2019-05-21 01:08:01 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
vfs: Add configuration parser helpers
Because the new API passes in key,value parameters, match_token() cannot be
used with it. Instead, provide three new helpers to aid with parsing:
(1) fs_parse(). This takes a parameter and a simple static description of
all the parameters and maps the key name to an ID. It returns 1 on a
match, 0 on no match if unknowns should be ignored and some other
negative error code on a parse error.
The parameter description includes a list of key names to IDs, desired
parameter types and a list of enumeration name -> ID mappings.
[!] Note that for the moment I've required that the key->ID mapping
array is expected to be sorted and unterminated. The size of the
array is noted in the fsconfig_parser struct. This allows me to use
bsearch(), but I'm not sure any performance gain is worth the hassle
of requiring people to keep the array sorted.
The parameter type array is sized according to the number of parameter
IDs and is indexed directly. The optional enum mapping array is an
unterminated, unsorted list and the size goes into the fsconfig_parser
struct.
The function can do some additional things:
(a) If it's not ambiguous and no value is given, the prefix "no" on
a key name is permitted to indicate that the parameter should
be considered negatory.
(b) If the desired type is a single simple integer, it will perform
an appropriate conversion and store the result in a union in
the parse result.
(c) If the desired type is an enumeration, {key ID, name} will be
looked up in the enumeration list and the matching value will
be stored in the parse result union.
(d) Optionally generate an error if the key is unrecognised.
This is called something like:
enum rdt_param {
Opt_cdp,
Opt_cdpl2,
Opt_mba_mpbs,
nr__rdt_params
};
const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = {
[Opt_cdp] = { fs_param_is_bool },
[Opt_cdpl2] = { fs_param_is_bool },
[Opt_mba_mpbs] = { fs_param_is_bool },
};
const const char *const rdt_param_keys[nr__rdt_params] = {
[Opt_cdp] = "cdp",
[Opt_cdpl2] = "cdpl2",
[Opt_mba_mpbs] = "mba_mbps",
};
const struct fs_parameter_description rdt_parser = {
.name = "rdt",
.nr_params = nr__rdt_params,
.keys = rdt_param_keys,
.specs = rdt_param_specs,
.no_source = true,
};
int rdt_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct rdt_fs_context *ctx = rdt_fc2context(fc);
int ret;
ret = fs_parse(fc, &rdt_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_cdp:
ctx->enable_cdpl3 = true;
return 0;
case Opt_cdpl2:
ctx->enable_cdpl2 = true;
return 0;
case Opt_mba_mpbs:
ctx->enable_mba_mbps = true;
return 0;
}
return -EINVAL;
}
(2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or
string value and performs an appropriate path lookup to convert it
into a path object, which it will then return.
If the desired type was a blockdev, the type of the looked up inode
will be checked to make sure it is one.
This can be used like:
enum foo_param {
Opt_source,
nr__foo_params
};
const struct fs_parameter_spec foo_param_specs[nr__foo_params] = {
[Opt_source] = { fs_param_is_blockdev },
};
const char *char foo_param_keys[nr__foo_params] = {
[Opt_source] = "source",
};
const struct constant_table foo_param_alt_keys[] = {
{ "device", Opt_source },
};
const struct fs_parameter_description foo_parser = {
.name = "foo",
.nr_params = nr__foo_params,
.nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys),
.keys = foo_param_keys,
.alt_keys = foo_param_alt_keys,
.specs = foo_param_specs,
};
int foo_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct foo_fs_context *ctx = foo_fc2context(fc);
int ret;
ret = fs_parse(fc, &foo_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_source:
return fs_lookup_param(fc, &foo_parser, param,
&parse, &ctx->source);
default:
return -EINVAL;
}
}
(3) lookup_constant(). This takes a table of named constants and looks up
the given name within it. The table is expected to be sorted such
that bsearch() be used upon it.
Possibly I should require the table be terminated and just use a
for-loop to scan it instead of using bsearch() to reduce hassle.
Tables look something like:
static const struct constant_table bool_names[] = {
{ "0", false },
{ "1", true },
{ "false", false },
{ "no", false },
{ "true", true },
{ "yes", true },
};
and a lookup is done with something like:
b = lookup_constant(bool_names, param->string, -1);
Additionally, optional validation routines for the parameter description
are provided that can be enabled at compile time. A later patch will
invoke these when a filesystem is registered.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 07:07:24 +08:00
|
|
|
/* Filesystem parameter parser.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2018 Red Hat, Inc. All Rights Reserved.
|
|
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/export.h>
|
|
|
|
#include <linux/fs_context.h>
|
|
|
|
#include <linux/fs_parser.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/security.h>
|
|
|
|
#include <linux/namei.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
|
|
static const struct constant_table bool_names[] = {
|
|
|
|
{ "0", false },
|
|
|
|
{ "1", true },
|
|
|
|
{ "false", false },
|
|
|
|
{ "no", false },
|
|
|
|
{ "true", true },
|
|
|
|
{ "yes", true },
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* lookup_constant - Look up a constant by name in an ordered table
|
|
|
|
* @tbl: The table of constants to search.
|
|
|
|
* @tbl_size: The size of the table.
|
|
|
|
* @name: The name to look up.
|
|
|
|
* @not_found: The value to return if the name is not found.
|
|
|
|
*/
|
|
|
|
int __lookup_constant(const struct constant_table *tbl, size_t tbl_size,
|
|
|
|
const char *name, int not_found)
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i = 0; i < tbl_size; i++)
|
|
|
|
if (strcmp(name, tbl[i].name) == 0)
|
|
|
|
return tbl[i].value;
|
|
|
|
|
|
|
|
return not_found;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__lookup_constant);
|
|
|
|
|
|
|
|
static const struct fs_parameter_spec *fs_lookup_key(
|
|
|
|
const struct fs_parameter_description *desc,
|
|
|
|
const char *name)
|
|
|
|
{
|
|
|
|
const struct fs_parameter_spec *p;
|
|
|
|
|
|
|
|
if (!desc->specs)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
for (p = desc->specs; p->name; p++)
|
|
|
|
if (strcmp(p->name, name) == 0)
|
|
|
|
return p;
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* fs_parse - Parse a filesystem configuration parameter
|
|
|
|
* @fc: The filesystem context to log errors through.
|
|
|
|
* @desc: The parameter description to use.
|
|
|
|
* @param: The parameter.
|
|
|
|
* @result: Where to place the result of the parse
|
|
|
|
*
|
|
|
|
* Parse a filesystem configuration parameter and attempt a conversion for a
|
|
|
|
* simple parameter for which this is requested. If successful, the determined
|
|
|
|
* parameter ID is placed into @result->key, the desired type is indicated in
|
|
|
|
* @result->t and any converted value is placed into an appropriate member of
|
|
|
|
* the union in @result.
|
|
|
|
*
|
|
|
|
* The function returns the parameter number if the parameter was matched,
|
|
|
|
* -ENOPARAM if it wasn't matched and @desc->ignore_unknown indicated that
|
|
|
|
* unknown parameters are okay and -EINVAL if there was a conversion issue or
|
|
|
|
* the parameter wasn't recognised and unknowns aren't okay.
