linux/drivers/input/mouse/elan_i2c_core.c

1384 lines
33 KiB
C
Raw Normal View History

/*
* Elan I2C/SMBus Touchpad driver
*
* Copyright (c) 2013 ELAN Microelectronics Corp.
*
* Author: (Duson Lin) <dusonlin@emc.com.tw>
* Author: KT Liao <kt.liao@emc.com.tw>
* Version: 1.6.3
*
* Based on cyapa driver:
* copyright (c) 2011-2012 Cypress Semiconductor, Inc.
* copyright (c) 2011-2012 Google, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Trademarks are the property of their respective owners.
*/
#include <linux/acpi.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/input/mt.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/input.h>
#include <linux/uaccess.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <asm/unaligned.h>
#include "elan_i2c.h"
#define DRIVER_NAME "elan_i2c"
#define ELAN_VENDOR_ID 0x04f3
#define ETP_MAX_PRESSURE 255
#define ETP_FWIDTH_REDUCE 90
#define ETP_FINGER_WIDTH 15
#define ETP_RETRY_COUNT 3
#define ETP_MAX_FINGERS 5
#define ETP_FINGER_DATA_LEN 5
#define ETP_REPORT_ID 0x5D
#define ETP_TP_REPORT_ID 0x5E
#define ETP_REPORT_ID_OFFSET 2
#define ETP_TOUCH_INFO_OFFSET 3
#define ETP_FINGER_DATA_OFFSET 4
#define ETP_HOVER_INFO_OFFSET 30
#define ETP_MAX_REPORT_LEN 34
/* The main device structure */
struct elan_tp_data {
struct i2c_client *client;
struct input_dev *input;
struct input_dev *tp_input; /* trackpoint input node */
struct regulator *vcc;
const struct elan_transport_ops *ops;
/* for fw update */
struct completion fw_completion;
bool in_fw_update;
struct mutex sysfs_mutex;
unsigned int max_x;
unsigned int max_y;
unsigned int width_x;
unsigned int width_y;
unsigned int x_res;
unsigned int y_res;
u8 pattern;
u16 product_id;
u8 fw_version;
u8 sm_version;
u8 iap_version;
u16 fw_checksum;
int pressure_adjustment;
u8 mode;
u16 ic_type;
u16 fw_validpage_count;
u16 fw_signature_address;
bool irq_wake;
u8 min_baseline;
u8 max_baseline;
bool baseline_ready;
u8 clickpad;
};
static int elan_get_fwinfo(u16 ic_type, u16 *validpage_count,
u16 *signature_address)
{
switch (ic_type) {
case 0x00:
case 0x06:
case 0x08:
*validpage_count = 512;
break;
case 0x03:
case 0x07:
case 0x09:
case 0x0A:
case 0x0B:
case 0x0C:
*validpage_count = 768;
break;
case 0x0D:
*validpage_count = 896;
break;
case 0x0E:
*validpage_count = 640;
break;
case 0x10:
*validpage_count = 1024;
break;
default:
/* unknown ic type clear value */
*validpage_count = 0;
*signature_address = 0;
return -ENXIO;
}
*signature_address =
(*validpage_count * ETP_FW_PAGE_SIZE) - ETP_FW_SIGNATURE_SIZE;
return 0;
}
static int elan_enable_power(struct elan_tp_data *data)
{
int repeat = ETP_RETRY_COUNT;
int error;
error = regulator_enable(data->vcc);
if (error) {
dev_err(&data->client->dev,
"failed to enable regulator: %d\n", error);
return error;
}
do {
error = data->ops->power_control(data->client, true);
if (error >= 0)
return 0;
msleep(30);
} while (--repeat > 0);
dev_err(&data->client->dev, "failed to enable power: %d\n", error);
return error;
}
static int elan_disable_power(struct elan_tp_data *data)
{
int repeat = ETP_RETRY_COUNT;
int error;
do {
error = data->ops->power_control(data->client, false);
if (!error) {
error = regulator_disable(data->vcc);
if (error) {
dev_err(&data->client->dev,
"failed to disable regulator: %d\n",
error);
/* Attempt to power the chip back up */
data->ops->power_control(data->client, true);
break;
}
return 0;
}
msleep(30);
} while (--repeat > 0);
dev_err(&data->client->dev, "failed to disable power: %d\n", error);
return error;
}
static int elan_sleep(struct elan_tp_data *data)
{
int repeat = ETP_RETRY_COUNT;
int error;
do {
error = data->ops->sleep_control(data->client, true);
if (!error)
return 0;
msleep(30);
} while (--repeat > 0);
return error;
}
static int elan_query_product(struct elan_tp_data *data)
{
int error;
error = data->ops->get_product_id(data->client, &data->product_id);
if (error)
return error;
error = data->ops->get_sm_version(data->client, &data->ic_type,
&data->sm_version, &data->clickpad);
if (error)
return error;
return 0;
}
static int elan_check_ASUS_special_fw(struct elan_tp_data *data)
{
if (data->ic_type == 0x0E) {
switch (data->product_id) {
case 0x05 ... 0x07:
case 0x09:
case 0x13:
return true;
}
} else if (data->ic_type == 0x08 && data->product_id == 0x26) {
/* ASUS EeeBook X205TA */
return true;
}
return false;
}
static int __elan_initialize(struct elan_tp_data *data)
{
struct i2c_client *client = data->client;
bool woken_up = false;
int error;
error = data->ops->initialize(client);
if (error) {
dev_err(&client->dev, "device initialize failed: %d\n", error);
return error;
}
error = elan_query_product(data);
if (error)
return error;
/*
* Some ASUS devices were shipped with firmware that requires
* touchpads to be woken up first, before attempting to switch
* them into absolute reporting mode.
