLE_ANY_CALL
any call branches (may incl. syscall on some arch)
- PERF_SAMPLE_ANY_RET
any return branches (may incl. syscall returns on some arch)
- PERF_SAMPLE_IND_CALL
indirect call branches
Obviously filter may be combined. The priv level bits are optional.
If not provided, the priv level of the associated event are used. It
is possible to collect branches at a priv level different from the
associated event. Use of kernel, hv priv levels is subject to permissions
and availability (hv).
The number of taken branch records present in each sample may vary based
on HW, the type of sampled branches, the executed code. Therefore
each sample contains the number of taken branches it contains.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1328826068-11713-2-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-10 06:20:51 +08:00
|
|
|
cpuc->lbr_entries[i].reserved = 0;
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
|
|
|
cpuc->lbr_stack.nr = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Due to lack of segmentation in Linux the effective address (offset)
|
|
|
|
* is the same as the linear address, allowing us to merge the LIP and EIP
|
|
|
|
* LBR formats.
|
|
|
|
*/
|
|
|
|
static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
|
|
|
|
{
|
perf/x86/intel/lbr: Fix incomplete LBR call stack
LBR has a limited stack size. If a task has a deeper call stack than
LBR's stack size, only the overflowed part is reported. A complete call
stack may not be reconstructed by perf tool.
Current code doesn't access all LBR registers. It only read the ones
below the TOS. The LBR registers above the TOS will be discarded
unconditionally.
When a CALL is captured, the TOS is incremented by 1 , modulo max LBR
stack size. The LBR HW only records the call stack information to the
register which the TOS points to. It will not touch other LBR
registers. So the registers above the TOS probably still store the valid
call stack information for an overflowed call stack, which need to be
reported.
To retrieve complete call stack information, we need to start from TOS,
read all LBR registers until an invalid entry is detected.
0s can be used to detect the invalid entry, because:
- When a RET is captured, the HW zeros the LBR register which TOS points
to, then decreases the TOS.
- The LBR registers are reset to 0 when adding a new LBR event or
scheduling an existing LBR event.
- A taken branch at IP 0 is not expected
The context switch code is also modified to save/restore all valid LBR
registers. Furthermore, the LBR registers, which don't have valid call
stack information, need to be reset in restore, because they may be
polluted while swapped out.
Here is a small test program, tchain_deep.
Its call stack is deeper than 32.
noinline void f33(void)
{
int i;
for (i = 0; i < 10000000;) {
if (i%2)
i++;
else
i++;
}
}
noinline void f32(void)
{
f33();
}
noinline void f31(void)
{
f32();
}
... ...
noinline void f1(void)
{
f2();
}
int main()
{
f1();
}
Here is the test result on SKX. The max stack size of SKX is 32.
Without the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
#
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ .................
#
100.00% 99.99% tchain_deep tchain_deep [.] f33
|
--99.99%--f30
f31
f32
f33
With the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ ..................
#
99.99% 0.00% tchain_deep tchain_deep [.] f1
|
---f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
f31
f32
f33
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lore.kernel.org/lkml/1528213126-4312-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-05 23:38:45 +08:00
|
|
|
bool need_info = false, call_stack = false;
|
2010-03-03 19:02:30 +08:00
|
|
|
unsigned long mask = x86_pmu.lbr_nr - 1;
|
2010-03-04 00:07:40 +08:00
|
|
|
int lbr_format = x86_pmu.intel_cap.lbr_format;
|
2010-03-03 19:02:30 +08:00
|
|
|
u64 tos = intel_pmu_lbr_tos();
|
|
|
|
int i;
|
2013-09-20 22:40:44 +08:00
|
|
|
int out = 0;
|
2015-05-28 12:13:18 +08:00
|
|
|
int num = x86_pmu.lbr_nr;
|
2010-03-03 19:02:30 +08:00
|
|
|
|
2015-12-04 06:33:17 +08:00
|
|
|
if (cpuc->lbr_sel) {
|
|
|
|
need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
|
|
|
|
if (cpuc->lbr_sel->config & LBR_CALL_STACK)
|
perf/x86/intel/lbr: Fix incomplete LBR call stack
LBR has a limited stack size. If a task has a deeper call stack than
LBR's stack size, only the overflowed part is reported. A complete call
stack may not be reconstructed by perf tool.
Current code doesn't access all LBR registers. It only read the ones
below the TOS. The LBR registers above the TOS will be discarded
unconditionally.
When a CALL is captured, the TOS is incremented by 1 , modulo max LBR
stack size. The LBR HW only records the call stack information to the
register which the TOS points to. It will not touch other LBR
registers. So the registers above the TOS probably still store the valid
call stack information for an overflowed call stack, which need to be
reported.
To retrieve complete call stack information, we need to start from TOS,
read all LBR registers until an invalid entry is detected.
0s can be used to detect the invalid entry, because:
- When a RET is captured, the HW zeros the LBR register which TOS points
to, then decreases the TOS.
- The LBR registers are reset to 0 when adding a new LBR event or
scheduling an existing LBR event.
- A taken branch at IP 0 is not expected
The context switch code is also modified to save/restore all valid LBR
registers. Furthermore, the LBR registers, which don't have valid call
stack information, need to be reset in restore, because they may be
polluted while swapped out.
Here is a small test program, tchain_deep.
