linux/drivers/net/mlx4/mr.c

668 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (c) 2004 Topspin Communications. All rights reserved.
* Copyright (c) 2005, 2006, 2007, 2008 Mellanox Technologies. All rights reserved.
* Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/errno.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/mlx4/cmd.h>
#include "mlx4.h"
#include "icm.h"
/*
* Must be packed because mtt_seg is 64 bits but only aligned to 32 bits.
*/
struct mlx4_mpt_entry {
__be32 flags;
__be32 qpn;
__be32 key;
__be32 pd_flags;
__be64 start;
__be64 length;
__be32 lkey;
__be32 win_cnt;
u8 reserved1[3];
u8 mtt_rep;
__be64 mtt_seg;
__be32 mtt_sz;
__be32 entity_size;
__be32 first_byte_offset;
} __packed;
#define MLX4_MPT_FLAG_SW_OWNS (0xfUL << 28)
#define MLX4_MPT_FLAG_FREE (0x3UL << 28)
#define MLX4_MPT_FLAG_MIO (1 << 17)
#define MLX4_MPT_FLAG_BIND_ENABLE (1 << 15)
#define MLX4_MPT_FLAG_PHYSICAL (1 << 9)
#define MLX4_MPT_FLAG_REGION (1 << 8)
#define MLX4_MPT_PD_FLAG_FAST_REG (1 << 27)
#define MLX4_MPT_PD_FLAG_RAE (1 << 28)
#define MLX4_MPT_PD_FLAG_EN_INV (3 << 24)
#define MLX4_MPT_STATUS_SW 0xF0
#define MLX4_MPT_STATUS_HW 0x00
static u32 mlx4_buddy_alloc(struct mlx4_buddy *buddy, int order)
{
int o;
int m;
u32 seg;
spin_lock(&buddy->lock);
for (o = order; o <= buddy->max_order; ++o)
if (buddy->num_free[o]) {
m = 1 << (buddy->max_order - o);
seg = find_first_bit(buddy->bits[o], m);
if (seg < m)
goto found;
}
spin_unlock(&buddy->lock);
return -1;
found:
clear_bit(seg, buddy->bits[o]);
--buddy->num_free[o];
while (o > order) {
--o;
seg <<= 1;
set_bit(seg ^ 1, buddy->bits[o]);
++buddy->num_free[o];
}
spin_unlock(&buddy->lock);
seg <<= order;
return seg;
}
static void mlx4_buddy_free(struct mlx4_buddy *buddy, u32 seg, int order)
{
seg >>= order;
spin_lock(&buddy->lock);
while (test_bit(seg ^ 1, buddy->bits[order])) {
clear_bit(seg ^ 1, buddy->bits[order]);
--buddy->num_free[order];
seg >>= 1;
++order;
}
set_bit(seg, buddy->bits[order]);
++buddy->num_free[order];
spin_unlock(&buddy->lock);
}
static int mlx4_buddy_init(struct mlx4_buddy *buddy, int max_order)
{
int i, s;
buddy->max_order = max_order;
spin_lock_init(&buddy->lock);
buddy->bits = kzalloc((buddy->max_order + 1) * sizeof (long *),
GFP_KERNEL);
buddy->num_free = kzalloc((buddy->max_order + 1) * sizeof (int *),
GFP_KERNEL);
if (!buddy->bits || !buddy->num_free)
goto err_out;
for (i = 0; i <= buddy->max_order; ++i) {
s = BITS_TO_LONGS(1 << (buddy->max_order - i));
buddy->bits[i] = kmalloc(s * sizeof (long), GFP_KERNEL);
if (!buddy->bits[i])
goto err_out_free;
bitmap_zero(buddy->bits[i], 1 << (buddy->max_order - i));
}
set_bit(0, buddy->bits[buddy->max_order]);
buddy->num_free[buddy->max_order] = 1;
return 0;
err_out_free:
for (i = 0; i <= buddy->max_order; ++i)
kfree(buddy->bits[i]);