*/
if (elan_check_ASUS_special_fw(data)) {
error = data->ops->sleep_control(client, false);
if (error) {
dev_err(&client->dev,
"failed to wake device up: %d\n", error);
return error;
}
msleep(200);
woken_up = true;
}
data->mode |= ETP_ENABLE_ABS;
error = data->ops->set_mode(client, data->mode);
if (error) {
dev_err(&client->dev,
"failed to switch to absolute mode: %d\n", error);
return error;
}
if (!woken_up) {
error = data->ops->sleep_control(client, false);
if (error) {
dev_err(&client->dev,
"failed to wake device up: %d\n", error);
return error;
}
}
return 0;
}
static int elan_initialize(struct elan_tp_data *data)
{
int repeat = ETP_RETRY_COUNT;
int error;
do {
error = __elan_initialize(data);
if (!error)
return 0;
msleep(30);
} while (--repeat > 0);
return error;
}
static int elan_query_device_info(struct elan_tp_data *data)
{
int error;
u16 ic_type;
error = data->ops->get_version(data->client, false, &data->fw_version);
if (error)
return error;
error = data->ops->get_checksum(data->client, false,
&data->fw_checksum);
if (error)
return error;
error = data->ops->get_version(data->client, true, &data->iap_version);
if (error)
return error;
error = data->ops->get_pressure_adjustment(data->client,
&data->pressure_adjustment);
if (error)
return error;
error = data->ops->get_pattern(data->client, &data->pattern);
if (error)
return error;
if (data->pattern == 0x01)
ic_type = data->ic_type;
else
ic_type = data->iap_version;
error = elan_get_fwinfo(ic_type, &data->fw_validpage_count,
&data->fw_signature_address);
if (error)
dev_warn(&data->client->dev,
"unexpected iap version %#04x (ic type: %#04x), firmware update will not work\n",
data->iap_version, data->ic_type);
return 0;
}
static unsigned int elan_convert_resolution(u8 val)
{
/*
* (value from firmware) * 10 + 790 = dpi
*
* We also have to convert dpi to dots/mm (*10/254 to avoid floating
* point).