Its call stack is deeper than 32.
noinline void f33(void)
{
int i;
for (i = 0; i < 10000000;) {
if (i%2)
i++;
else
i++;
}
}
noinline void f32(void)
{
f33();
}
noinline void f31(void)
{
f32();
}
... ...
noinline void f1(void)
{
f2();
}
int main()
{
f1();
}
Here is the test result on SKX. The max stack size of SKX is 32.
Without the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
#
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ .................
#
100.00% 99.99% tchain_deep tchain_deep [.] f33
|
--99.99%--f30
f31
f32
f33
With the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ ..................
#
99.99% 0.00% tchain_deep tchain_deep [.] f1
|
---f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
f31
f32
f33
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lore.kernel.org/lkml/1528213126-4312-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-05 23:38:45 +08:00
|
|
|
call_stack = true;
|
2015-12-04 06:33:17 +08:00
|
|
|
}
|
2015-05-28 12:13:18 +08:00
|
|
|
|
|
|
|
for (i = 0; i < num; i++) {
|
2010-03-03 19:02:30 +08:00
|
|
|
unsigned long lbr_idx = (tos - i) & mask;
|
2013-06-18 08:36:51 +08:00
|
|
|
u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
|
|
|
|
int skip = 0;
|
2015-05-11 03:22:43 +08:00
|
|
|
u16 cycles = 0;
|
2013-06-18 08:36:51 +08:00
|
|
|
int lbr_flags = lbr_desc[lbr_format];
|
2010-03-03 19:02:30 +08:00
|
|
|
|
2016-06-23 16:44:49 +08:00
|
|
|
from = rdlbr_from(lbr_idx);
|
|
|
|
to = rdlbr_to(lbr_idx);
|
2010-03-03 19:02:30 +08:00
|
|
|
|
perf/x86/intel/lbr: Fix incomplete LBR call stack
LBR has a limited stack size. If a task has a deeper call stack than
LBR's stack size, only the overflowed part is reported. A complete call
stack may not be reconstructed by perf tool.
Current code doesn't access all LBR registers. It only read the ones
below the TOS. The LBR registers above the TOS will be discarded
unconditionally.
When a CALL is captured, the TOS is incremented by 1 , modulo max LBR
stack size. The LBR HW only records the call stack information to the
register which the TOS points to. It will not touch other LBR
registers. So the registers above the TOS probably still store the valid
call stack information for an overflowed call stack, which need to be
reported.
To retrieve complete call stack information, we need to start from TOS,
read all LBR registers until an invalid entry is detected.
0s can be used to detect the invalid entry, because:
- When a RET is captured, the HW zeros the LBR register which TOS points
to, then decreases the TOS.
- The LBR registers are reset to 0 when adding a new LBR event or
scheduling an existing LBR event.
- A taken branch at IP 0 is not expected
The context switch code is also modified to save/restore all valid LBR
registers. Furthermore, the LBR registers, which don't have valid call
stack information, need to be reset in restore, because they may be
polluted while swapped out.
Here is a small test program, tchain_deep.
Its call stack is deeper than 32.
noinline void f33(void)
{
int i;
for (i = 0; i < 10000000;) {
if (i%2)
i++;
else
i++;
}
}
noinline void f32(void)
{
f33();
}
noinline void f31(void)
{
f32();
}
... ...
noinline void f1(void)
{
f2();
}
int main()
{
f1();
}
Here is the test result on SKX. The max stack size of SKX is 32.
Without the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
#
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ .................
#
100.00% 99.99% tchain_deep tchain_deep [.] f33
|
--99.99%--f30
f31
f32
f33
With the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ ..................
#
99.99% 0.00% tchain_deep tchain_deep [.] f1
|
---f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
f31
f32
f33
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lore.kernel.org/lkml/1528213126-4312-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-05 23:38:45 +08:00
|
|
|
/*
|
|
|
|
* Read LBR call stack entries
|
|
|
|
* until invalid entry (0s) is detected.
|
|
|
|
*/
|
|
|
|
if (call_stack && !from)
|
|
|
|
break;
|
|
|
|
|
2015-10-21 02:46:34 +08:00
|
|
|
if (lbr_format == LBR_FORMAT_INFO && need_info) {
|
2015-05-11 03:22:43 +08:00
|
|
|
u64 info;
|
|
|
|
|
|
|
|
rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
|
|
|
|
mis = !!(info & LBR_INFO_MISPRED);
|
|
|
|
pred = !mis;
|
|
|
|
in_tx = !!(info & LBR_INFO_IN_TX);
|
|
|
|
abort = !!(info & LBR_INFO_ABORT);
|
|
|
|
cycles = (info & LBR_INFO_CYCLES);
|
|
|
|
}
|
2016-04-15 15:42:47 +08:00
|
|
|
|
|
|
|
if (lbr_format == LBR_FORMAT_TIME) {
|
|
|
|
mis = !!(from & LBR_FROM_FLAG_MISPRED);
|
|
|
|
pred = !mis;
|
|
|
|
skip = 1;
|
|
|
|
cycles = ((to >> 48) & LBR_INFO_CYCLES);
|
|
|
|
|
|
|
|
to = (u64)((((s64)to) << 16) >> 16);
|
|
|
|
}
|
|
|
|
|
2013-06-18 08:36:51 +08:00
|
|
|
if (lbr_flags & LBR_EIP_FLAGS) {
|
perf: Add generic taken branch sampling support
This patch adds the ability to sample taken branches to the
perf_event interface.