err_out:
kfree(buddy->bits);
kfree(buddy->num_free);
return -ENOMEM;
}
static void mlx4_buddy_cleanup(struct mlx4_buddy *buddy)
{
int i;
for (i = 0; i <= buddy->max_order; ++i)
kfree(buddy->bits[i]);
kfree(buddy->bits);
kfree(buddy->num_free);
}
static u32 mlx4_alloc_mtt_range(struct mlx4_dev *dev, int order)
{
struct mlx4_mr_table *mr_table = &mlx4_priv(dev)->mr_table;
u32 seg;
seg = mlx4_buddy_alloc(&mr_table->mtt_buddy, order);
if (seg == -1)
return -1;
if (mlx4_table_get_range(dev, &mr_table->mtt_table, seg,
seg + (1 << order) - 1)) {
mlx4_buddy_free(&mr_table->mtt_buddy, seg, order);
return -1;
}
return seg;
}
int mlx4_mtt_init(struct mlx4_dev *dev, int npages, int page_shift,
struct mlx4_mtt *mtt)
{
int i;
if (!npages) {
mtt->order = -1;
mtt->page_shift = MLX4_ICM_PAGE_SHIFT;
return 0;
} else
mtt->page_shift = page_shift;
for (mtt->order = 0, i = dev->caps.mtts_per_seg; i < npages; i <<= 1)
++mtt->order;
mtt->first_seg = mlx4_alloc_mtt_range(dev, mtt->order);
if (mtt->first_seg == -1)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL_GPL(mlx4_mtt_init);
void mlx4_mtt_cleanup(struct mlx4_dev *dev, struct mlx4_mtt *mtt)
{
struct mlx4_mr_table *mr_table = &mlx4_priv(dev)->mr_table;
if (mtt->order < 0)
return;
mlx4_buddy_free(&mr_table->mtt_buddy, mtt->first_seg, mtt->order);
mlx4_table_put_range(dev, &mr_table->mtt_table, mtt->first_seg,
mtt->first_seg + (1 << mtt->order) - 1);
}
EXPORT_SYMBOL_GPL(mlx4_mtt_cleanup);
u64 mlx4_mtt_addr(struct mlx4_dev *dev, struct mlx4_mtt *mtt)
{
return (u64) mtt->first_seg * dev->caps.mtt_entry_sz;
}
EXPORT_SYMBOL_GPL(mlx4_mtt_addr);
static u32 hw_index_to_key(u32 ind)
{
return (ind >> 24) | (ind << 8);
}
static u32 key_to_hw_index(u32 key)
{
return (key << 24) | (key >> 8);
}
static int mlx4_SW2HW_MPT(struct mlx4_dev *dev, struct mlx4_cmd_mailbox *mailbox,
int mpt_index)
{
return mlx4_cmd(dev, mailbox->dma, mpt_index, 0, MLX4_CMD_SW2HW_MPT,
MLX4_CMD_TIME_CLASS_B);
}
static int mlx4_HW2SW_MPT(struct mlx4_dev *dev, struct mlx4_cmd_mailbox *mailbox,
int mpt_index)
{
return mlx4_cmd_box(dev, 0, mailbox ? mailbox->dma : 0, mpt_index,
!mailbox, MLX4_CMD_HW2SW_MPT, MLX4_CMD_TIME_CLASS_B);
}
int mlx4_mr_alloc(struct mlx4_dev *dev, u32 pd, u64 iova, u64 size, u32 access,
int npages, int page_shift, struct mlx4_mr *mr)
{
struct mlx4_priv *priv = mlx4_priv(dev);
u32 index;
int err;
index = mlx4_bitmap_alloc(&priv->mr_table.mpt_bitmap);
if (index == -1)
return -ENOMEM;
mr->iova = iova;
mr->size = size;
mr->pd = pd;
mr->access = access;
mr->enabled = 0;
mr->key = hw_index_to_key(index);
err = mlx4_mtt_init(dev, npages, page_shift, &mr->mtt);
if (err)
mlx4_bitmap_free(&priv->mr_table.mpt_bitmap, index);
return err;
}
EXPORT_SYMBOL_GPL(mlx4_mr_alloc);
void mlx4_mr_free(struct mlx4_dev *dev, struct mlx4_mr *mr)