|
|
|
|
*/
|
|
|
|
int fs_parse(struct fs_context *fc,
|
|
|
|
const struct fs_parameter_description *desc,
|
|
|
|
struct fs_parameter *param,
|
|
|
|
struct fs_parse_result *result)
|
|
|
|
{
|
|
|
|
const struct fs_parameter_spec *p;
|
|
|
|
const struct fs_parameter_enum *e;
|
|
|
|
int ret = -ENOPARAM, b;
|
|
|
|
|
|
|
|
result->negated = false;
|
|
|
|
result->uint_64 = 0;
|
|
|
|
|
|
|
|
p = fs_lookup_key(desc, param->key);
|
|
|
|
if (!p) {
|
|
|
|
/* If we didn't find something that looks like "noxxx", see if
|
|
|
|
* "xxx" takes the "no"-form negative - but only if there
|
|
|
|
* wasn't an value.
|
|
|
|
*/
|
2019-12-18 03:15:04 +08:00
|
|
|
if (param->type != fs_value_is_flag)
|
vfs: Add configuration parser helpers
Because the new API passes in key,value parameters, match_token() cannot be
used with it. Instead, provide three new helpers to aid with parsing:
(1) fs_parse(). This takes a parameter and a simple static description of
all the parameters and maps the key name to an ID. It returns 1 on a
match, 0 on no match if unknowns should be ignored and some other
negative error code on a parse error.
The parameter description includes a list of key names to IDs, desired
parameter types and a list of enumeration name -> ID mappings.
[!] Note that for the moment I've required that the key->ID mapping
array is expected to be sorted and unterminated. The size of the
array is noted in the fsconfig_parser struct. This allows me to use
bsearch(), but I'm not sure any performance gain is worth the hassle
of requiring people to keep the array sorted.
The parameter type array is sized according to the number of parameter
IDs and is indexed directly. The optional enum mapping array is an
unterminated, unsorted list and the size goes into the fsconfig_parser
struct.
The function can do some additional things:
(a) If it's not ambiguous and no value is given, the prefix "no" on
a key name is permitted to indicate that the parameter should
be considered negatory.
(b) If the desired type is a single simple integer, it will perform
an appropriate conversion and store the result in a union in
the parse result.
(c) If the desired type is an enumeration, {key ID, name} will be
looked up in the enumeration list and the matching value will
be stored in the parse result union.
(d) Optionally generate an error if the key is unrecognised.
This is called something like:
enum rdt_param {
Opt_cdp,
Opt_cdpl2,
Opt_mba_mpbs,
nr__rdt_params
};
const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = {
[Opt_cdp] = { fs_param_is_bool },
[Opt_cdpl2] = { fs_param_is_bool },
[Opt_mba_mpbs] = { fs_param_is_bool },
};
const const char *const rdt_param_keys[nr__rdt_params] = {
[Opt_cdp] = "cdp",
[Opt_cdpl2] = "cdpl2",
[Opt_mba_mpbs] = "mba_mbps",
};
const struct fs_parameter_description rdt_parser = {
.name = "rdt",
.nr_params = nr__rdt_params,
.keys = rdt_param_keys,
.specs = rdt_param_specs,
.no_source = true,
};
int rdt_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct rdt_fs_context *ctx = rdt_fc2context(fc);
int ret;
ret = fs_parse(fc, &rdt_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_cdp:
ctx->enable_cdpl3 = true;
return 0;
case Opt_cdpl2:
ctx->enable_cdpl2 = true;
return 0;
case Opt_mba_mpbs:
ctx->enable_mba_mbps = true;
return 0;
}
return -EINVAL;
}
(2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or
string value and performs an appropriate path lookup to convert it
into a path object, which it will then return.
If the desired type was a blockdev, the type of the looked up inode
will be checked to make sure it is one.
This can be used like:
enum foo_param {
Opt_source,
nr__foo_params
};
const struct fs_parameter_spec foo_param_specs[nr__foo_params] = {
[Opt_source] = { fs_param_is_blockdev },
};
const char *char foo_param_keys[nr__foo_params] = {
[Opt_source] = "source",
};
const struct constant_table foo_param_alt_keys[] = {
{ "device", Opt_source },
};
const struct fs_parameter_description foo_parser = {
.name = "foo",
.nr_params = nr__foo_params,
.nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys),
.keys = foo_param_keys,
.alt_keys = foo_param_alt_keys,
.specs = foo_param_specs,
};
int foo_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct foo_fs_context *ctx = foo_fc2context(fc);
int ret;
ret = fs_parse(fc, &foo_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_source:
return fs_lookup_param(fc, &foo_parser, param,
&parse, &ctx->source);
default:
return -EINVAL;
}
}
(3) lookup_constant(). This takes a table of named constants and looks up
the given name within it. The table is expected to be sorted such
that bsearch() be used upon it.
Possibly I should require the table be terminated and just use a
for-loop to scan it instead of using bsearch() to reduce hassle.
Tables look something like:
static const struct constant_table bool_names[] = {
{ "0", false },
{ "1", true },
{ "false", false },
{ "no", false },
{ "true", true },
{ "yes", true },
};
and a lookup is done with something like:
b = lookup_constant(bool_names, param->string, -1);
Additionally, optional validation routines for the parameter description
are provided that can be enabled at compile time. A later patch will
invoke these when a filesystem is registered.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 07:07:24 +08:00
|
|
|
goto unknown_parameter;
|
|
|
|
if (param->key[0] != 'n' || param->key[1] != 'o' || !param->key[2])
|
|
|
|
goto unknown_parameter;
|
|
|
|
|
|
|
|
p = fs_lookup_key(desc, param->key + 2);
|
|
|
|
if (!p)
|
|
|
|
goto unknown_parameter;
|
|
|
|
if (!(p->flags & fs_param_neg_with_no))
|
|
|
|
goto unknown_parameter;
|
|
|
|
result->boolean = false;
|
|
|
|
result->negated = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p->flags & fs_param_deprecated)
|
|
|
|
warnf(fc, "%s: Deprecated parameter '%s'",
|
|
|
|
desc->name, param->key);
|
|
|
|
|
|
|
|
if (result->negated)
|
|
|
|
goto okay;
|
|
|
|
|
|
|
|
/* Certain parameter types only take a string and convert it. */
|
|
|
|
switch (p->type) {
|
|
|
|
case __fs_param_wasnt_defined:
|
|
|
|
return -EINVAL;
|
|
|
|
case fs_param_is_u32:
|
|
|
|
case fs_param_is_u32_octal:
|
|
|
|
case fs_param_is_u32_hex:
|
|
|
|
case fs_param_is_s32:
|
|
|
|
case fs_param_is_u64:
|
|
|
|
case fs_param_is_enum:
|
|
|
|
case fs_param_is_string:
|
2019-12-18 03:15:04 +08:00
|
|
|
if (param->type == fs_value_is_string) {
|
|
|
|
if (p->flags & fs_param_v_optional)
|
|
|
|
break;
|
|
|
|
if (!*param->string)
|
|
|
|
goto bad_value;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (param->type == fs_value_is_flag) {
|
vfs: Add configuration parser helpers
Because the new API passes in key,value parameters, match_token() cannot be
used with it. Instead, provide three new helpers to aid with parsing:
(1) fs_parse(). This takes a parameter and a simple static description of
all the parameters and maps the key name to an ID. It returns 1 on a
match, 0 on no match if unknowns should be ignored and some other
negative error code on a parse error.