The ability to capture taken branches is very useful for all
sorts of analysis. For instance, basic block profiling, call
counts, statistical call graph.
This new capability requires hardware assist and as such may
not be available on all HW platforms. On Intel x86 it is
implemented on top of the Last Branch Record (LBR) facility.
To enable taken branches sampling, the PERF_SAMPLE_BRANCH_STACK
bit must be set in attr->sample_type.
Sampled taken branches may be filtered by type and/or priv
levels.
The patch adds a new field, called branch_sample_type, to the
perf_event_attr structure. It contains a bitmask of filters
to apply to the sampled taken branches.
Filters may be implemented in HW. If the HW filter does not exist
or is not good enough, some arch may also implement a SW filter.
The following generic filters are currently defined:
- PERF_SAMPLE_USER
only branches whose targets are at the user level
- PERF_SAMPLE_KERNEL
only branches whose targets are at the kernel level
- PERF_SAMPLE_HV
only branches whose targets are at the hypervisor level
- PERF_SAMPLE_ANY
any type of branches (subject to priv levels filters)
- PERF_SAMPLE_ANY_CALL
any call branches (may incl. syscall on some arch)
- PERF_SAMPLE_ANY_RET
any return branches (may incl. syscall returns on some arch)
- PERF_SAMPLE_IND_CALL
indirect call branches
Obviously filter may be combined. The priv level bits are optional.
If not provided, the priv level of the associated event are used. It
is possible to collect branches at a priv level different from the
associated event. Use of kernel, hv priv levels is subject to permissions
and availability (hv).
The number of taken branch records present in each sample may vary based
on HW, the type of sampled branches, the executed code. Therefore
each sample contains the number of taken branches it contains.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1328826068-11713-2-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-02-10 06:20:51 +08:00
|
|
|
mis = !!(from & LBR_FROM_FLAG_MISPRED);
|
|
|
|
pred = !mis;
|
2013-06-18 08:36:51 +08:00
|
|
|
skip = 1;
|
|
|
|
}
|
|
|
|
if (lbr_flags & LBR_TSX) {
|
|
|
|
in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
|
|
|
|
abort = !!(from & LBR_FROM_FLAG_ABORT);
|
|
|
|
skip = 3;
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
2013-06-18 08:36:51 +08:00
|
|
|
from = (u64)((((s64)from) << skip) >> skip);
|
2010-03-03 19:02:30 +08:00
|
|
|
|
2013-09-20 22:40:44 +08:00
|
|
|
/*
|
|
|
|
* Some CPUs report duplicated abort records,
|
|
|
|
* with the second entry not having an abort bit set.
|
|
|
|
* Skip them here. This loop runs backwards,
|
|
|
|
* so we need to undo the previous record.
|
|
|
|
* If the abort just happened outside the window
|
|
|
|
* the extra entry cannot be removed.
|
|
|
|
*/
|
|
|
|
if (abort && x86_pmu.lbr_double_abort && out > 0)
|
|
|
|
out--;
|
|
|
|
|
|
|
|
cpuc->lbr_entries[out].from = from;
|
|
|
|
cpuc->lbr_entries[out].to = to;
|
|
|
|
cpuc->lbr_entries[out].mispred = mis;
|
|
|
|
cpuc->lbr_entries[out].predicted = pred;
|
|
|
|
cpuc->lbr_entries[out].in_tx = in_tx;
|
|
|
|
cpuc->lbr_entries[out].abort = abort;
|
2015-05-11 03:22:43 +08:00
|
|
|
cpuc->lbr_entries[out].cycles = cycles;
|
2017-07-18 20:13:10 +08:00
|
|
|
cpuc->lbr_entries[out].type = 0;
|
2013-09-20 22:40:44 +08:00
|
|
|
cpuc->lbr_entries[out].reserved = 0;
|
|
|
|
out++;
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
2013-09-20 22:40:44 +08:00
|
|
|
cpuc->lbr_stack.nr = out;
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
|
|
|
|
2011-08-31 07:41:05 +08:00
|
|
|
void intel_pmu_lbr_read(void)
|
2010-03-03 19:02:30 +08:00
|
|
|
{
|
x86: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-18 01:30:40 +08:00
|
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
2010-03-03 19:02:30 +08:00
|
|
|
|
|
|
|
if (!cpuc->lbr_users)
|
|
|
|
return;
|
|
|
|
|
2010-03-04 00:07:40 +08:00
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
|
2010-03-03 19:02:30 +08:00
|
|
|
intel_pmu_lbr_read_32(cpuc);
|
|
|
|
else
|
|
|
|
intel_pmu_lbr_read_64(cpuc);
|
2012-02-10 06:20:58 +08:00
|
|
|
|
|
|
|
intel_pmu_lbr_filter(cpuc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SW filter is used:
|
|
|
|
* - in case there is no HW filter
|
|
|
|
* - in case the HW filter has errata or limitations
|
|
|
|
*/
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
|
2012-02-10 06:20:58 +08:00
|
|
|
{
|
|
|
|
u64 br_type = event->attr.branch_sample_type;
|
|
|
|
int mask = 0;
|
|
|
|
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_USER)
|
|
|
|
mask |= X86_BR_USER;
|
|
|
|
|
2013-05-21 18:53:37 +08:00
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
|
2012-02-10 06:20:58 +08:00
|
|
|
mask |= X86_BR_KERNEL;
|
|
|
|
|
|
|
|
/* we ignore BRANCH_HV here */
|
|
|