{
struct mlx4_priv *priv = mlx4_priv(dev);
int err;
if (mr->enabled) {
err = mlx4_HW2SW_MPT(dev, NULL,
key_to_hw_index(mr->key) &
(dev->caps.num_mpts - 1));
if (err)
mlx4_warn(dev, "HW2SW_MPT failed (%d)\n", err);
}
mlx4_mtt_cleanup(dev, &mr->mtt);
mlx4_bitmap_free(&priv->mr_table.mpt_bitmap, key_to_hw_index(mr->key));
}
EXPORT_SYMBOL_GPL(mlx4_mr_free);
int mlx4_mr_enable(struct mlx4_dev *dev, struct mlx4_mr *mr)
{
struct mlx4_mr_table *mr_table = &mlx4_priv(dev)->mr_table;
struct mlx4_cmd_mailbox *mailbox;
struct mlx4_mpt_entry *mpt_entry;
int err;
err = mlx4_table_get(dev, &mr_table->dmpt_table, key_to_hw_index(mr->key));
if (err)
return err;
mailbox = mlx4_alloc_cmd_mailbox(dev);
if (IS_ERR(mailbox)) {
err = PTR_ERR(mailbox);
goto err_table;
}
mpt_entry = mailbox->buf;
memset(mpt_entry, 0, sizeof *mpt_entry);
mpt_entry->flags = cpu_to_be32(MLX4_MPT_FLAG_MIO |
MLX4_MPT_FLAG_REGION |
mr->access);
mpt_entry->key = cpu_to_be32(key_to_hw_index(mr->key));
mpt_entry->pd_flags = cpu_to_be32(mr->pd | MLX4_MPT_PD_FLAG_EN_INV);
mpt_entry->start = cpu_to_be64(mr->iova);
mpt_entry->length = cpu_to_be64(mr->size);
mpt_entry->entity_size = cpu_to_be32(mr->mtt.page_shift);
if (mr->mtt.order < 0) {
mpt_entry->flags |= cpu_to_be32(MLX4_MPT_FLAG_PHYSICAL);
mpt_entry->mtt_seg = 0;
} else {
mpt_entry->mtt_seg = cpu_to_be64(mlx4_mtt_addr(dev, &mr->mtt));
}
if (mr->mtt.order >= 0 && mr->mtt.page_shift == 0) {
/* fast register MR in free state */
mpt_entry->flags |= cpu_to_be32(MLX4_MPT_FLAG_FREE);
mpt_entry->pd_flags |= cpu_to_be32(MLX4_MPT_PD_FLAG_FAST_REG |
MLX4_MPT_PD_FLAG_RAE);
mpt_entry->mtt_sz = cpu_to_be32((1 << mr->mtt.order) *
dev->caps.mtts_per_seg);
} else {
mpt_entry->flags |= cpu_to_be32(MLX4_MPT_FLAG_SW_OWNS);
}
err = mlx4_SW2HW_MPT(dev, mailbox,
key_to_hw_index(mr->key) & (dev->caps.num_mpts - 1));
if (err) {
mlx4_warn(dev, "SW2HW_MPT failed (%d)\n", err);
goto err_cmd;
}
mr->enabled = 1;
mlx4_free_cmd_mailbox(dev, mailbox);
return 0;
err_cmd:
mlx4_free_cmd_mailbox(dev, mailbox);
err_table:
mlx4_table_put(dev, &mr_table->dmpt_table, key_to_hw_index(mr->key));
return err;
}
EXPORT_SYMBOL_GPL(mlx4_mr_enable);
static int mlx4_write_mtt_chunk(struct mlx4_dev *dev, struct mlx4_mtt *mtt,
int start_index, int npages, u64 *page_list)
{
struct mlx4_priv *priv = mlx4_priv(dev);
__be64 *mtts;
dma_addr_t dma_handle;
int i;
int s = start_index * sizeof (u64);
/* All MTTs must fit in the same page */
if (start_index / (PAGE_SIZE / sizeof (u64)) !=
(start_index + npages - 1) / (PAGE_SIZE / sizeof (u64)))
return -EINVAL;
if (start_index & (dev->caps.mtts_per_seg - 1))
return -EINVAL;
mtts = mlx4_table_find(&priv->mr_table.mtt_table, mtt->first_seg +
s / dev->caps.mtt_entry_sz, &dma_handle);
if (!mtts)
return -ENOMEM;