*/
return ((int)(char)val * 10 + 790) * 10 / 254;
}
static int elan_query_device_parameters(struct elan_tp_data *data)
{
unsigned int x_traces, y_traces;
u8 hw_x_res, hw_y_res;
int error;
error = data->ops->get_max(data->client, &data->max_x, &data->max_y);
if (error)
return error;
error = data->ops->get_num_traces(data->client, &x_traces, &y_traces);
if (error)
return error;
data->width_x = data->max_x / x_traces;
data->width_y = data->max_y / y_traces;
error = data->ops->get_resolution(data->client, &hw_x_res, &hw_y_res);
if (error)
return error;
data->x_res = elan_convert_resolution(hw_x_res);
data->y_res = elan_convert_resolution(hw_y_res);
return 0;
}
/*
**********************************************************
* IAP firmware updater related routines
**********************************************************
*/
static int elan_write_fw_block(struct elan_tp_data *data,
const u8 *page, u16 checksum, int idx)
{
int retry = ETP_RETRY_COUNT;
int error;
do {
error = data->ops->write_fw_block(data->client,
page, checksum, idx);
if (!error)
return 0;
dev_dbg(&data->client->dev,
"IAP retrying page %d (error: %d)\n", idx, error);
} while (--retry > 0);
return error;
}
static int __elan_update_firmware(struct elan_tp_data *data,
const struct firmware *fw)
{
struct i2c_client *client = data->client;
struct device *dev = &client->dev;
int i, j;
int error;
u16 iap_start_addr;
u16 boot_page_count;
u16 sw_checksum = 0, fw_checksum = 0;
error = data->ops->prepare_fw_update(client);
if (error)
return error;
iap_start_addr = get_unaligned_le16(&fw->data[ETP_IAP_START_ADDR * 2]);
boot_page_count = (iap_start_addr * 2) / ETP_FW_PAGE_SIZE;
for (i = boot_page_count; i < data->fw_validpage_count; i++) {
u16 checksum = 0;
const u8 *page = &fw->data[i * ETP_FW_PAGE_SIZE];
for (j = 0; j < ETP_FW_PAGE_SIZE; j += 2)
checksum += ((page[j + 1] << 8) | page[j]);
error = elan_write_fw_block(data, page, checksum, i);
if (error) {
dev_err(dev, "write page %d fail: %d\n", i, error);
return error;
}
sw_checksum += checksum;
}
/* Wait WDT reset and power on reset */
msleep(600);
error = data->ops->finish_fw_update(client, &data->fw_completion);
if (error)
return error;
error = data->ops->get_checksum(client, true, &fw_checksum);
if (error)
return error;
if (sw_checksum != fw_checksum) {
dev_err(dev, "checksum diff sw=[%04X], fw=[%04X]\n",
sw_checksum, fw_checksum);
return -EIO;
}
return 0;
}
static int elan_update_firmware(struct elan_tp_data *data,
const struct firmware *fw)
{
struct i2c_client *client = data->client;
int retval;
dev_dbg(&client->dev, "Starting firmware update....\n");
disable_irq(client->irq);
data->in_fw_update = true;
retval = __elan_update_firmware(data, fw);
if (retval) {
dev_err(&client->dev, "firmware update failed: %d\n", retval);
data->ops->iap_reset(client);
} else {
/* Reinitialize TP after fw is updated */
elan_initialize(data);
elan_query_device_info(data);
}
data->in_fw_update = false;
enable_irq(client->irq);
return retval;
}
/*
*******************************************************************
* SYSFS attributes
*******************************************************************
*/
static ssize_t elan_sysfs_read_fw_checksum(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct elan_tp_data *data = i2c_get_clientdata(client);
return sprintf(buf, "0x%04x\n", data->fw_checksum);
}
static ssize_t elan_sysfs_read_product_id(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct elan_tp_data *data = i2c_get_clientdata(client);
return sprintf(buf, ETP_PRODUCT_ID_FORMAT_STRING "\n",
data->product_id);
}
static ssize_t elan_sysfs_read_fw_ver(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct elan_tp_data *data = i2c_get_clientdata(client);
return sprintf(buf, "%d.0\n", data->fw_version);
}
static ssize_t elan_sysfs_read_sm_ver(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct elan_tp_data *data = i2c_get_clientdata(client);
return sprintf(buf, "%d.0\n", data->sm_version);
}
static ssize_t elan_sysfs_read_iap_ver(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct elan_tp_data *data = i2c_get_clientdata(client);