|
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY)
|
|
|
|
mask |= X86_BR_ANY;
|
|
|
|
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
|
|
|
|
mask |= X86_BR_ANY_CALL;
|
|
|
|
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
|
|
|
|
mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
|
|
|
|
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
|
|
|
|
mask |= X86_BR_IND_CALL;
|
2013-06-18 08:36:51 +08:00
|
|
|
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
|
|
|
|
mask |= X86_BR_ABORT;
|
|
|
|
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
|
|
|
|
mask |= X86_BR_IN_TX;
|
|
|
|
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
|
|
|
|
mask |= X86_BR_NO_TX;
|
|
|
|
|
2014-05-22 15:20:09 +08:00
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_COND)
|
|
|
|
mask |= X86_BR_JCC;
|
|
|
|
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
|
|
|
|
if (!x86_pmu_has_lbr_callstack())
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
|
|
|
|
return -EINVAL;
|
|
|
|
mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
|
|
|
|
X86_BR_CALL_STACK;
|
|
|
|
}
|
|
|
|
|
2015-05-15 05:09:59 +08:00
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
|
|
|
|
mask |= X86_BR_IND_JMP;
|
|
|
|
|
2015-10-13 15:09:09 +08:00
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_CALL)
|
|
|
|
mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
|
2017-07-18 20:13:10 +08:00
|
|
|
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
|
|
|
|
mask |= X86_BR_TYPE_SAVE;
|
|
|
|
|
2012-02-10 06:20:58 +08:00
|
|
|
/*
|
|
|
|
* stash actual user request into reg, it may
|
|
|
|
* be used by fixup code for some CPU
|
|
|
|
*/
|
|
|
|
event->hw.branch_reg.reg = mask;
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
return 0;
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
|
|
|
|
2012-02-10 06:20:57 +08:00
|
|
|
/*
|
|
|
|
* setup the HW LBR filter
|
|
|
|
* Used only when available, may not be enough to disambiguate
|
|
|
|
* all branches, may need the help of the SW filter
|
|
|
|
*/
|
|
|
|
static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
|
|
|
|
{
|
|
|
|
struct hw_perf_event_extra *reg;
|
|
|
|
u64 br_type = event->attr.branch_sample_type;
|
2014-11-05 10:55:57 +08:00
|
|
|
u64 mask = 0, v;
|
|
|
|
int i;
|
2012-02-10 06:20:57 +08:00
|
|
|
|
2014-11-05 17:36:45 +08:00
|
|
|
for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
|
2014-11-05 10:55:57 +08:00
|
|
|
if (!(br_type & (1ULL << i)))
|
2012-02-10 06:20:57 +08:00
|
|
|
continue;
|
|
|
|
|
2014-11-05 10:55:57 +08:00
|
|
|
v = x86_pmu.lbr_sel_map[i];
|
2012-02-10 06:20:57 +08:00
|
|
|
if (v == LBR_NOT_SUPP)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
2012-02-10 06:20:58 +08:00
|
|
|
if (v != LBR_IGN)
|
|
|
|
mask |= v;
|
2012-02-10 06:20:57 +08:00
|
|
|
}
|
2015-10-21 02:46:34 +08:00
|
|
|
|
2012-02-10 06:20:57 +08:00
|
|
|
reg = &event->hw.branch_reg;
|
|
|
|
reg->idx = EXTRA_REG_LBR;
|
|
|
|
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
/*
|
|
|
|
* The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
|
|
|
|
* in suppress mode. So LBR_SELECT should be set to
|
|
|
|
* (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
|
2016-04-21 17:30:10 +08:00
|
|
|
* But the 10th bit LBR_CALL_STACK does not operate
|
|
|
|
* in suppress mode.
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
*/
|
2016-04-21 17:30:10 +08:00
|
|
|
reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
|
2012-02-10 06:20:57 +08:00
|
|
|
|
2015-10-21 02:46:34 +08:00
|
|
|
if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
|
|
|
|
(br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
|
|
|
|
(x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
|
|
|
|
reg->config |= LBR_NO_INFO;
|
|
|
|
|
2012-02-10 06:20:57 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int intel_pmu_setup_lbr_filter(struct perf_event *event)
|
|
|
|
{
|
2012-02-10 06:20:58 +08:00
|
|
|
int ret = 0;
|
2012-02-10 06:20:57 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* no LBR on this PMU
|
|
|
|
*/
|
|
|
|
if (!x86_pmu.lbr_nr)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
/*
|
2012-02-10 06:20:58 +08:00
|
|
|
* setup SW LBR filter
|
2012-02-10 06:20:57 +08:00
|
|
|
*/
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
ret = intel_pmu_setup_sw_lbr_filter(event);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2012-02-10 06:20:58 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* setup HW LBR filter, if any
|
|
|
|
*/
|
|
|
|
if (x86_pmu.lbr_sel_map)
|
|
|
|
ret = intel_pmu_setup_hw_lbr_filter(event);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* return the type of control flow change at address "from"
|
2016-02-24 07:34:30 +08:00
|
|
|
* instruction is not necessarily a branch (in case of interrupt).