dma_sync_single_for_cpu(&dev->pdev->dev, dma_handle,
npages * sizeof (u64), DMA_TO_DEVICE);
for (i = 0; i < npages; ++i)
mtts[i] = cpu_to_be64(page_list[i] | MLX4_MTT_FLAG_PRESENT);
dma_sync_single_for_device(&dev->pdev->dev, dma_handle,
npages * sizeof (u64), DMA_TO_DEVICE);
return 0;
}
int mlx4_write_mtt(struct mlx4_dev *dev, struct mlx4_mtt *mtt,
int start_index, int npages, u64 *page_list)
{
int chunk;
int err;
if (mtt->order < 0)
return -EINVAL;
while (npages > 0) {
chunk = min_t(int, PAGE_SIZE / sizeof(u64), npages);
err = mlx4_write_mtt_chunk(dev, mtt, start_index, chunk, page_list);
if (err)
return err;
npages -= chunk;
start_index += chunk;
page_list += chunk;
}
return 0;
}
EXPORT_SYMBOL_GPL(mlx4_write_mtt);
int mlx4_buf_write_mtt(struct mlx4_dev *dev, struct mlx4_mtt *mtt,
struct mlx4_buf *buf)
{
u64 *page_list;
int err;
int i;
page_list = kmalloc(buf->npages * sizeof *page_list, GFP_KERNEL);
if (!page_list)
return -ENOMEM;
for (i = 0; i < buf->npages; ++i)
if (buf->nbufs == 1)
page_list[i] = buf->direct.map + (i << buf->page_shift);
else
page_list[i] = buf->page_list[i].map;
err = mlx4_write_mtt(dev, mtt, 0, buf->npages, page_list);
kfree(page_list);
return err;
}
EXPORT_SYMBOL_GPL(mlx4_buf_write_mtt);
int mlx4_init_mr_table(struct mlx4_dev *dev)
{
struct mlx4_mr_table *mr_table = &mlx4_priv(dev)->mr_table;
int err;
err = mlx4_bitmap_init(&mr_table->mpt_bitmap, dev->caps.num_mpts,
~0, dev->caps.reserved_mrws, 0);
if (err)
return err;
err = mlx4_buddy_init(&mr_table->mtt_buddy,
ilog2(dev->caps.num_mtt_segs));
if (err)
goto err_buddy;
if (dev->caps.reserved_mtts) {
if (mlx4_alloc_mtt_range(dev, fls(dev->caps.reserved_mtts - 1)) == -1) {
mlx4_warn(dev, "MTT table of order %d is too small.\n",
mr_table->mtt_buddy.max_order);
err = -ENOMEM;
goto err_reserve_mtts;
}
}
return 0;
err_reserve_mtts:
mlx4_buddy_cleanup(&mr_table->mtt_buddy);
err_buddy:
mlx4_bitmap_cleanup(&mr_table->mpt_bitmap);
return err;
}
void mlx4_cleanup_mr_table(struct mlx4_dev *dev)
{
struct mlx4_mr_table *mr_table = &mlx4_priv(dev)->mr_table;
mlx4_buddy_cleanup(&mr_table->mtt_buddy);
mlx4_bitmap_cleanup(&mr_table->mpt_bitmap);
}
static inline int mlx4_check_fmr(struct mlx4_fmr *fmr, u64 *page_list,
int npages, u64 iova)
{
int i, page_mask;
if (npages > fmr->max_pages)
return -EINVAL;
page_mask = (1 << fmr->page_shift) - 1;
/* We are getting page lists, so va must be page aligned. */
if (iova & page_mask)
return -EINVAL;
/* Trust the user not to pass misaligned data in page_list */
if (0)
for (i = 0; i < npages; ++i) {
if (page_list[i] & ~page_mask)
return -EINVAL;
}
if (fmr->maps >= fmr->max_maps)
return -EINVAL;
return 0;
}
int mlx4_map_phys_fmr(struct mlx4_dev *dev, struct mlx4_fmr *fmr, u64 *page_list,
int npages, u64 iova, u32 *lkey, u32 *rkey)
{
u32 key;
int i, err;