return sprintf(buf, "%d.0\n", data->iap_version);
}
static ssize_t elan_sysfs_update_fw(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct elan_tp_data *data = dev_get_drvdata(dev);
const struct firmware *fw;
char *fw_name;
int error;
const u8 *fw_signature;
static const u8 signature[] = {0xAA, 0x55, 0xCC, 0x33, 0xFF, 0xFF};
if (data->fw_validpage_count == 0)
return -EINVAL;
/* Look for a firmware with the product id appended. */
fw_name = kasprintf(GFP_KERNEL, ETP_FW_NAME, data->product_id);
if (!fw_name) {
dev_err(dev, "failed to allocate memory for firmware name\n");
return -ENOMEM;
}
dev_info(dev, "requesting fw '%s'\n", fw_name);
error = request_firmware(&fw, fw_name, dev);
kfree(fw_name);
if (error) {
dev_err(dev, "failed to request firmware: %d\n", error);
return error;
}
/* Firmware file must match signature data */
fw_signature = &fw->data[data->fw_signature_address];
if (memcmp(fw_signature, signature, sizeof(signature)) != 0) {
dev_err(dev, "signature mismatch (expected %*ph, got %*ph)\n",
(int)sizeof(signature), signature,
(int)sizeof(signature), fw_signature);
error = -EBADF;
goto out_release_fw;
}
error = mutex_lock_interruptible(&data->sysfs_mutex);
if (error)
goto out_release_fw;
error = elan_update_firmware(data, fw);
mutex_unlock(&data->sysfs_mutex);
out_release_fw:
release_firmware(fw);
return error ?: count;
}
static ssize_t calibrate_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct elan_tp_data *data = i2c_get_clientdata(client);
int tries = 20;
int retval;
int error;
u8 val[ETP_CALIBRATE_MAX_LEN];
retval = mutex_lock_interruptible(&data->sysfs_mutex);
if (retval)
return retval;
disable_irq(client->irq);
data->mode |= ETP_ENABLE_CALIBRATE;
retval = data->ops->set_mode(client, data->mode);
if (retval) {
dev_err(dev, "failed to enable calibration mode: %d\n",
retval);
goto out;
}
retval = data->ops->calibrate(client);
if (retval) {
dev_err(dev, "failed to start calibration: %d\n",
retval);
goto out_disable_calibrate;
}
val[0] = 0xff;
do {
/* Wait 250ms before checking if calibration has completed. */
msleep(250);
retval = data->ops->calibrate_result(client, val);
if (retval)
dev_err(dev, "failed to check calibration result: %d\n",
retval);
else if (val[0] == 0)
break; /* calibration done */
} while (--tries);
if (tries == 0) {
dev_err(dev, "failed to calibrate. Timeout.\n");
retval = -ETIMEDOUT;
}
out_disable_calibrate:
data->mode &= ~ETP_ENABLE_CALIBRATE;
error = data->ops->set_mode(data->client, data->mode);
if (error) {
dev_err(dev, "failed to disable calibration mode: %d\n",
error);
if (!retval)
retval = error;
}
out:
enable_irq(client->irq);
mutex_unlock(&data->sysfs_mutex);
return retval ?: count;
}
static ssize_t elan_sysfs_read_mode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct elan_tp_data *data = i2c_get_clientdata(client);
int error;
enum tp_mode mode;
error = mutex_lock_interruptible(&data->sysfs_mutex);
if (error)
return error;
error = data->ops->iap_get_mode(data->client, &mode);
mutex_unlock(&data->sysfs_mutex);
if (error)
return error;
return sprintf(buf, "%d\n", (int)mode);
}
static DEVICE_ATTR(product_id, S_IRUGO, elan_sysfs_read_product_id, NULL);
static DEVICE_ATTR(firmware_version, S_IRUGO, elan_sysfs_read_fw_ver, NULL);
static DEVICE_ATTR(sample_version, S_IRUGO, elan_sysfs_read_sm_ver, NULL);
static DEVICE_ATTR(iap_version, S_IRUGO, elan_sysfs_read_iap_ver, NULL);
static DEVICE_ATTR(fw_checksum, S_IRUGO, elan_sysfs_read_fw_checksum, NULL);
static DEVICE_ATTR(mode, S_IRUGO, elan_sysfs_read_mode, NULL);
static DEVICE_ATTR(update_fw, S_IWUSR, NULL, elan_sysfs_update_fw);
static DEVICE_ATTR_WO(calibrate);
static struct attribute *elan_sysfs_entries[] = {
&dev_attr_product_id.attr,
&dev_attr_firmware_version.attr,
&dev_attr_sample_version.attr,
&dev_attr_iap_version.attr,
&dev_attr_fw_checksum.attr,
&dev_attr_calibrate.attr,
&dev_attr_mode.attr,
&dev_attr_update_fw.attr,
NULL,
};
static const struct attribute_group elan_sysfs_group = {
.attrs = elan_sysfs_entries,
};
static ssize_t acquire_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct elan_tp_data *data = i2c_get_clientdata(client);
