linux/arch/m32r/include/asm/spinlock.h

327 lines
7.7 KiB
C
Raw Normal View History

#ifndef _ASM_M32R_SPINLOCK_H
#define _ASM_M32R_SPINLOCK_H
/*
* linux/include/asm-m32r/spinlock.h
*
* M32R version:
* Copyright (C) 2001, 2002 Hitoshi Yamamoto
* Copyright (C) 2004 Hirokazu Takata <takata at linux-m32r.org>
*/
#include <linux/compiler.h>
#include <asm/atomic.h>
#include <asm/page.h>
/*
* Your basic SMP spinlocks, allowing only a single CPU anywhere
[PATCH] spinlock consolidation This patch (written by me and also containing many suggestions of Arjan van de Ven) does a major cleanup of the spinlock code. It does the following things: - consolidates and enhances the spinlock/rwlock debugging code - simplifies the asm/spinlock.h files - encapsulates the raw spinlock type and moves generic spinlock features (such as ->break_lock) into the generic code. - cleans up the spinlock code hierarchy to get rid of the spaghetti. Most notably there's now only a single variant of the debugging code, located in lib/spinlock_debug.c. (previously we had one SMP debugging variant per architecture, plus a separate generic one for UP builds) Also, i've enhanced the rwlock debugging facility, it will now track write-owners. There is new spinlock-owner/CPU-tracking on SMP builds too. All locks have lockup detection now, which will work for both soft and hard spin/rwlock lockups. The arch-level include files now only contain the minimally necessary subset of the spinlock code - all the rest that can be generalized now lives in the generic headers: include/asm-i386/spinlock_types.h | 16 include/asm-x86_64/spinlock_types.h | 16 I have also split up the various spinlock variants into separate files, making it easier to see which does what. The new layout is: SMP | UP ----------------------------|----------------------------------- asm/spinlock_types_smp.h | linux/spinlock_types_up.h linux/spinlock_types.h | linux/spinlock_types.h asm/spinlock_smp.h | linux/spinlock_up.h linux/spinlock_api_smp.h | linux/spinlock_api_up.h linux/spinlock.h | linux/spinlock.h /* * here's the role of the various spinlock/rwlock related include files: * * on SMP builds: * * asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the * initializers * * linux/spinlock_types.h: * defines the generic type and initializers * * asm/spinlock.h: contains the __raw_spin_*()/etc. lowlevel * implementations, mostly inline assembly code * * (also included on UP-debug builds:) * * linux/spinlock_api_smp.h: * contains the prototypes for the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. * * on UP builds: * * linux/spinlock_type_up.h: * contains the generic, simplified UP spinlock type. * (which is an empty structure on non-debug builds) * * linux/spinlock_types.h: * defines the generic type and initializers * * linux/spinlock_up.h: * contains the __raw_spin_*()/etc. version of UP * builds. (which are NOPs on non-debug, non-preempt * builds) * * (included on UP-non-debug builds:) * * linux/spinlock_api_up.h: * builds the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. */ All SMP and UP architectures are converted by this patch. arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via crosscompilers. m32r, mips, sh, sparc, have not been tested yet, but should be mostly fine. From: Grant Grundler <grundler@parisc-linux.org> Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU). Builds 32-bit SMP kernel (not booted or tested). I did not try to build non-SMP kernels. That should be trivial to fix up later if necessary. I converted bit ops atomic_hash lock to raw_spinlock_t. Doing so avoids some ugly nesting of linux/*.h and asm/*.h files. Those particular locks are well tested and contained entirely inside arch specific code. I do NOT expect any new issues to arise with them. If someone does ever need to use debug/metrics with them, then they will need to unravel this hairball between spinlocks, atomic ops, and bit ops that exist only because parisc has exactly one atomic instruction: LDCW (load and clear word). From: "Luck, Tony" <tony.luck@intel.com> ia64 fix Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjanv@infradead.org> Signed-off-by: Grant Grundler <grundler@parisc-linux.org> Cc: Matthew Wilcox <willy@debian.org> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se> Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 15:25:56 +08:00
*
* (the type definitions are in asm/spinlock_types.h)
*
* Simple spin lock operations. There are two variants, one clears IRQ's
* on the local processor, one does not.
*
* We make no fairness assumptions. They have a cost.
*/
#define arch_spin_is_locked(x) (*(volatile int *)(&(x)->slock) <= 0)
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
#define arch_spin_unlock_wait(x) \
do { cpu_relax(); } while (arch_spin_is_locked(x))
/**
* arch_spin_trylock - Try spin lock and return a result
* @lock: Pointer to the lock variable
*
* arch_spin_trylock() tries to get the lock and returns a result.