|
2012-02-10 06:20:58 +08:00
|
|
|
*
|
|
|
|
* The branch type returned also includes the priv level of the
|
|
|
|
* target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
|
|
|
|
*
|
|
|
|
* If a branch type is unknown OR the instruction cannot be
|
|
|
|
* decoded (e.g., text page not present), then X86_BR_NONE is
|
|
|
|
* returned.
|
|
|
|
*/
|
2013-06-18 08:36:51 +08:00
|
|
|
static int branch_type(unsigned long from, unsigned long to, int abort)
|
2012-02-10 06:20:58 +08:00
|
|
|
{
|
|
|
|
struct insn insn;
|
|
|
|
void *addr;
|
2014-11-14 23:39:57 +08:00
|
|
|
int bytes_read, bytes_left;
|
2012-02-10 06:20:58 +08:00
|
|
|
int ret = X86_BR_NONE;
|
|
|
|
int ext, to_plm, from_plm;
|
|
|
|
u8 buf[MAX_INSN_SIZE];
|
|
|
|
int is64 = 0;
|
|
|
|
|
|
|
|
to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
|
|
|
|
from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* maybe zero if lbr did not fill up after a reset by the time
|
|
|
|
* we get a PMU interrupt
|
|
|
|
*/
|
|
|
|
if (from == 0 || to == 0)
|
|
|
|
return X86_BR_NONE;
|
|
|
|
|
2013-06-18 08:36:51 +08:00
|
|
|
if (abort)
|
|
|
|
return X86_BR_ABORT | to_plm;
|
|
|
|
|
2012-02-10 06:20:58 +08:00
|
|
|
if (from_plm == X86_BR_USER) {
|
|
|
|
/*
|
|
|
|
* can happen if measuring at the user level only
|
|
|
|
* and we interrupt in a kernel thread, e.g., idle.
|
|
|
|
*/
|
|
|
|
if (!current->mm)
|
|
|
|
return X86_BR_NONE;
|
|
|
|
|
|
|
|
/* may fail if text not present */
|
2014-11-14 23:39:57 +08:00
|
|
|
bytes_left = copy_from_user_nmi(buf, (void __user *)from,
|
|
|
|
MAX_INSN_SIZE);
|
|
|
|
bytes_read = MAX_INSN_SIZE - bytes_left;
|
|
|
|
if (!bytes_read)
|
2012-02-10 06:20:58 +08:00
|
|
|
return X86_BR_NONE;
|
|
|
|
|
|
|
|
addr = buf;
|
2013-05-03 20:11:24 +08:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* The LBR logs any address in the IP, even if the IP just
|
|
|
|
* faulted. This means userspace can control the from address.
|
|
|
|
* Ensure we don't blindy read any address by validating it is
|
|
|
|
* a known text address.
|
|
|
|
*/
|
2014-11-14 23:39:57 +08:00
|
|
|
if (kernel_text_address(from)) {
|
2013-05-03 20:11:24 +08:00
|
|
|
addr = (void *)from;
|
2014-11-14 23:39:57 +08:00
|
|
|
/*
|
|
|
|
* Assume we can get the maximum possible size
|
|
|
|
* when grabbing kernel data. This is not
|
|
|
|
* _strictly_ true since we could possibly be
|
|
|
|
* executing up next to a memory hole, but
|
|
|
|
* it is very unlikely to be a problem.
|
|
|
|
*/
|
|
|
|
bytes_read = MAX_INSN_SIZE;
|
|
|
|
} else {
|
2013-05-03 20:11:24 +08:00
|
|
|
return X86_BR_NONE;
|
2014-11-14 23:39:57 +08:00
|
|
|
}
|
2013-05-03 20:11:24 +08:00
|
|
|
}
|
2012-02-10 06:20:58 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* decoder needs to know the ABI especially
|
|
|
|
* on 64-bit systems running 32-bit apps
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
|
|
|
|
#endif
|
2014-11-14 23:39:57 +08:00
|
|
|
insn_init(&insn, addr, bytes_read, is64);
|
2012-02-10 06:20:58 +08:00
|
|
|
insn_get_opcode(&insn);
|
2014-11-14 23:39:57 +08:00
|
|
|
if (!insn.opcode.got)
|
|
|
|
return X86_BR_ABORT;
|
2012-02-10 06:20:58 +08:00
|
|
|
|
|
|
|
switch (insn.opcode.bytes[0]) {
|
|
|
|
case 0xf:
|
|
|
|
switch (insn.opcode.bytes[1]) {
|
|
|
|
case 0x05: /* syscall */
|
|
|
|
case 0x34: /* sysenter */
|
|
|
|
ret = X86_BR_SYSCALL;
|
|
|
|
break;
|
|
|
|
case 0x07: /* sysret */
|
|
|
|
case 0x35: /* sysexit */
|
|
|
|
ret = X86_BR_SYSRET;
|
|
|
|
break;
|
|
|
|
case 0x80 ... 0x8f: /* conditional */
|
|
|
|
ret = X86_BR_JCC;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ret = X86_BR_NONE;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 0x70 ... 0x7f: /* conditional */
|
|
|
|
ret = X86_BR_JCC;
|
|
|
|
break;
|
|
|
|