int error;
int retval;
retval = mutex_lock_interruptible(&data->sysfs_mutex);
if (retval)
return retval;
disable_irq(client->irq);
data->baseline_ready = false;
data->mode |= ETP_ENABLE_CALIBRATE;
retval = data->ops->set_mode(data->client, data->mode);
if (retval) {
dev_err(dev, "Failed to enable calibration mode to get baseline: %d\n",
retval);
goto out;
}
msleep(250);
retval = data->ops->get_baseline_data(data->client, true,
&data->max_baseline);
if (retval) {
dev_err(dev, "Failed to read max baseline form device: %d\n",
retval);
goto out_disable_calibrate;
}
retval = data->ops->get_baseline_data(data->client, false,
&data->min_baseline);
if (retval) {
dev_err(dev, "Failed to read min baseline form device: %d\n",
retval);
goto out_disable_calibrate;
}
data->baseline_ready = true;
out_disable_calibrate:
data->mode &= ~ETP_ENABLE_CALIBRATE;
error = data->ops->set_mode(data->client, data->mode);
if (error) {
dev_err(dev, "Failed to disable calibration mode after acquiring baseline: %d\n",
error);
if (!retval)
retval = error;
}
out:
enable_irq(client->irq);
mutex_unlock(&data->sysfs_mutex);
return retval ?: count;
}
static ssize_t min_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct elan_tp_data *data = i2c_get_clientdata(client);
int retval;
retval = mutex_lock_interruptible(&data->sysfs_mutex);
if (retval)
return retval;
if (!data->baseline_ready) {
retval = -ENODATA;
goto out;
}
retval = snprintf(buf, PAGE_SIZE, "%d", data->min_baseline);
out:
mutex_unlock(&data->sysfs_mutex);
return retval;
}
static ssize_t max_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
struct elan_tp_data *data = i2c_get_clientdata(client);
int retval;
retval = mutex_lock_interruptible(&data->sysfs_mutex);
if (retval)
return retval;
if (!data->baseline_ready) {
retval = -ENODATA;
goto out;
}
retval = snprintf(buf, PAGE_SIZE, "%d", data->max_baseline);
out:
mutex_unlock(&data->sysfs_mutex);
return retval;
}
static DEVICE_ATTR_WO(acquire);
static DEVICE_ATTR_RO(min);
static DEVICE_ATTR_RO(max);
static struct attribute *elan_baseline_sysfs_entries[] = {
&dev_attr_acquire.attr,
&dev_attr_min.attr,
&dev_attr_max.attr,
NULL,
};
static const struct attribute_group elan_baseline_sysfs_group = {
.name = "baseline",
.attrs = elan_baseline_sysfs_entries,
};
static const struct attribute_group *elan_sysfs_groups[] = {
&elan_sysfs_group,
&elan_baseline_sysfs_group,
NULL
};
/*
******************************************************************
* Elan isr functions
******************************************************************
*/
static void elan_report_contact(struct elan_tp_data *data,
int contact_num, bool contact_valid,
u8 *finger_data)
{
struct input_dev *input = data->input;
unsigned int pos_x, pos_y;
unsigned int pressure, mk_x, mk_y;
unsigned int area_x, area_y, major, minor;
unsigned int scaled_pressure;
if (contact_valid) {
pos_x = ((finger_data[0] & 0xf0) << 4) |
finger_data[1];
pos_y = ((finger_data[0] & 0x0f) << 8) |
finger_data[2];
mk_x = (finger_data[3] & 0x0f);
mk_y = (finger_data[3] >> 4);
pressure = finger_data[4];
if (pos_x > data->max_x || pos_y > data->max_y) {
dev_dbg(input->dev.parent,
"[%d] x=%d y=%d over max (%d, %d)",
contact_num, pos_x, pos_y,
data->max_x, data->max_y);
return;
}
/*
* To avoid treating large finger as palm, let's reduce the
* width x and y per trace.
*/
area_x = mk_x * (data->width_x - ETP_FWIDTH_REDUCE);
area_y = mk_y * (data->width_y - ETP_FWIDTH_REDUCE);
major = max(area_x, area_y);
minor = min(area_x, area_y);
scaled_pressure = pressure + data->pressure_adjustment;
if (scaled_pressure > ETP_MAX_PRESSURE)
scaled_pressure = ETP_MAX_PRESSURE;
input_mt_slot(input, contact_num);
input_mt_report_slot_state(input, MT_TOOL_FINGER, true);
input_report_abs(input, ABS_MT_POSITION_X, pos_x);
input_report_abs(input, ABS_MT_POSITION_Y, data->max_y - pos_y);
input_report_abs(input, ABS_MT_PRESSURE, scaled_pressure);
input_report_abs(input, ABS_TOOL_WIDTH, mk_x);
input_report_abs(input, ABS_MT_TOUCH_MAJOR, major);
input_report_abs(input, ABS_MT_TOUCH_MINOR, minor);