* On the m32r, the result value is 1 (= Success) or 0 (= Failure).
*/
static inline int arch_spin_trylock(arch_spinlock_t *lock)
{
int oldval;
unsigned long tmp1, tmp2;
/*
* lock->slock : =1 : unlock
* : <=0 : lock
* {
* oldval = lock->slock; <--+ need atomic operation
* lock->slock = 0; <--+
* }
*/
__asm__ __volatile__ (
"# arch_spin_trylock \n\t"
"ldi %1, #0; \n\t"
"mvfc %2, psw; \n\t"
"clrpsw #0x40 -> nop; \n\t"
DCACHE_CLEAR("%0", "r6", "%3")
"lock %0, @%3; \n\t"
"unlock %1, @%3; \n\t"
"mvtc %2, psw; \n\t"
: "=&r" (oldval), "=&r" (tmp1), "=&r" (tmp2)
: "r" (&lock->slock)
: "memory"
#ifdef CONFIG_CHIP_M32700_TS1
, "r6"
#endif /* CONFIG_CHIP_M32700_TS1 */
);
return (oldval > 0);
}
static inline void arch_spin_lock(arch_spinlock_t *lock)
{
unsigned long tmp0, tmp1;
/*
* lock->slock : =1 : unlock
* : <=0 : lock
*
* for ( ; ; ) {
* lock->slock -= 1; <-- need atomic operation
* if (lock->slock == 0) break;
* for ( ; lock->slock <= 0 ; );
* }
*/
__asm__ __volatile__ (
"# arch_spin_lock \n\t"
".fillinsn \n"
"1: \n\t"
"mvfc %1, psw; \n\t"
"clrpsw #0x40 -> nop; \n\t"
DCACHE_CLEAR("%0", "r6", "%2")
"lock %0, @%2; \n\t"
"addi %0, #-1; \n\t"
"unlock %0, @%2; \n\t"
"mvtc %1, psw; \n\t"
"bltz %0, 2f; \n\t"
LOCK_SECTION_START(".balign 4 \n\t")
".fillinsn \n"
"2: \n\t"
"ld %0, @%2; \n\t"
"bgtz %0, 1b; \n\t"
"bra 2b; \n\t"
LOCK_SECTION_END
: "=&r" (tmp0), "=&r" (tmp1)
: "r" (&lock->slock)
: "memory"
#ifdef CONFIG_CHIP_M32700_TS1
, "r6"
#endif /* CONFIG_CHIP_M32700_TS1 */
);
}
static inline void arch_spin_unlock(arch_spinlock_t *lock)
{
mb();
lock->slock = 1;
}
/*
* Read-write spinlocks, allowing multiple readers
* but only one writer.
*
* NOTE! it is quite common to have readers in interrupts
* but no interrupt writers. For those circumstances we
* can "mix" irq-safe locks - any writer needs to get a
* irq-safe write-lock, but readers can get non-irqsafe
* read-locks.
[PATCH] spinlock consolidation This patch (written by me and also containing many suggestions of Arjan van de Ven) does a major cleanup of the spinlock code. It does the following things: - consolidates and enhances the spinlock/rwlock debugging code - simplifies the asm/spinlock.h files - encapsulates the raw spinlock type and moves generic spinlock features (such as ->break_lock) into the generic code. - cleans up the spinlock code hierarchy to get rid of the spaghetti. Most notably there's now only a single variant of the debugging code, located in lib/spinlock_debug.c. (previously we had one SMP debugging variant per architecture, plus a separate generic one for UP builds) Also, i've enhanced the rwlock debugging facility, it will now track write-owners. There is new spinlock-owner/CPU-tracking on SMP builds too. All locks have lockup detection now, which will work for both soft and hard spin/rwlock lockups. The arch-level include files now only contain the minimally necessary subset of the spinlock code - all the rest that can be generalized now lives in the generic headers: include/asm-i386/spinlock_types.h | 16 include/asm-x86_64/spinlock_types.h | 16 I have also split up the various spinlock variants into separate files, making it easier to see which does what. The new layout is: SMP | UP ----------------------------|----------------------------------- asm/spinlock_types_smp.h | linux/spinlock_types_up.h linux/spinlock_types.h | linux/spinlock_types.h asm/spinlock_smp.h | linux/spinlock_up.h linux/spinlock_api_smp.h | linux/spinlock_api_up.h linux/spinlock.h | linux/spinlock.h /* * here's the role of the various spinlock/rwlock related include files: * * on SMP builds: * * asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the * initializers * * linux/spinlock_types.h: * defines the generic type and initializers * * asm/spinlock.h: contains the __raw_spin_*()/etc. lowlevel * implementations, mostly inline assembly code * * (also included on UP-debug builds:) * * linux/spinlock_api_smp.h: * contains the prototypes for the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. * * on UP builds: * * linux/spinlock_type_up.h: * contains the generic, simplified UP spinlock type. * (which is an empty structure on non-debug builds) * * linux/spinlock_types.h: * defines the generic type and initializers * * linux/spinlock_up.h: * contains the __raw_spin_*()/etc. version of UP * builds. (which are NOPs on non-debug, non-preempt * builds) * * (included on UP-non-debug builds:) * * linux/spinlock_api_up.h: * builds the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. */ All SMP and UP architectures are converted by this patch. arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via crosscompilers. m32r, mips, sh, sparc, have not been tested yet, but should be mostly fine. From: Grant Grundler <grundler@parisc-linux.org> Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU). Builds 32-bit SMP kernel (not booted or tested). I did not try to build non-SMP kernels. That should be trivial to fix up later if necessary. I converted bit ops atomic_hash lock to raw_spinlock_t. Doing so avoids some ugly nesting of linux/*.h and asm/*.h files. Those particular locks are well tested and contained entirely inside arch specific code. I do NOT expect any new issues to arise with them. If someone does ever need to use debug/metrics with them, then they will need to unravel this hairball between spinlocks, atomic ops, and bit ops that exist only because parisc has exactly one atomic instruction: LDCW (load and clear word). From: "Luck, Tony" <tony.luck@intel.com> ia64 fix Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjanv@infradead.org> Signed-off-by: Grant Grundler <grundler@parisc-linux.org> Cc: Matthew Wilcox <willy@debian.org> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se> Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 15:25:56 +08:00
*
* On x86, we implement read-write locks as a 32-bit counter
* with the high bit (sign) being the "contended" bit.
*
* The inline assembly is non-obvious. Think about it.
*
* Changed to use the same technique as rw semaphores. See
* semaphore.h for details. -ben
*/
/**
* read_can_lock - would read_trylock() succeed?
* @lock: the rwlock in question.
*/
#define arch_read_can_lock(x) ((int)(x)->lock > 0)
/**
* write_can_lock - would write_trylock() succeed?
* @lock: the rwlock in question.
*/
#define arch_write_can_lock(x) ((x)->lock == RW_LOCK_BIAS)
static inline void arch_read_lock(arch_rwlock_t *rw)
{
unsigned long tmp0, tmp1;
/*
* rw->lock : >0 : unlock
* : <=0 : lock
*
* for ( ; ; ) {
* rw->lock -= 1; <-- need atomic operation
* if (rw->lock >= 0) break;
* rw->lock += 1; <-- need atomic operation
* for ( ; rw->lock <= 0 ; );
* }
*/
__asm__ __volatile__ (
"# read_lock \n\t"
".fillinsn \n"