case 0xc2: /* near ret */
|
|
|
|
case 0xc3: /* near ret */
|
|
|
|
case 0xca: /* far ret */
|
|
|
|
case 0xcb: /* far ret */
|
|
|
|
ret = X86_BR_RET;
|
|
|
|
break;
|
|
|
|
case 0xcf: /* iret */
|
|
|
|
ret = X86_BR_IRET;
|
|
|
|
break;
|
|
|
|
case 0xcc ... 0xce: /* int */
|
|
|
|
ret = X86_BR_INT;
|
|
|
|
break;
|
|
|
|
case 0xe8: /* call near rel */
|
2014-11-05 10:56:11 +08:00
|
|
|
insn_get_immediate(&insn);
|
|
|
|
if (insn.immediate1.value == 0) {
|
|
|
|
/* zero length call */
|
|
|
|
ret = X86_BR_ZERO_CALL;
|
|
|
|
break;
|
|
|
|
}
|
2019-01-26 02:49:17 +08:00
|
|
|
/* fall through */
|
2012-02-10 06:20:58 +08:00
|
|
|
case 0x9a: /* call far absolute */
|
|
|
|
ret = X86_BR_CALL;
|
|
|
|
break;
|
|
|
|
case 0xe0 ... 0xe3: /* loop jmp */
|
|
|
|
ret = X86_BR_JCC;
|
|
|
|
break;
|
|
|
|
case 0xe9 ... 0xeb: /* jmp */
|
|
|
|
ret = X86_BR_JMP;
|
|
|
|
break;
|
|
|
|
case 0xff: /* call near absolute, call far absolute ind */
|
|
|
|
insn_get_modrm(&insn);
|
|
|
|
ext = (insn.modrm.bytes[0] >> 3) & 0x7;
|
|
|
|
switch (ext) {
|
|
|
|
case 2: /* near ind call */
|
|
|
|
case 3: /* far ind call */
|
|
|
|
ret = X86_BR_IND_CALL;
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
case 5:
|
2015-05-15 05:09:59 +08:00
|
|
|
ret = X86_BR_IND_JMP;
|
2012-02-10 06:20:58 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ret = X86_BR_NONE;
|
2012-02-10 06:20:57 +08:00
|
|
|
}
|
|
|
|
/*
|
2012-02-10 06:20:58 +08:00
|
|
|
* interrupts, traps, faults (and thus ring transition) may
|
|
|
|
* occur on any instructions. Thus, to classify them correctly,
|
|
|
|
* we need to first look at the from and to priv levels. If they
|
|
|
|
* are different and to is in the kernel, then it indicates
|
|
|
|
* a ring transition. If the from instruction is not a ring
|
|
|
|
* transition instr (syscall, systenter, int), then it means
|
|
|
|
* it was a irq, trap or fault.
|
|
|
|
*
|
|
|
|
* we have no way of detecting kernel to kernel faults.
|
|
|
|
*/
|
|
|
|
if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
|
|
|
|
&& ret != X86_BR_SYSCALL && ret != X86_BR_INT)
|
|
|
|
ret = X86_BR_IRQ;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* branch priv level determined by target as
|
|
|
|
* is done by HW when LBR_SELECT is implemented
|
2012-02-10 06:20:57 +08:00
|
|
|
*/
|
2012-02-10 06:20:58 +08:00
|
|
|
if (ret != X86_BR_NONE)
|
|
|
|
ret |= to_plm;
|
2012-02-10 06:20:57 +08:00
|
|
|
|
2012-02-10 06:20:58 +08:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2017-07-18 20:13:10 +08:00
|
|
|
#define X86_BR_TYPE_MAP_MAX 16
|
|
|
|
|
|
|
|
static int branch_map[X86_BR_TYPE_MAP_MAX] = {
|
|
|
|
PERF_BR_CALL, /* X86_BR_CALL */
|
|
|
|
PERF_BR_RET, /* X86_BR_RET */
|
|
|
|
PERF_BR_SYSCALL, /* X86_BR_SYSCALL */
|
|
|
|
PERF_BR_SYSRET, /* X86_BR_SYSRET */
|
|
|
|
PERF_BR_UNKNOWN, /* X86_BR_INT */
|
|
|
|
PERF_BR_UNKNOWN, /* X86_BR_IRET */
|
|
|
|
PERF_BR_COND, /* X86_BR_JCC */
|
|
|
|
PERF_BR_UNCOND, /* X86_BR_JMP */
|
|
|
|
PERF_BR_UNKNOWN, /* X86_BR_IRQ */
|
|
|
|
PERF_BR_IND_CALL, /* X86_BR_IND_CALL */
|
|
|
|
PERF_BR_UNKNOWN, /* X86_BR_ABORT */
|
|
|
|
PERF_BR_UNKNOWN, /* X86_BR_IN_TX */
|
|
|
|
PERF_BR_UNKNOWN, /* X86_BR_NO_TX */
|
|
|
|
PERF_BR_CALL, /* X86_BR_ZERO_CALL */
|
|
|
|
PERF_BR_UNKNOWN, /* X86_BR_CALL_STACK */
|
|
|
|
PERF_BR_IND, /* X86_BR_IND_JMP */
|
|
|
|
};
|
|
|
|
|
|
|
|
static int
|
|
|
|
common_branch_type(int type)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
|
|
|
|
|
|
|
|
if (type) {
|
|
|
|
i = __ffs(type);
|
|
|
|
if (i < X86_BR_TYPE_MAP_MAX)
|
|
|
|
return branch_map[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
return PERF_BR_UNKNOWN;
|
|
|
|
}
|
|
|
|
|
2012-02-10 06:20:58 +08:00
|
|
|
/*
|
|
|
|
* implement actual branch filter based on user demand.