} else {
input_mt_slot(input, contact_num);
input_mt_report_slot_state(input, MT_TOOL_FINGER, false);
}
}
static void elan_report_absolute(struct elan_tp_data *data, u8 *packet)
{
struct input_dev *input = data->input;
u8 *finger_data = &packet[ETP_FINGER_DATA_OFFSET];
int i;
u8 tp_info = packet[ETP_TOUCH_INFO_OFFSET];
u8 hover_info = packet[ETP_HOVER_INFO_OFFSET];
bool contact_valid, hover_event;
hover_event = hover_info & 0x40;
for (i = 0; i < ETP_MAX_FINGERS; i++) {
contact_valid = tp_info & (1U << (3 + i));
elan_report_contact(data, i, contact_valid, finger_data);
if (contact_valid)
finger_data += ETP_FINGER_DATA_LEN;
}
input_report_key(input, BTN_LEFT, tp_info & 0x01);
input_report_key(input, BTN_RIGHT, tp_info & 0x02);
input_report_abs(input, ABS_DISTANCE, hover_event != 0);
input_mt_report_pointer_emulation(input, true);
input_sync(input);
}
static void elan_report_trackpoint(struct elan_tp_data *data, u8 *report)
{
struct input_dev *input = data->tp_input;
u8 *packet = &report[ETP_REPORT_ID_OFFSET + 1];
int x, y;
if (!data->tp_input) {
dev_warn_once(&data->client->dev,
"received a trackpoint report while no trackpoint device has been created. Please report upstream.\n");
return;
}
input_report_key(input, BTN_LEFT, packet[0] & 0x01);
input_report_key(input, BTN_RIGHT, packet[0] & 0x02);
input_report_key(input, BTN_MIDDLE, packet[0] & 0x04);
if ((packet[3] & 0x0F) == 0x06) {
x = packet[4] - (int)((packet[1] ^ 0x80) << 1);
y = (int)((packet[2] ^ 0x80) << 1) - packet[5];
input_report_rel(input, REL_X, x);
input_report_rel(input, REL_Y, y);
}
input_sync(input);
}
static irqreturn_t elan_isr(int irq, void *dev_id)
{
struct elan_tp_data *data = dev_id;
struct device *dev = &data->client->dev;
int error;
u8 report[ETP_MAX_REPORT_LEN];
/*
* When device is connected to i2c bus, when all IAP page writes
* complete, the driver will receive interrupt and must read
* 0000 to confirm that IAP is finished.
*/
if (data->in_fw_update) {
complete(&data->fw_completion);
goto out;
}
error = data->ops->get_report(data->client, report);
if (error)
goto out;
switch (report[ETP_REPORT_ID_OFFSET]) {
case ETP_REPORT_ID:
elan_report_absolute(data, report);
break;
case ETP_TP_REPORT_ID:
elan_report_trackpoint(data, report);
break;
default:
dev_err(dev, "invalid report id data (%x)\n",
report[ETP_REPORT_ID_OFFSET]);
}
out:
return IRQ_HANDLED;
}
/*
******************************************************************
* Elan initialization functions
******************************************************************
*/
static int elan_setup_trackpoint_input_device(struct elan_tp_data *data)
{
struct device *dev = &data->client->dev;
struct input_dev *input;
input = devm_input_allocate_device(dev);
if (!input)
return -ENOMEM;
input->name = "Elan TrackPoint";
input->id.bustype = BUS_I2C;
input->id.vendor = ELAN_VENDOR_ID;
input->id.product = data->product_id;
input_set_drvdata(input, data);
input_set_capability(input, EV_REL, REL_X);
input_set_capability(input, EV_REL, REL_Y);
input_set_capability(input, EV_KEY, BTN_LEFT);
input_set_capability(input, EV_KEY, BTN_RIGHT);
input_set_capability(input, EV_KEY, BTN_MIDDLE);
__set_bit(INPUT_PROP_POINTER, input->propbit);
__set_bit(INPUT_PROP_POINTING_STICK, input->propbit);
data->tp_input = input;
return 0;
}
static int elan_setup_input_device(struct elan_tp_data *data)
{
struct device *dev = &data->client->dev;
struct input_dev *input;
unsigned int max_width = max(data->width_x, data->width_y);
unsigned int min_width = min(data->width_x, data->width_y);
int error;
input = devm_input_allocate_device(dev);
if (!input)
return -ENOMEM;
input->name = "Elan Touchpad";
input->id.bustype = BUS_I2C;
input->id.vendor = ELAN_VENDOR_ID;
input->id.product = data->product_id;
input_set_drvdata(input, data);
error = input_mt_init_slots(input, ETP_MAX_FINGERS,
INPUT_MT_POINTER | INPUT_MT_DROP_UNUSED);
if (error) {
dev_err(dev, "failed to initialize MT slots: %d\n", error);
return error;
}
__set_bit(EV_ABS, input->evbit);
__set_bit(INPUT_PROP_POINTER, input->propbit);
if (data->clickpad)