"1: \n\t"
"mvfc %1, psw; \n\t"
"clrpsw #0x40 -> nop; \n\t"
DCACHE_CLEAR("%0", "r6", "%2")
"lock %0, @%2; \n\t"
"addi %0, #-1; \n\t"
"unlock %0, @%2; \n\t"
"mvtc %1, psw; \n\t"
"bltz %0, 2f; \n\t"
LOCK_SECTION_START(".balign 4 \n\t")
".fillinsn \n"
"2: \n\t"
"clrpsw #0x40 -> nop; \n\t"
DCACHE_CLEAR("%0", "r6", "%2")
"lock %0, @%2; \n\t"
"addi %0, #1; \n\t"
"unlock %0, @%2; \n\t"
"mvtc %1, psw; \n\t"
".fillinsn \n"
"3: \n\t"
"ld %0, @%2; \n\t"
"bgtz %0, 1b; \n\t"
"bra 3b; \n\t"
LOCK_SECTION_END
: "=&r" (tmp0), "=&r" (tmp1)
: "r" (&rw->lock)
: "memory"
#ifdef CONFIG_CHIP_M32700_TS1
, "r6"
#endif /* CONFIG_CHIP_M32700_TS1 */
);
}
static inline void arch_write_lock(arch_rwlock_t *rw)
{
unsigned long tmp0, tmp1, tmp2;
/*
* rw->lock : =RW_LOCK_BIAS_STR : unlock
* : !=RW_LOCK_BIAS_STR : lock
*
* for ( ; ; ) {
* rw->lock -= RW_LOCK_BIAS_STR; <-- need atomic operation
* if (rw->lock == 0) break;
* rw->lock += RW_LOCK_BIAS_STR; <-- need atomic operation
* for ( ; rw->lock != RW_LOCK_BIAS_STR ; ) ;
* }
*/
__asm__ __volatile__ (
"# write_lock \n\t"
"seth %1, #high(" RW_LOCK_BIAS_STR "); \n\t"
"or3 %1, %1, #low(" RW_LOCK_BIAS_STR "); \n\t"
".fillinsn \n"
"1: \n\t"
"mvfc %2, psw; \n\t"
"clrpsw #0x40 -> nop; \n\t"
DCACHE_CLEAR("%0", "r7", "%3")
"lock %0, @%3; \n\t"
"sub %0, %1; \n\t"
"unlock %0, @%3; \n\t"
"mvtc %2, psw; \n\t"
"bnez %0, 2f; \n\t"
LOCK_SECTION_START(".balign 4 \n\t")
".fillinsn \n"
"2: \n\t"
"clrpsw #0x40 -> nop; \n\t"
DCACHE_CLEAR("%0", "r7", "%3")
"lock %0, @%3; \n\t"
"add %0, %1; \n\t"
"unlock %0, @%3; \n\t"
"mvtc %2, psw; \n\t"
".fillinsn \n"
"3: \n\t"
"ld %0, @%3; \n\t"
"beq %0, %1, 1b; \n\t"
"bra 3b; \n\t"
LOCK_SECTION_END
: "=&r" (tmp0), "=&r" (tmp1), "=&r" (tmp2)
: "r" (&rw->lock)
: "memory"
#ifdef CONFIG_CHIP_M32700_TS1
, "r7"
#endif /* CONFIG_CHIP_M32700_TS1 */
);
}
static inline void arch_read_unlock(arch_rwlock_t *rw)
{
unsigned long tmp0, tmp1;
__asm__ __volatile__ (
"# read_unlock \n\t"
"mvfc %1, psw; \n\t"
"clrpsw #0x40 -> nop; \n\t"
DCACHE_CLEAR("%0", "r6", "%2")
"lock %0, @%2; \n\t"
"addi %0, #1; \n\t"
"unlock %0, @%2; \n\t"
"mvtc %1, psw; \n\t"
: "=&r" (tmp0), "=&r" (tmp1)
: "r" (&rw->lock)
: "memory"
#ifdef CONFIG_CHIP_M32700_TS1
, "r6"
#endif /* CONFIG_CHIP_M32700_TS1 */
);
}
static inline void arch_write_unlock(arch_rwlock_t *rw)
{
unsigned long tmp0, tmp1, tmp2;
__asm__ __volatile__ (
"# write_unlock \n\t"
"seth %1, #high(" RW_LOCK_BIAS_STR "); \n\t"
"or3 %1, %1, #low(" RW_LOCK_BIAS_STR "); \n\t"
"mvfc %2, psw; \n\t"
"clrpsw #0x40 -> nop; \n\t"
DCACHE_CLEAR("%0", "r7", "%3")
"lock %0, @%3; \n\t"
"add %0, %1; \n\t"
"unlock %0, @%3; \n\t"
"mvtc %2, psw; \n\t"
: "=&r" (tmp0), "=&r" (tmp1), "=&r" (tmp2)
: "r" (&rw->lock)
: "memory"
#ifdef CONFIG_CHIP_M32700_TS1
, "r7"
#endif /* CONFIG_CHIP_M32700_TS1 */
);
}
static inline int arch_read_trylock(arch_rwlock_t *lock)
{
atomic_t *count = (atomic_t*)lock;
if (atomic_dec_return(count) >= 0)
return 1;
atomic_inc(count);
return 0;
}
static inline int arch_write_trylock(arch_rwlock_t *lock)
{
atomic_t *count = (atomic_t *)lock;
if (atomic_sub_and_test(RW_LOCK_BIAS, count))
return 1;
atomic_add(RW_LOCK_BIAS, count);
return 0;
}
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
#define arch_spin_relax(lock) cpu_relax()
#define arch_read_relax(lock) cpu_relax()
#define arch_write_relax(lock) cpu_relax()
#endif /* _ASM_M32R_SPINLOCK_H */