The parameter description includes a list of key names to IDs, desired
parameter types and a list of enumeration name -> ID mappings.
[!] Note that for the moment I've required that the key->ID mapping
array is expected to be sorted and unterminated. The size of the
array is noted in the fsconfig_parser struct. This allows me to use
bsearch(), but I'm not sure any performance gain is worth the hassle
of requiring people to keep the array sorted.
The parameter type array is sized according to the number of parameter
IDs and is indexed directly. The optional enum mapping array is an
unterminated, unsorted list and the size goes into the fsconfig_parser
struct.
The function can do some additional things:
(a) If it's not ambiguous and no value is given, the prefix "no" on
a key name is permitted to indicate that the parameter should
be considered negatory.
(b) If the desired type is a single simple integer, it will perform
an appropriate conversion and store the result in a union in
the parse result.
(c) If the desired type is an enumeration, {key ID, name} will be
looked up in the enumeration list and the matching value will
be stored in the parse result union.
(d) Optionally generate an error if the key is unrecognised.
This is called something like:
enum rdt_param {
Opt_cdp,
Opt_cdpl2,
Opt_mba_mpbs,
nr__rdt_params
};
const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = {
[Opt_cdp] = { fs_param_is_bool },
[Opt_cdpl2] = { fs_param_is_bool },
[Opt_mba_mpbs] = { fs_param_is_bool },
};
const const char *const rdt_param_keys[nr__rdt_params] = {
[Opt_cdp] = "cdp",
[Opt_cdpl2] = "cdpl2",
[Opt_mba_mpbs] = "mba_mbps",
};
const struct fs_parameter_description rdt_parser = {
.name = "rdt",
.nr_params = nr__rdt_params,
.keys = rdt_param_keys,
.specs = rdt_param_specs,
.no_source = true,
};
int rdt_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct rdt_fs_context *ctx = rdt_fc2context(fc);
int ret;
ret = fs_parse(fc, &rdt_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_cdp:
ctx->enable_cdpl3 = true;
return 0;
case Opt_cdpl2:
ctx->enable_cdpl2 = true;
return 0;
case Opt_mba_mpbs:
ctx->enable_mba_mbps = true;
return 0;
}
return -EINVAL;
}
(2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or
string value and performs an appropriate path lookup to convert it
into a path object, which it will then return.
If the desired type was a blockdev, the type of the looked up inode
will be checked to make sure it is one.
This can be used like:
enum foo_param {
Opt_source,
nr__foo_params
};
const struct fs_parameter_spec foo_param_specs[nr__foo_params] = {
[Opt_source] = { fs_param_is_blockdev },
};
const char *char foo_param_keys[nr__foo_params] = {
[Opt_source] = "source",
};
const struct constant_table foo_param_alt_keys[] = {
{ "device", Opt_source },
};
const struct fs_parameter_description foo_parser = {
.name = "foo",
.nr_params = nr__foo_params,
.nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys),
.keys = foo_param_keys,
.alt_keys = foo_param_alt_keys,
.specs = foo_param_specs,
};
int foo_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct foo_fs_context *ctx = foo_fc2context(fc);
int ret;
ret = fs_parse(fc, &foo_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_source:
return fs_lookup_param(fc, &foo_parser, param,
&parse, &ctx->source);
default:
return -EINVAL;
}
}
(3) lookup_constant(). This takes a table of named constants and looks up
the given name within it. The table is expected to be sorted such
that bsearch() be used upon it.
Possibly I should require the table be terminated and just use a
for-loop to scan it instead of using bsearch() to reduce hassle.
Tables look something like:
static const struct constant_table bool_names[] = {
{ "0", false },
{ "1", true },
{ "false", false },
{ "no", false },
{ "true", true },
{ "yes", true },
};
and a lookup is done with something like:
b = lookup_constant(bool_names, param->string, -1);
Additionally, optional validation routines for the parameter description
are provided that can be enabled at compile time. A later patch will
invoke these when a filesystem is registered.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 07:07:24 +08:00
|
|
|
if (p->flags & fs_param_v_optional)
|
|
|
|
goto okay;
|
|
|
|
}
|
2019-12-18 03:15:04 +08:00
|
|
|
goto bad_value;
|
vfs: Add configuration parser helpers
Because the new API passes in key,value parameters, match_token() cannot be
used with it. Instead, provide three new helpers to aid with parsing:
(1) fs_parse(). This takes a parameter and a simple static description of
all the parameters and maps the key name to an ID. It returns 1 on a
match, 0 on no match if unknowns should be ignored and some other
negative error code on a parse error.
The parameter description includes a list of key names to IDs, desired
parameter types and a list of enumeration name -> ID mappings.
[!] Note that for the moment I've required that the key->ID mapping
array is expected to be sorted and unterminated. The size of the
array is noted in the fsconfig_parser struct. This allows me to use
bsearch(), but I'm not sure any performance gain is worth the hassle
of requiring people to keep the array sorted.
The parameter type array is sized according to the number of parameter
IDs and is indexed directly. The optional enum mapping array is an
unterminated, unsorted list and the size goes into the fsconfig_parser
struct.
The function can do some additional things:
(a) If it's not ambiguous and no value is given, the prefix "no" on
a key name is permitted to indicate that the parameter should
be considered negatory.
(b) If the desired type is a single simple integer, it will perform
an appropriate conversion and store the result in a union in
the parse result.
(c) If the desired type is an enumeration, {key ID, name} will be
looked up in the enumeration list and the matching value will
be stored in the parse result union.
(d) Optionally generate an error if the key is unrecognised.
This is called something like:
enum rdt_param {
Opt_cdp,
Opt_cdpl2,
Opt_mba_mpbs,
nr__rdt_params
};
const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = {
[Opt_cdp] = { fs_param_is_bool },
[Opt_cdpl2] = { fs_param_is_bool },
[Opt_mba_mpbs] = { fs_param_is_bool },
};
const const char *const rdt_param_keys[nr__rdt_params] = {
[Opt_cdp] = "cdp",
[Opt_cdpl2] = "cdpl2",
[Opt_mba_mpbs] = "mba_mbps",
};
const struct fs_parameter_description rdt_parser = {
.name = "rdt",
.nr_params = nr__rdt_params,
.keys = rdt_param_keys,
.specs = rdt_param_specs,
.no_source = true,
};
int rdt_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct rdt_fs_context *ctx = rdt_fc2context(fc);
int ret;
ret = fs_parse(fc, &rdt_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_cdp:
ctx->enable_cdpl3 = true;
return 0;
case Opt_cdpl2:
ctx->enable_cdpl2 = true;
return 0;
case Opt_mba_mpbs:
ctx->enable_mba_mbps = true;
return 0;
}
return -EINVAL;
}
(2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or
string value and performs an appropriate path lookup to convert it
into a path object, which it will then return.