__set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
else
__set_bit(BTN_RIGHT, input->keybit);
__set_bit(BTN_LEFT, input->keybit);
/* Set up ST parameters */
input_set_abs_params(input, ABS_X, 0, data->max_x, 0, 0);
input_set_abs_params(input, ABS_Y, 0, data->max_y, 0, 0);
input_abs_set_res(input, ABS_X, data->x_res);
input_abs_set_res(input, ABS_Y, data->y_res);
input_set_abs_params(input, ABS_PRESSURE, 0, ETP_MAX_PRESSURE, 0, 0);
input_set_abs_params(input, ABS_TOOL_WIDTH, 0, ETP_FINGER_WIDTH, 0, 0);
input_set_abs_params(input, ABS_DISTANCE, 0, 1, 0, 0);
/* And MT parameters */
input_set_abs_params(input, ABS_MT_POSITION_X, 0, data->max_x, 0, 0);
input_set_abs_params(input, ABS_MT_POSITION_Y, 0, data->max_y, 0, 0);
input_abs_set_res(input, ABS_MT_POSITION_X, data->x_res);
input_abs_set_res(input, ABS_MT_POSITION_Y, data->y_res);
input_set_abs_params(input, ABS_MT_PRESSURE, 0,
ETP_MAX_PRESSURE, 0, 0);
input_set_abs_params(input, ABS_MT_TOUCH_MAJOR, 0,
ETP_FINGER_WIDTH * max_width, 0, 0);
input_set_abs_params(input, ABS_MT_TOUCH_MINOR, 0,
ETP_FINGER_WIDTH * min_width, 0, 0);
data->input = input;
return 0;
}
static void elan_disable_regulator(void *_data)
{
struct elan_tp_data *data = _data;
regulator_disable(data->vcc);
}
static void elan_remove_sysfs_groups(void *_data)
{
struct elan_tp_data *data = _data;
sysfs_remove_groups(&data->client->dev.kobj, elan_sysfs_groups);
}
static int elan_probe(struct i2c_client *client,
const struct i2c_device_id *dev_id)
{
const struct elan_transport_ops *transport_ops;
struct device *dev = &client->dev;
struct elan_tp_data *data;
unsigned long irqflags;
int error;
if (IS_ENABLED(CONFIG_MOUSE_ELAN_I2C_I2C) &&
i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
transport_ops = &elan_i2c_ops;
} else if (IS_ENABLED(CONFIG_MOUSE_ELAN_I2C_SMBUS) &&
i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_BLOCK_DATA |
I2C_FUNC_SMBUS_I2C_BLOCK)) {
transport_ops = &elan_smbus_ops;
} else {
dev_err(dev, "not a supported I2C/SMBus adapter\n");
return -EIO;
}
data = devm_kzalloc(dev, sizeof(struct elan_tp_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
data->ops = transport_ops;
data->client = client;
init_completion(&data->fw_completion);
mutex_init(&data->sysfs_mutex);
data->vcc = devm_regulator_get(dev, "vcc");
if (IS_ERR(data->vcc)) {
error = PTR_ERR(data->vcc);
if (error != -EPROBE_DEFER)
dev_err(dev, "Failed to get 'vcc' regulator: %d\n",
error);
return error;
}
error = regulator_enable(data->vcc);
if (error) {
dev_err(dev, "Failed to enable regulator: %d\n", error);
return error;
}
error = devm_add_action(dev, elan_disable_regulator, data);
if (error) {
regulator_disable(data->vcc);
dev_err(dev, "Failed to add disable regulator action: %d\n",
error);
return error;
}
/* Make sure there is something at this address */
error = i2c_smbus_read_byte(client);
if (error < 0) {
dev_dbg(&client->dev, "nothing at this address: %d\n", error);
return -ENXIO;
}
/* Initialize the touchpad. */
error = elan_initialize(data);
if (error)
return error;
error = elan_query_device_info(data);
if (error)
return error;
error = elan_query_device_parameters(data);
if (error)
return error;
dev_info(dev,
"Elan Touchpad: Module ID: 0x%04x, Firmware: 0x%04x, Sample: 0x%04x, IAP: 0x%04x\n",
data->product_id,
data->fw_version,
data->sm_version,
data->iap_version);
dev_dbg(dev,
"Elan Touchpad Extra Information:\n"
" Max ABS X,Y: %d,%d\n"
" Width X,Y: %d,%d\n"
" Resolution X,Y: %d,%d (dots/mm)\n"
" ic type: 0x%x\n"
" info pattern: 0x%x\n",
data->max_x, data->max_y,
data->width_x, data->width_y,
data->x_res, data->y_res,
data->ic_type, data->pattern);
/* Set up input device properties based on queried parameters. */
error = elan_setup_input_device(data);
if (error)
return error;
if (device_property_read_bool(&client->dev, "elan,trackpoint")) {
error = elan_setup_trackpoint_input_device(data);
if (error)
return error;
}
/*
* Platform code (ACPI, DTS) should normally set up interrupt
* for us, but in case it did not let's fall back to using falling
* edge to be compatible with older Chromebooks.