|
|
|
|
* Hardware may not exactly satisfy that request, thus
|
|
|
|
* we need to inspect opcodes. Mismatched branches are
|
|
|
|
* discarded. Therefore, the number of branches returned
|
|
|
|
* in PERF_SAMPLE_BRANCH_STACK sample may vary.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
|
|
|
|
{
|
|
|
|
u64 from, to;
|
|
|
|
int br_sel = cpuc->br_sel;
|
|
|
|
int i, j, type;
|
|
|
|
bool compress = false;
|
|
|
|
|
|
|
|
/* if sampling all branches, then nothing to filter */
|
2017-07-18 20:13:10 +08:00
|
|
|
if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
|
|
|
|
((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
|
2012-02-10 06:20:58 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
for (i = 0; i < cpuc->lbr_stack.nr; i++) {
|
|
|
|
|
|
|
|
from = cpuc->lbr_entries[i].from;
|
|
|
|
to = cpuc->lbr_entries[i].to;
|
|
|
|
|
2013-06-18 08:36:51 +08:00
|
|
|
type = branch_type(from, to, cpuc->lbr_entries[i].abort);
|
|
|
|
if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
|
|
|
|
if (cpuc->lbr_entries[i].in_tx)
|
|
|
|
type |= X86_BR_IN_TX;
|
|
|
|
else
|
|
|
|
type |= X86_BR_NO_TX;
|
|
|
|
}
|
2012-02-10 06:20:58 +08:00
|
|
|
|
|
|
|
/* if type does not correspond, then discard */
|
|
|
|
if (type == X86_BR_NONE || (br_sel & type) != type) {
|
|
|
|
cpuc->lbr_entries[i].from = 0;
|
|
|
|
compress = true;
|
|
|
|
}
|
2017-07-18 20:13:10 +08:00
|
|
|
|
|
|
|
if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
|
|
|
|
cpuc->lbr_entries[i].type = common_branch_type(type);
|
2012-02-10 06:20:58 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (!compress)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* remove all entries with from=0 */
|
|
|
|
for (i = 0; i < cpuc->lbr_stack.nr; ) {
|
|
|
|
if (!cpuc->lbr_entries[i].from) {
|
|
|
|
j = i;
|
|
|
|
while (++j < cpuc->lbr_stack.nr)
|
|
|
|
cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
|
|
|
|
cpuc->lbr_stack.nr--;
|
|
|
|
if (!cpuc->lbr_entries[i].from)
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
i++;
|
|
|
|
}
|
2012-02-10 06:20:57 +08:00
|
|
|
}
|
|
|
|
|
2012-02-10 06:20:55 +08:00
|
|
|
/*
|
|
|
|
* Map interface branch filters onto LBR filters
|
|
|
|
*/
|
2014-11-05 17:36:45 +08:00
|
|
|
static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
2014-11-05 10:55:57 +08:00
|
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
|
|
|
|
| LBR_IND_JMP | LBR_FAR,
|
2012-02-10 06:20:55 +08:00
|
|
|
/*
|
|
|
|
* NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
|
|
|
|
*/
|
2014-11-05 10:55:57 +08:00
|
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
|
2012-02-10 06:20:55 +08:00
|
|
|
LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
|
|
|
|
/*
|
|
|
|
* NHM/WSM erratum: must include IND_JMP to capture IND_CALL
|
|
|
|
*/
|
2014-11-05 10:55:57 +08:00
|
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
|
|
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
2015-05-15 05:09:59 +08:00
|
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
2012-02-10 06:20:55 +08:00
|
|
|
};
|
|
|
|
|
2014-11-05 17:36:45 +08:00
|
|
|
static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
2014-11-05 10:55:57 +08:00
|
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
|
|
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
|
|
| LBR_FAR,
|
|
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
|
|
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
2015-05-15 05:09:59 +08:00
|
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
2015-10-13 15:09:09 +08:00
|
|
|
[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
|
2012-02-10 06:20:55 +08:00
|
|
|
};
|
|
|
|
|
2014-11-05 17:36:45 +08:00
|
|
|
static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
|
|
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
|
|
| LBR_FAR,
|
|
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
|
|
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
|
|
[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
|
|
| LBR_RETURN | LBR_CALL_STACK,
|
2015-05-15 05:09:59 +08:00
|
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
2015-10-13 15:09:09 +08:00
|
|
|
[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
};
|
|
|
|
|
2012-02-10 06:20:55 +08:00
|
|
|
/* core */
|
2014-08-27 00:49:45 +08:00
|
|
|
void __init intel_pmu_lbr_init_core(void)
|
2010-03-03 19:02:30 +08:00
|
|
|
{
|
|
|
|
x86_pmu.lbr_nr = 4;
|
2012-02-10 06:20:52 +08:00
|
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
2012-02-10 06:20:55 +08:00
|
|
|
|
2012-02-10 06:20:58 +08:00
|
|
|
/*
|
|
|
|
* SW branch filter usage:
|
|
|
|
* - compensate for lack of HW filter
|
|
|
|
*/
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
|
|
|
|
2012-02-10 06:20:55 +08:00
|
|
|
/* nehalem/westmere */
|
2014-08-27 00:49:45 +08:00
|
|
|
void __init intel_pmu_lbr_init_nhm(void)
|
2010-03-03 19:02:30 +08:00
|
|
|
{
|
|
|
|
x86_pmu.lbr_nr = 16;
|
2012-02-10 06:20:52 +08:00
|
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
2012-02-10 06:20:55 +08:00
|
|
|
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
|
|
x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
|
|
|
|
|
2012-02-10 06:20:58 +08:00
|
|
|
/*
|
|
|
|
* SW branch filter usage:
|
|
|
|
* - workaround LBR_SEL errata (see above)
|
|
|
|
* - support syscall, sysret capture.