If the desired type was a blockdev, the type of the looked up inode
will be checked to make sure it is one.
This can be used like:
enum foo_param {
Opt_source,
nr__foo_params
};
const struct fs_parameter_spec foo_param_specs[nr__foo_params] = {
[Opt_source] = { fs_param_is_blockdev },
};
const char *char foo_param_keys[nr__foo_params] = {
[Opt_source] = "source",
};
const struct constant_table foo_param_alt_keys[] = {
{ "device", Opt_source },
};
const struct fs_parameter_description foo_parser = {
.name = "foo",
.nr_params = nr__foo_params,
.nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys),
.keys = foo_param_keys,
.alt_keys = foo_param_alt_keys,
.specs = foo_param_specs,
};
int foo_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct foo_fs_context *ctx = foo_fc2context(fc);
int ret;
ret = fs_parse(fc, &foo_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_source:
return fs_lookup_param(fc, &foo_parser, param,
&parse, &ctx->source);
default:
return -EINVAL;
}
}
(3) lookup_constant(). This takes a table of named constants and looks up
the given name within it. The table is expected to be sorted such
that bsearch() be used upon it.
Possibly I should require the table be terminated and just use a
for-loop to scan it instead of using bsearch() to reduce hassle.
Tables look something like:
static const struct constant_table bool_names[] = {
{ "0", false },
{ "1", true },
{ "false", false },
{ "no", false },
{ "true", true },
{ "yes", true },
};
and a lookup is done with something like:
b = lookup_constant(bool_names, param->string, -1);
Additionally, optional validation routines for the parameter description
are provided that can be enabled at compile time. A later patch will
invoke these when a filesystem is registered.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 07:07:24 +08:00
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Try to turn the type we were given into the type desired by the
|
|
|
|
* parameter and give an error if we can't.
|
|
|
|
*/
|
|
|
|
switch (p->type) {
|
|
|
|
case fs_param_is_flag:
|
2019-12-18 03:15:04 +08:00
|
|
|
if (param->type != fs_value_is_flag)
|
vfs: Add configuration parser helpers
Because the new API passes in key,value parameters, match_token() cannot be
used with it. Instead, provide three new helpers to aid with parsing:
(1) fs_parse(). This takes a parameter and a simple static description of
all the parameters and maps the key name to an ID. It returns 1 on a
match, 0 on no match if unknowns should be ignored and some other
negative error code on a parse error.
The parameter description includes a list of key names to IDs, desired
parameter types and a list of enumeration name -> ID mappings.
[!] Note that for the moment I've required that the key->ID mapping
array is expected to be sorted and unterminated. The size of the
array is noted in the fsconfig_parser struct. This allows me to use
bsearch(), but I'm not sure any performance gain is worth the hassle
of requiring people to keep the array sorted.
The parameter type array is sized according to the number of parameter
IDs and is indexed directly. The optional enum mapping array is an
unterminated, unsorted list and the size goes into the fsconfig_parser
struct.
The function can do some additional things:
(a) If it's not ambiguous and no value is given, the prefix "no" on
a key name is permitted to indicate that the parameter should
be considered negatory.
(b) If the desired type is a single simple integer, it will perform
an appropriate conversion and store the result in a union in
the parse result.
(c) If the desired type is an enumeration, {key ID, name} will be
looked up in the enumeration list and the matching value will
be stored in the parse result union.
(d) Optionally generate an error if the key is unrecognised.
This is called something like:
enum rdt_param {
Opt_cdp,
Opt_cdpl2,
Opt_mba_mpbs,
nr__rdt_params
};
const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = {
[Opt_cdp] = { fs_param_is_bool },
[Opt_cdpl2] = { fs_param_is_bool },
[Opt_mba_mpbs] = { fs_param_is_bool },
};
const const char *const rdt_param_keys[nr__rdt_params] = {
[Opt_cdp] = "cdp",
[Opt_cdpl2] = "cdpl2",
[Opt_mba_mpbs] = "mba_mbps",
};
const struct fs_parameter_description rdt_parser = {
.name = "rdt",
.nr_params = nr__rdt_params,
.keys = rdt_param_keys,
.specs = rdt_param_specs,
.no_source = true,
};
int rdt_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct rdt_fs_context *ctx = rdt_fc2context(fc);
int ret;
ret = fs_parse(fc, &rdt_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_cdp:
ctx->enable_cdpl3 = true;
return 0;
case Opt_cdpl2:
ctx->enable_cdpl2 = true;
return 0;
case Opt_mba_mpbs:
ctx->enable_mba_mbps = true;
return 0;
}
return -EINVAL;
}
(2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or
string value and performs an appropriate path lookup to convert it
into a path object, which it will then return.
If the desired type was a blockdev, the type of the looked up inode
will be checked to make sure it is one.
This can be used like:
enum foo_param {
Opt_source,
nr__foo_params
};
const struct fs_parameter_spec foo_param_specs[nr__foo_params] = {
[Opt_source] = { fs_param_is_blockdev },
};
const char *char foo_param_keys[nr__foo_params] = {
[Opt_source] = "source",
};
const struct constant_table foo_param_alt_keys[] = {
{ "device", Opt_source },
};
const struct fs_parameter_description foo_parser = {
.name = "foo",
.nr_params = nr__foo_params,
.nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys),
.keys = foo_param_keys,
.alt_keys = foo_param_alt_keys,
.specs = foo_param_specs,
};
int foo_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct foo_fs_context *ctx = foo_fc2context(fc);
int ret;
ret = fs_parse(fc, &foo_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_source:
return fs_lookup_param(fc, &foo_parser, param,
&parse, &ctx->source);
default:
return -EINVAL;
}
}
(3) lookup_constant(). This takes a table of named constants and looks up
the given name within it. The table is expected to be sorted such
that bsearch() be used upon it.
Possibly I should require the table be terminated and just use a
for-loop to scan it instead of using bsearch() to reduce hassle.