err = mlx4_check_fmr(fmr, page_list, npages, iova);
if (err)
return err;
++fmr->maps;
key = key_to_hw_index(fmr->mr.key);
key += dev->caps.num_mpts;
*lkey = *rkey = fmr->mr.key = hw_index_to_key(key);
*(u8 *) fmr->mpt = MLX4_MPT_STATUS_SW;
/* Make sure MPT status is visible before writing MTT entries */
wmb();
dma_sync_single_for_cpu(&dev->pdev->dev, fmr->dma_handle,
npages * sizeof(u64), DMA_TO_DEVICE);
for (i = 0; i < npages; ++i)
fmr->mtts[i] = cpu_to_be64(page_list[i] | MLX4_MTT_FLAG_PRESENT);
dma_sync_single_for_device(&dev->pdev->dev, fmr->dma_handle,
npages * sizeof(u64), DMA_TO_DEVICE);
fmr->mpt->key = cpu_to_be32(key);
fmr->mpt->lkey = cpu_to_be32(key);
fmr->mpt->length = cpu_to_be64(npages * (1ull << fmr->page_shift));
fmr->mpt->start = cpu_to_be64(iova);
/* Make MTT entries are visible before setting MPT status */
wmb();
*(u8 *) fmr->mpt = MLX4_MPT_STATUS_HW;
/* Make sure MPT status is visible before consumer can use FMR */
wmb();
return 0;
}
EXPORT_SYMBOL_GPL(mlx4_map_phys_fmr);
int mlx4_fmr_alloc(struct mlx4_dev *dev, u32 pd, u32 access, int max_pages,
int max_maps, u8 page_shift, struct mlx4_fmr *fmr)
{
struct mlx4_priv *priv = mlx4_priv(dev);
u64 mtt_seg;
int err = -ENOMEM;
if (page_shift < (ffs(dev->caps.page_size_cap) - 1) || page_shift >= 32)
return -EINVAL;
/* All MTTs must fit in the same page */
if (max_pages * sizeof *fmr->mtts > PAGE_SIZE)
return -EINVAL;
fmr->page_shift = page_shift;
fmr->max_pages = max_pages;
fmr->max_maps = max_maps;
fmr->maps = 0;
err = mlx4_mr_alloc(dev, pd, 0, 0, access, max_pages,
page_shift, &fmr->mr);
if (err)
return err;
mtt_seg = fmr->mr.mtt.first_seg * dev->caps.mtt_entry_sz;
fmr->mtts = mlx4_table_find(&priv->mr_table.mtt_table,
fmr->mr.mtt.first_seg,
&fmr->dma_handle);
if (!fmr->mtts) {
err = -ENOMEM;
goto err_free;
}
return 0;
err_free:
mlx4_mr_free(dev, &fmr->mr);
return err;
}
EXPORT_SYMBOL_GPL(mlx4_fmr_alloc);
int mlx4_fmr_enable(struct mlx4_dev *dev, struct mlx4_fmr *fmr)
{
struct mlx4_priv *priv = mlx4_priv(dev);
int err;
err = mlx4_mr_enable(dev, &fmr->mr);
if (err)
return err;
fmr->mpt = mlx4_table_find(&priv->mr_table.dmpt_table,
key_to_hw_index(fmr->mr.key), NULL);
if (!fmr->mpt)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL_GPL(mlx4_fmr_enable);
void mlx4_fmr_unmap(struct mlx4_dev *dev, struct mlx4_fmr *fmr,
u32 *lkey, u32 *rkey)
{
if (!fmr->maps)
return;
fmr->maps = 0;
*(u8 *) fmr->mpt = MLX4_MPT_STATUS_SW;
}
EXPORT_SYMBOL_GPL(mlx4_fmr_unmap);
int mlx4_fmr_free(struct mlx4_dev *dev, struct mlx4_fmr *fmr)
{
if (fmr->maps)
return -EBUSY;
fmr->mr.enabled = 0;
mlx4_mr_free(dev, &fmr->mr);
return 0;
}
EXPORT_SYMBOL_GPL(mlx4_fmr_free);
int mlx4_SYNC_TPT(struct mlx4_dev *dev)
{
return mlx4_cmd(dev, 0, 0, 0, MLX4_CMD_SYNC_TPT, 1000);
}
EXPORT_SYMBOL_GPL(mlx4_SYNC_TPT);