*/
irqflags = irq_get_trigger_type(client->irq);
if (!irqflags)
irqflags = IRQF_TRIGGER_FALLING;
error = devm_request_threaded_irq(dev, client->irq, NULL, elan_isr,
irqflags | IRQF_ONESHOT,
client->name, data);
if (error) {
dev_err(dev, "cannot register irq=%d\n", client->irq);
return error;
}
error = sysfs_create_groups(&dev->kobj, elan_sysfs_groups);
if (error) {
dev_err(dev, "failed to create sysfs attributes: %d\n", error);
return error;
}
error = devm_add_action(dev, elan_remove_sysfs_groups, data);
if (error) {
elan_remove_sysfs_groups(data);
dev_err(dev, "Failed to add sysfs cleanup action: %d\n",
error);
return error;
}
error = input_register_device(data->input);
if (error) {
dev_err(dev, "failed to register input device: %d\n", error);
return error;
}
if (data->tp_input) {
error = input_register_device(data->tp_input);
if (error) {
dev_err(&client->dev,
"failed to register TrackPoint input device: %d\n",
error);
return error;
}
}
/*
* Systems using device tree should set up wakeup via DTS,
* the rest will configure device as wakeup source by default.
*/
if (!dev->of_node)
device_init_wakeup(dev, true);
return 0;
}
static int __maybe_unused elan_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct elan_tp_data *data = i2c_get_clientdata(client);
int ret;
/*
* We are taking the mutex to make sure sysfs operations are
* complete before we attempt to bring the device into low[er]
* power mode.
*/
ret = mutex_lock_interruptible(&data->sysfs_mutex);
if (ret)
return ret;
disable_irq(client->irq);
if (device_may_wakeup(dev)) {
ret = elan_sleep(data);
/* Enable wake from IRQ */
data->irq_wake = (enable_irq_wake(client->irq) == 0);
} else {
ret = elan_disable_power(data);
}
mutex_unlock(&data->sysfs_mutex);
return ret;
}
static int __maybe_unused elan_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct elan_tp_data *data = i2c_get_clientdata(client);
int error;
if (device_may_wakeup(dev) && data->irq_wake) {
disable_irq_wake(client->irq);
data->irq_wake = false;
}
error = elan_enable_power(data);
if (error) {
dev_err(dev, "power up when resuming failed: %d\n", error);
goto err;
}
error = elan_initialize(data);
if (error)
dev_err(dev, "initialize when resuming failed: %d\n", error);
err:
enable_irq(data->client->irq);
return error;
}
static SIMPLE_DEV_PM_OPS(elan_pm_ops, elan_suspend, elan_resume);
static const struct i2c_device_id elan_id[] = {
{ DRIVER_NAME, 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, elan_id);
#ifdef CONFIG_ACPI
static const struct acpi_device_id elan_acpi_id[] = {
{ "ELAN0000", 0 },
{ "ELAN0100", 0 },
{ "ELAN0600", 0 },
{ "ELAN0602", 0 },
{ "ELAN0605", 0 },
{ "ELAN0608", 0 },
{ "ELAN0609", 0 },
{ "ELAN060B", 0 },
{ "ELAN060C", 0 },
{ "ELAN0611", 0 },
{ "ELAN0612", 0 },
{ "ELAN0618", 0 },
{ "ELAN061C", 0 },
{ "ELAN061D", 0 },
{ "ELAN0620", 0 },
{ "ELAN0622", 0 },
{ "ELAN1000", 0 },
{ }
};
MODULE_DEVICE_TABLE(acpi, elan_acpi_id);
#endif
#ifdef CONFIG_OF
static const struct of_device_id elan_of_match[] = {
{ .compatible = "elan,ekth3000" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, elan_of_match);
#endif
static struct i2c_driver elan_driver = {
.driver = {
.name = DRIVER_NAME,
.pm = &elan_pm_ops,
.acpi_match_table = ACPI_PTR(elan_acpi_id),
.of_match_table = of_match_ptr(elan_of_match),
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
.probe = elan_probe,
.id_table = elan_id,
};
module_i2c_driver(elan_driver);
MODULE_AUTHOR("Duson Lin <dusonlin@emc.com.tw>");
MODULE_DESCRIPTION("Elan I2C/SMBus Touchpad driver");
MODULE_LICENSE("GPL");