Tables look something like:
static const struct constant_table bool_names[] = {
{ "0", false },
{ "1", true },
{ "false", false },
{ "no", false },
{ "true", true },
{ "yes", true },
};
and a lookup is done with something like:
b = lookup_constant(bool_names, param->string, -1);
Additionally, optional validation routines for the parameter description
are provided that can be enabled at compile time. A later patch will
invoke these when a filesystem is registered.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 07:07:24 +08:00
|
|
|
return invalf(fc, "%s: Unexpected value for '%s'",
|
|
|
|
desc->name, param->key);
|
|
|
|
result->boolean = true;
|
|
|
|
goto okay;
|
|
|
|
|
|
|
|
case fs_param_is_bool:
|
|
|
|
switch (param->type) {
|
|
|
|
case fs_value_is_flag:
|
|
|
|
result->boolean = true;
|
|
|
|
goto okay;
|
|
|
|
case fs_value_is_string:
|
|
|
|
if (param->size == 0) {
|
|
|
|
result->boolean = true;
|
|
|
|
goto okay;
|
|
|
|
}
|
|
|
|
b = lookup_constant(bool_names, param->string, -1);
|
|
|
|
if (b == -1)
|
|
|
|
goto bad_value;
|
|
|
|
result->boolean = b;
|
|
|
|
goto okay;
|
|
|
|
default:
|
|
|
|
goto bad_value;
|
|
|
|
}
|
|
|
|
|
|
|
|
case fs_param_is_u32:
|
|
|
|
ret = kstrtouint(param->string, 0, &result->uint_32);
|
|
|
|
goto maybe_okay;
|
|
|
|
case fs_param_is_u32_octal:
|
|
|
|
ret = kstrtouint(param->string, 8, &result->uint_32);
|
|
|
|
goto maybe_okay;
|
|
|
|
case fs_param_is_u32_hex:
|
|
|
|
ret = kstrtouint(param->string, 16, &result->uint_32);
|
|
|
|
goto maybe_okay;
|
|
|
|
case fs_param_is_s32:
|
|
|
|
ret = kstrtoint(param->string, 0, &result->int_32);
|
|
|
|
goto maybe_okay;
|
|
|
|
case fs_param_is_u64:
|
|
|
|
ret = kstrtoull(param->string, 0, &result->uint_64);
|
|
|
|
goto maybe_okay;
|
|
|
|
|
|
|
|
case fs_param_is_enum:
|
|
|
|
for (e = desc->enums; e->name[0]; e++) {
|
|
|
|
if (e->opt == p->opt &&
|
|
|
|
strcmp(e->name, param->string) == 0) {
|
|
|
|
result->uint_32 = e->value;
|
|
|
|
goto okay;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
goto bad_value;
|
|
|
|
|
|
|
|
case fs_param_is_string:
|
|
|
|
goto okay;
|
|
|
|
case fs_param_is_blob:
|
|
|
|
if (param->type != fs_value_is_blob)
|
|
|
|
goto bad_value;
|
|
|
|
goto okay;
|
|
|
|
|
|
|
|
case fs_param_is_fd: {
|
2019-03-26 00:38:31 +08:00
|
|
|
switch (param->type) {
|
|
|
|
case fs_value_is_string:
|
|
|
|
ret = kstrtouint(param->string, 0, &result->uint_32);
|
|
|
|
break;
|
|
|
|
case fs_value_is_file:
|
|
|
|
result->uint_32 = param->dirfd;
|
|
|
|
ret = 0;
|
|
|
|
default:
|
vfs: Add configuration parser helpers
Because the new API passes in key,value parameters, match_token() cannot be
used with it. Instead, provide three new helpers to aid with parsing:
(1) fs_parse(). This takes a parameter and a simple static description of
all the parameters and maps the key name to an ID. It returns 1 on a
match, 0 on no match if unknowns should be ignored and some other
negative error code on a parse error.
The parameter description includes a list of key names to IDs, desired
parameter types and a list of enumeration name -> ID mappings.
[!] Note that for the moment I've required that the key->ID mapping
array is expected to be sorted and unterminated. The size of the
array is noted in the fsconfig_parser struct. This allows me to use
bsearch(), but I'm not sure any performance gain is worth the hassle
of requiring people to keep the array sorted.
The parameter type array is sized according to the number of parameter
IDs and is indexed directly. The optional enum mapping array is an
unterminated, unsorted list and the size goes into the fsconfig_parser
struct.
The function can do some additional things:
(a) If it's not ambiguous and no value is given, the prefix "no" on
a key name is permitted to indicate that the parameter should
be considered negatory.
(b) If the desired type is a single simple integer, it will perform
an appropriate conversion and store the result in a union in
the parse result.
(c) If the desired type is an enumeration, {key ID, name} will be
looked up in the enumeration list and the matching value will
be stored in the parse result union.
(d) Optionally generate an error if the key is unrecognised.
This is called something like:
enum rdt_param {
Opt_cdp,
Opt_cdpl2,
Opt_mba_mpbs,
nr__rdt_params
};
const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = {
[Opt_cdp] = { fs_param_is_bool },
[Opt_cdpl2] = { fs_param_is_bool },
[Opt_mba_mpbs] = { fs_param_is_bool },
};
const const char *const rdt_param_keys[nr__rdt_params] = {
[Opt_cdp] = "cdp",
[Opt_cdpl2] = "cdpl2",
[Opt_mba_mpbs] = "mba_mbps",
};
const struct fs_parameter_description rdt_parser = {
.name = "rdt",
.nr_params = nr__rdt_params,
.keys = rdt_param_keys,
.specs = rdt_param_specs,
.no_source = true,
};
int rdt_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct rdt_fs_context *ctx = rdt_fc2context(fc);
int ret;
ret = fs_parse(fc, &rdt_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_cdp:
ctx->enable_cdpl3 = true;
return 0;
case Opt_cdpl2:
ctx->enable_cdpl2 = true;
return 0;
case Opt_mba_mpbs:
ctx->enable_mba_mbps = true;
return 0;
}
return -EINVAL;
}
(2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or
string value and performs an appropriate path lookup to convert it
into a path object, which it will then return.
If the desired type was a blockdev, the type of the looked up inode
will be checked to make sure it is one.
This can be used like:
enum foo_param {
Opt_source,
nr__foo_params
};
const struct fs_parameter_spec foo_param_specs[nr__foo_params] = {
[Opt_source] = { fs_param_is_blockdev },
};
const char *char foo_param_keys[nr__foo_params] = {
[Opt_source] = "source",
};
const struct constant_table foo_param_alt_keys[] = {
{ "device", Opt_source },
};
const struct fs_parameter_description foo_parser = {
.name = "foo",
.nr_params = nr__foo_params,
.nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys),
.keys = foo_param_keys,
.alt_keys = foo_param_alt_keys,
.specs = foo_param_specs,
};
int foo_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct foo_fs_context *ctx = foo_fc2context(fc);
int ret;
ret = fs_parse(fc, &foo_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_source:
return fs_lookup_param(fc, &foo_parser, param,
&parse, &ctx->source);
default:
return -EINVAL;
}
}
(3) lookup_constant(). This takes a table of named constants and looks up
the given name within it. The table is expected to be sorted such
that bsearch() be used upon it.
Possibly I should require the table be terminated and just use a
for-loop to scan it instead of using bsearch() to reduce hassle.
Tables look something like:
static const struct constant_table bool_names[] = {
{ "0", false },
{ "1", true },
{ "false", false },
{ "no", false },
{ "true", true },
{ "yes", true },
};
and a lookup is done with something like:
b = lookup_constant(bool_names, param->string, -1);
Additionally, optional validation routines for the parameter description
are provided that can be enabled at compile time. A later patch will
invoke these when a filesystem is registered.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 07:07:24 +08:00
|
|
|
goto bad_value;
|
2019-03-26 00:38:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (result->uint_32 > INT_MAX)
|
|
|
|
goto bad_value;
|
|
|
|
goto maybe_okay;
|
vfs: Add configuration parser helpers
Because the new API passes in key,value parameters, match_token() cannot be
used with it. Instead, provide three new helpers to aid with parsing:
(1) fs_parse(). This takes a parameter and a simple static description of
all the parameters and maps the key name to an ID. It returns 1 on a
match, 0 on no match if unknowns should be ignored and some other
negative error code on a parse error.
The parameter description includes a list of key names to IDs, desired
parameter types and a list of enumeration name -> ID mappings.