|
|
|
|
* That requires LBR_FAR but that means far
|
|
|
|
* jmp need to be filtered out
|
|
|
|
*/
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
|
|
|
|
2012-02-10 06:20:55 +08:00
|
|
|
/* sandy bridge */
|
2014-08-27 00:49:45 +08:00
|
|
|
void __init intel_pmu_lbr_init_snb(void)
|
2012-02-10 06:20:55 +08:00
|
|
|
{
|
|
|
|
x86_pmu.lbr_nr = 16;
|
|
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
|
|
x86_pmu.lbr_sel_map = snb_lbr_sel_map;
|
|
|
|
|
2012-02-10 06:20:58 +08:00
|
|
|
/*
|
|
|
|
* SW branch filter usage:
|
|
|
|
* - support syscall, sysret capture.
|
|
|
|
* That requires LBR_FAR but that means far
|
|
|
|
* jmp need to be filtered out
|
|
|
|
*/
|
2012-02-10 06:20:55 +08:00
|
|
|
}
|
|
|
|
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
/* haswell */
|
|
|
|
void intel_pmu_lbr_init_hsw(void)
|
|
|
|
{
|
|
|
|
x86_pmu.lbr_nr = 16;
|
|
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
|
|
x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
|
2016-06-22 02:31:11 +08:00
|
|
|
|
|
|
|
if (lbr_from_signext_quirk_needed())
|
|
|
|
static_branch_enable(&lbr_from_quirk_key);
|
perf/x86/intel: Add basic Haswell LBR call stack support
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-05 10:56:00 +08:00
|
|
|
}
|
|
|
|
|
2015-05-11 03:22:44 +08:00
|
|
|
/* skylake */
|
|
|
|
__init void intel_pmu_lbr_init_skl(void)
|
|
|
|
{
|
|
|
|
x86_pmu.lbr_nr = 32;
|
|
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
|
|
x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SW branch filter usage:
|
|
|
|
* - support syscall, sysret capture.
|
|
|
|
* That requires LBR_FAR but that means far
|
|
|
|
* jmp need to be filtered out
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
2012-02-10 06:20:55 +08:00
|
|
|
/* atom */
|
2014-08-27 00:49:45 +08:00
|
|
|
void __init intel_pmu_lbr_init_atom(void)
|
2010-03-03 19:02:30 +08:00
|
|
|
{
|
2012-02-10 06:20:56 +08:00
|
|
|
/*
|
|
|
|
* only models starting at stepping 10 seems
|
|
|
|
* to have an operational LBR which can freeze
|
|
|
|
* on PMU interrupt
|
|
|
|
*/
|
2012-08-20 17:24:21 +08:00
|
|
|
if (boot_cpu_data.x86_model == 28
|
2018-01-01 09:52:10 +08:00
|
|
|
&& boot_cpu_data.x86_stepping < 10) {
|
2012-02-10 06:20:56 +08:00
|
|
|
pr_cont("LBR disabled due to erratum");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2010-03-03 19:02:30 +08:00
|
|
|
x86_pmu.lbr_nr = 8;
|
2012-02-10 06:20:52 +08:00
|
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
2012-02-10 06:20:55 +08:00
|
|
|
|
2012-02-10 06:20:58 +08:00
|
|
|
/*
|
|
|
|
* SW branch filter usage:
|
|
|
|
* - compensate for lack of HW filter
|
|
|
|
*/
|
2010-03-03 19:02:30 +08:00
|
|
|
}
|
2015-12-08 06:28:18 +08:00
|
|
|
|
2016-04-15 15:53:45 +08:00
|
|
|
/* slm */
|
|
|
|
void __init intel_pmu_lbr_init_slm(void)
|
|
|
|
{
|
|
|
|
x86_pmu.lbr_nr = 8;
|
|
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
|
|
|
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
|
|
x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SW branch filter usage:
|
|
|
|
* - compensate for lack of HW filter
|
|
|
|
*/
|
|
|
|
pr_cont("8-deep LBR, ");
|
|
|
|
}
|
|
|
|
|
2015-12-08 06:28:18 +08:00
|
|
|
/* Knights Landing */
|
|
|
|
void intel_pmu_lbr_init_knl(void)
|
|
|
|
{
|
|
|
|
x86_pmu.lbr_nr = 8;
|
|
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
|
|
x86_pmu.lbr_sel_map = snb_lbr_sel_map;
|
2018-08-02 09:38:30 +08:00
|
|
|
|
|
|
|
/* Knights Landing does have MISPREDICT bit */
|
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
|
|
|
|
x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
|
2015-12-08 06:28:18 +08:00
|
|
|
}
|