[!] Note that for the moment I've required that the key->ID mapping
array is expected to be sorted and unterminated. The size of the
array is noted in the fsconfig_parser struct. This allows me to use
bsearch(), but I'm not sure any performance gain is worth the hassle
of requiring people to keep the array sorted.
The parameter type array is sized according to the number of parameter
IDs and is indexed directly. The optional enum mapping array is an
unterminated, unsorted list and the size goes into the fsconfig_parser
struct.
The function can do some additional things:
(a) If it's not ambiguous and no value is given, the prefix "no" on
a key name is permitted to indicate that the parameter should
be considered negatory.
(b) If the desired type is a single simple integer, it will perform
an appropriate conversion and store the result in a union in
the parse result.
(c) If the desired type is an enumeration, {key ID, name} will be
looked up in the enumeration list and the matching value will
be stored in the parse result union.
(d) Optionally generate an error if the key is unrecognised.
This is called something like:
enum rdt_param {
Opt_cdp,
Opt_cdpl2,
Opt_mba_mpbs,
nr__rdt_params
};
const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = {
[Opt_cdp] = { fs_param_is_bool },
[Opt_cdpl2] = { fs_param_is_bool },
[Opt_mba_mpbs] = { fs_param_is_bool },
};
const const char *const rdt_param_keys[nr__rdt_params] = {
[Opt_cdp] = "cdp",
[Opt_cdpl2] = "cdpl2",
[Opt_mba_mpbs] = "mba_mbps",
};
const struct fs_parameter_description rdt_parser = {
.name = "rdt",
.nr_params = nr__rdt_params,
.keys = rdt_param_keys,
.specs = rdt_param_specs,
.no_source = true,
};
int rdt_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct rdt_fs_context *ctx = rdt_fc2context(fc);
int ret;
ret = fs_parse(fc, &rdt_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_cdp:
ctx->enable_cdpl3 = true;
return 0;
case Opt_cdpl2:
ctx->enable_cdpl2 = true;
return 0;
case Opt_mba_mpbs:
ctx->enable_mba_mbps = true;
return 0;
}
return -EINVAL;
}
(2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or
string value and performs an appropriate path lookup to convert it
into a path object, which it will then return.
If the desired type was a blockdev, the type of the looked up inode
will be checked to make sure it is one.
This can be used like:
enum foo_param {
Opt_source,
nr__foo_params
};
const struct fs_parameter_spec foo_param_specs[nr__foo_params] = {
[Opt_source] = { fs_param_is_blockdev },
};
const char *char foo_param_keys[nr__foo_params] = {
[Opt_source] = "source",
};
const struct constant_table foo_param_alt_keys[] = {
{ "device", Opt_source },
};
const struct fs_parameter_description foo_parser = {
.name = "foo",
.nr_params = nr__foo_params,
.nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys),
.keys = foo_param_keys,
.alt_keys = foo_param_alt_keys,
.specs = foo_param_specs,
};
int foo_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct foo_fs_context *ctx = foo_fc2context(fc);
int ret;
ret = fs_parse(fc, &foo_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_source:
return fs_lookup_param(fc, &foo_parser, param,
&parse, &ctx->source);
default:
return -EINVAL;
}
}
(3) lookup_constant(). This takes a table of named constants and looks up
the given name within it. The table is expected to be sorted such
that bsearch() be used upon it.
Possibly I should require the table be terminated and just use a
for-loop to scan it instead of using bsearch() to reduce hassle.
Tables look something like:
static const struct constant_table bool_names[] = {
{ "0", false },
{ "1", true },
{ "false", false },
{ "no", false },
{ "true", true },
{ "yes", true },
};
and a lookup is done with something like:
b = lookup_constant(bool_names, param->string, -1);
Additionally, optional validation routines for the parameter description
are provided that can be enabled at compile time. A later patch will
invoke these when a filesystem is registered.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 07:07:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
case fs_param_is_blockdev:
|
|
|
|
case fs_param_is_path:
|
|
|
|
goto okay;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
maybe_okay:
|
|
|
|
if (ret < 0)
|
|
|
|
goto bad_value;
|
|
|
|
okay:
|
|
|
|
return p->opt;
|
|
|
|
|
|
|
|
bad_value:
|
|
|
|
return invalf(fc, "%s: Bad value for '%s'", desc->name, param->key);
|
|
|
|
unknown_parameter:
|
|
|
|
return -ENOPARAM;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fs_parse);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fs_lookup_param - Look up a path referred to by a parameter
|
|
|
|
* @fc: The filesystem context to log errors through.
|
|
|
|
* @param: The parameter.
|
|
|
|
* @want_bdev: T if want a blockdev
|
|
|
|
* @_path: The result of the lookup
|
|
|
|
*/
|
|
|
|
int fs_lookup_param(struct fs_context *fc,
|
|
|
|
struct fs_parameter *param,
|
|
|
|
bool want_bdev,
|
|
|
|
struct path *_path)
|
|
|
|
{
|
|
|
|
struct filename *f;
|
|
|
|
unsigned int flags = 0;
|
|
|
|
bool put_f;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
switch (param->type) {
|
|
|
|
case fs_value_is_string:
|
|
|
|
f = getname_kernel(param->string);
|
|
|
|
if (IS_ERR(f))
|
|
|
|
return PTR_ERR(f);
|
|
|
|
put_f = true;
|
|
|
|
break;
|
|
|
|
case fs_value_is_filename_empty:
|
|
|
|
flags = LOOKUP_EMPTY;
|
|
|
|
/* Fall through */
|
|
|
|
case fs_value_is_filename:
|
|
|
|
f = param->name;
|
|
|
|
put_f = false;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return invalf(fc, "%s: not usable as path", param->key);
|
|
|
|
}
|
|
|
|
|
2019-03-26 00:38:22 +08:00
|
|
|
f->refcnt++; /* filename_lookup() drops our ref. */
|
vfs: Add configuration parser helpers
Because the new API passes in key,value parameters, match_token() cannot be
used with it. Instead, provide three new helpers to aid with parsing:
(1) fs_parse(). This takes a parameter and a simple static description of
all the parameters and maps the key name to an ID. It returns 1 on a
match, 0 on no match if unknowns should be ignored and some other
negative error code on a parse error.
The parameter description includes a list of key names to IDs, desired
parameter types and a list of enumeration name -> ID mappings.
[!] Note that for the moment I've required that the key->ID mapping
array is expected to be sorted and unterminated. The size of the
array is noted in the fsconfig_parser struct. This allows me to use
bsearch(), but I'm not sure any performance gain is worth the hassle
of requiring people to keep the array sorted.
The parameter type array is sized according to the number of parameter
IDs and is indexed directly. The optional enum mapping array is an
unterminated, unsorted list and the size goes into the fsconfig_parser
struct.
The function can do some additional things:
(a) If it's not ambiguous and no value is given, the prefix "no" on
a key name is permitted to indicate that the parameter should
be considered negatory.
(b) If the desired type is a single simple integer, it will perform
an appropriate conversion and store the result in a union in
the parse result.
(c) If the desired type is an enumeration, {key ID, name} will be
looked up in the enumeration list and the matching value will
be stored in the parse result union.
(d) Optionally generate an error if the key is unrecognised.
This is called something like:
enum rdt_param {
Opt_cdp,
Opt_cdpl2,
Opt_mba_mpbs,
nr__rdt_params
};
const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = {
[Opt_cdp] = { fs_param_is_bool },
[Opt_cdpl2] = { fs_param_is_bool },
[Opt_mba_mpbs] = { fs_param_is_bool },
};
const const char *const rdt_param_keys[nr__rdt_params] = {
[Opt_cdp] = "cdp",
[Opt_cdpl2] = "cdpl2",
[Opt_mba_mpbs] = "mba_mbps",
};
const struct fs_parameter_description rdt_parser = {
.name = "rdt",
.nr_params = nr__rdt_params,
.keys = rdt_param_keys,
.specs = rdt_param_specs,
.no_source = true,
};
int rdt_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct rdt_fs_context *ctx = rdt_fc2context(fc);
int ret;
ret = fs_parse(fc, &rdt_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_cdp:
ctx->enable_cdpl3 = true;
return 0;
case Opt_cdpl2:
ctx->enable_cdpl2 = true;
return 0;
case Opt_mba_mpbs:
ctx->enable_mba_mbps = true;
return 0;
}
return -EINVAL;
}
(2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or
string value and performs an appropriate path lookup to convert it
into a path object, which it will then return.
If the desired type was a blockdev, the type of the looked up inode
will be checked to make sure it is one.
This can be used like:
enum foo_param {
Opt_source,
nr__foo_params
};
const struct fs_parameter_spec foo_param_specs[nr__foo_params] = {
[Opt_source] = { fs_param_is_blockdev },
};
const char *char foo_param_keys[nr__foo_params] = {
[Opt_source] = "source",
};
const struct constant_table foo_param_alt_keys[] = {
{ "device", Opt_source },
};
const struct fs_parameter_description foo_parser = {
.name = "foo",
.nr_params = nr__foo_params,
.nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys),
.keys = foo_param_keys,
.alt_keys = foo_param_alt_keys,
.specs = foo_param_specs,
};
int foo_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct foo_fs_context *ctx = foo_fc2context(fc);
int ret;
ret = fs_parse(fc, &foo_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_source:
return fs_lookup_param(fc, &foo_parser, param,
&parse, &ctx->source);
default:
return -EINVAL;
}
}
(3) lookup_constant(). This takes a table of named constants and looks up
the given name within it. The table is expected to be sorted such
that bsearch() be used upon it.
Possibly I should require the table be terminated and just use a
for-loop to scan it instead of using bsearch() to reduce hassle.
Tables look something like:
static const struct constant_table bool_names[] = {
{ "0", false },
{ "1", true },
{ "false", false },
{ "no", false },
{ "true", true },
{ "yes", true },
};
and a lookup is done with something like:
b = lookup_constant(bool_names, param->string, -1);
Additionally, optional validation routines for the parameter description
are provided that can be enabled at compile time. A later patch will
invoke these when a filesystem is registered.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 07:07:24 +08:00
|
|
|
ret = filename_lookup(param->dirfd, f, flags, _path, NULL);
|
|
|
|
if (ret < 0) {
|
|
|
|
errorf(fc, "%s: Lookup failure for '%s'", param->key, f->name);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (want_bdev &&
|
|
|
|
!S_ISBLK(d_backing_inode(_path->dentry)->i_mode)) {
|
|
|
|
path_put(_path);
|
|
|
|
_path->dentry = NULL;
|
|
|
|
_path->mnt = NULL;
|
|
|
|
errorf(fc, "%s: Non-blockdev passed as '%s'",
|
|
|
|
param->key, f->name);
|
|
|
|
ret = -ENOTBLK;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
if (put_f)
|
|
|
|
putname(f);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(fs_lookup_param);
|
|
|
|
|
|
|
|
#ifdef CONFIG_VALIDATE_FS_PARSER
|
|
|
|
/**
|
|
|
|
* validate_constant_table - Validate a constant table
|
|
|
|
* @name: Name to use in reporting
|
|
|
|
* @tbl: The constant table to validate.
|
|
|
|
* @tbl_size: The size of the table.
|
|
|
|
* @low: The lowest permissible value.
|
|
|
|
* @high: The highest permissible value.
|
|
|
|
* @special: One special permissible value outside of the range.
|
|
|
|
*/
|
|
|
|
bool validate_constant_table(const struct constant_table *tbl, size_t tbl_size,
|
|
|
|
int low, int high, int special)
|
|
|
|
{
|
|
|
|
size_t i;
|
|
|
|
bool good = true;
|
|
|
|
|
|
|
|
if (tbl_size == 0) {
|
|
|
|
pr_warn("VALIDATE C-TBL: Empty\n");
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < tbl_size; i++) {
|
|
|
|
if (!tbl[i].name) {
|
|
|
|
pr_err("VALIDATE C-TBL[%zu]: Null\n", i);
|
|
|
|
good = false;
|
|
|
|
} else if (i > 0 && tbl[i - 1].name) {
|
|
|
|
int c = strcmp(tbl[i-1].name, tbl[i].name);
|
|
|
|
|
|
|
|
if (c == 0) {
|
|
|
|
pr_err("VALIDATE C-TBL[%zu]: Duplicate %s\n",
|
|
|
|
i, tbl[i].name);
|
|
|
|
good = false;
|
|
|
|
}
|
|
|
|
if (c > 0) {
|
|
|
|
pr_err("VALIDATE C-TBL[%zu]: Missorted %s>=%s\n",
|
|
|
|
i, tbl[i-1].name, tbl[i].name);
|
|
|
|
good = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tbl[i].value != special &&
|
|
|
|
(tbl[i].value < low || tbl[i].value > high)) {
|
|
|
|
pr_err("VALIDATE C-TBL[%zu]: %s->%d const out of range (%d-%d)\n",
|
|
|
|
i, tbl[i].name, tbl[i].value, low, high);
|
|
|
|
good = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return good;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fs_validate_description - Validate a parameter description
|
|
|
|
* @desc: The parameter description to validate.
|
|
|
|
*/
|
|
|
|
bool fs_validate_description(const struct fs_parameter_description *desc)
|
|
|
|
{
|
|
|
|
const struct fs_parameter_spec *param, *p2;
|
|
|
|
const struct fs_parameter_enum *e;
|
|
|
|
const char *name = desc->name;
|
|
|
|
unsigned int nr_params = 0;
|
|
|
|
bool good = true, enums = false;
|
|
|
|
|
|
|
|
pr_notice("*** VALIDATE %s ***\n", name);
|
|
|
|
|
|
|
|
if (!name[0]) {
|
|
|
|
pr_err("VALIDATE Parser: No name\n");
|
|
|
|
name = "Unknown";
|
|
|
|
good = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (desc->specs) {
|
|
|
|
for (param = desc->specs; param->name; param++) {
|
|
|
|
enum fs_parameter_type t = param->type;
|
|
|
|
|
|
|
|
/* Check that the type is in range */
|
|
|
|
if (t == __fs_param_wasnt_defined ||
|
|
|
|
t >= nr__fs_parameter_type) {
|
|
|
|
pr_err("VALIDATE %s: PARAM[%s] Bad type %u\n",
|
|
|
|
name, param->name, t);
|
|
|
|
good = false;
|
|
|
|
} else if (t == fs_param_is_enum) {
|
|
|
|
enums = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check for duplicate parameter names */
|
|
|
|
for (p2 = desc->specs; p2 < param; p2++) {
|
|
|
|
if (strcmp(param->name, p2->name) == 0) {
|
|
|
|
pr_err("VALIDATE %s: PARAM[%s]: Duplicate\n",
|
|
|
|
name, param->name);
|
|
|
|
good = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
nr_params = param - desc->specs;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (desc->enums) {
|
|
|
|
if (!nr_params) {
|
|
|
|
pr_err("VALIDATE %s: Enum table but no parameters\n",
|
|
|
|
name);
|
|
|
|
good = false;
|
|
|
|
goto no_enums;
|
|
|
|
}
|
|
|
|
if (!enums) {
|
|
|
|
pr_err("VALIDATE %s: Enum table but no enum-type values\n",
|
|
|
|
name);
|
|
|
|
good = false;
|
|
|
|
goto no_enums;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (e = desc->enums; e->name[0]; e++) {
|
|
|
|
/* Check that all entries in the enum table have at
|
|
|
|
* least one parameter that uses them.
|
|
|
|
*/
|
|
|
|
for (param = desc->specs; param->name; param++) {
|
|
|
|
if (param->opt == e->opt &&
|
|
|
|
param->type != fs_param_is_enum) {
|
2019-03-29 11:44:36 +08:00
|
|
|
pr_err("VALIDATE %s: e[%tu] enum val for %s\n",
|
vfs: Add configuration parser helpers
Because the new API passes in key,value parameters, match_token() cannot be
used with it. Instead, provide three new helpers to aid with parsing:
(1) fs_parse(). This takes a parameter and a simple static description of
all the parameters and maps the key name to an ID. It returns 1 on a
match, 0 on no match if unknowns should be ignored and some other
negative error code on a parse error.
The parameter description includes a list of key names to IDs, desired
parameter types and a list of enumeration name -> ID mappings.
[!] Note that for the moment I've required that the key->ID mapping
array is expected to be sorted and unterminated. The size of the
array is noted in the fsconfig_parser struct. This allows me to use
bsearch(), but I'm not sure any performance gain is worth the hassle
of requiring people to keep the array sorted.
The parameter type array is sized according to the number of parameter
IDs and is indexed directly. The optional enum mapping array is an
unterminated, unsorted list and the size goes into the fsconfig_parser
struct.
The function can do some additional things:
(a) If it's not ambiguous and no value is given, the prefix "no" on
a key name is permitted to indicate that the parameter should
be considered negatory.
(b) If the desired type is a single simple integer, it will perform
an appropriate conversion and store the result in a union in
the parse result.
(c) If the desired type is an enumeration, {key ID, name} will be
looked up in the enumeration list and the matching value will
be stored in the parse result union.
(d) Optionally generate an error if the key is unrecognised.
This is called something like:
enum rdt_param {
Opt_cdp,
Opt_cdpl2,
Opt_mba_mpbs,
nr__rdt_params
};
const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = {
[Opt_cdp] = { fs_param_is_bool },
[Opt_cdpl2] = { fs_param_is_bool },
[Opt_mba_mpbs] = { fs_param_is_bool },
};
const const char *const rdt_param_keys[nr__rdt_params] = {
[Opt_cdp] = "cdp",
[Opt_cdpl2] = "cdpl2",
[Opt_mba_mpbs] = "mba_mbps",
};
const struct fs_parameter_description rdt_parser = {
.name = "rdt",
.nr_params = nr__rdt_params,
.keys = rdt_param_keys,
.specs = rdt_param_specs,
.no_source = true,
};
int rdt_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct rdt_fs_context *ctx = rdt_fc2context(fc);
int ret;
ret = fs_parse(fc, &rdt_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_cdp:
ctx->enable_cdpl3 = true;
return 0;
case Opt_cdpl2:
ctx->enable_cdpl2 = true;
return 0;
case Opt_mba_mpbs:
ctx->enable_mba_mbps = true;
return 0;
}
return -EINVAL;
}
(2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or
string value and performs an appropriate path lookup to convert it
into a path object, which it will then return.
If the desired type was a blockdev, the type of the looked up inode
will be checked to make sure it is one.
This can be used like:
enum foo_param {
Opt_source,
nr__foo_params
};
const struct fs_parameter_spec foo_param_specs[nr__foo_params] = {
[Opt_source] = { fs_param_is_blockdev },
};
const char *char foo_param_keys[nr__foo_params] = {
[Opt_source] = "source",
};
const struct constant_table foo_param_alt_keys[] = {
{ "device", Opt_source },
};
const struct fs_parameter_description foo_parser = {
.name = "foo",
.nr_params = nr__foo_params,
.nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys),
.keys = foo_param_keys,
.alt_keys = foo_param_alt_keys,
.specs = foo_param_specs,
};
int foo_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
struct fs_parse_result parse;
struct foo_fs_context *ctx = foo_fc2context(fc);
int ret;
ret = fs_parse(fc, &foo_parser, param, &parse);
if (ret < 0)
return ret;
switch (parse.key) {
case Opt_source:
return fs_lookup_param(fc, &foo_parser, param,
&parse, &ctx->source);
default:
return -EINVAL;
}
}
(3) lookup_constant(). This takes a table of named constants and looks up
the given name within it. The table is expected to be sorted such
that bsearch() be used upon it.
Possibly I should require the table be terminated and just use a
for-loop to scan it instead of using bsearch() to reduce hassle.
Tables look something like:
static const struct constant_table bool_names[] = {
{ "0", false },
{ "1", true },
{ "false", false },
{ "no", false },
{ "true", true },
{ "yes", true },
};
and a lookup is done with something like:
b = lookup_constant(bool_names, param->string, -1);
Additionally, optional validation routines for the parameter description
are provided that can be enabled at compile time. A later patch will
invoke these when a filesystem is registered.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-11-02 07:07:24 +08:00
|
|
|
name, e - desc->enums, param->name);
|
|
|
|
good = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check that all enum-type parameters have at least one enum
|
|
|
|
* value in the enum table.
|
|
|
|
*/
|
|
|
|
for (param = desc->specs; param->name; param++) {
|
|
|
|
if (param->type != fs_param_is_enum)
|
|
|
|
continue;
|
|
|
|
for (e = desc->enums; e->name[0]; e++)
|
|
|
|
if (e->opt == param->opt)
|
|
|
|
break;
|
|
|
|
if (!e->name[0]) {
|
|
|
|
pr_err("VALIDATE %s: PARAM[%s] enum with no values\n",
|
|
|
|
name, param->name);
|
|
|
|
good = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (enums) {
|
|
|
|
pr_err("VALIDATE %s: enum-type values, but no enum table\n",
|
|
|
|
name);
|
|
|
|
good = false;
|
|
|
|
goto no_enums;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
no_enums:
|
|
|
|
return good;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_VALIDATE_FS_PARSER */
|