2017-04-04 18:31:42 +08:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2005 Topspin Communications. All rights reserved.
|
|
|
|
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
|
|
|
|
* Copyright (c) 2005-2017 Mellanox Technologies. All rights reserved.
|
|
|
|
* Copyright (c) 2005 Voltaire, Inc. All rights reserved.
|
|
|
|
* Copyright (c) 2005 PathScale, Inc. All rights reserved.
|
|
|
|
*
|
|
|
|
* This software is available to you under a choice of one of two
|
|
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
|
|
* General Public License (GPL) Version 2, available from the file
|
|
|
|
* COPYING in the main directory of this source tree, or the
|
|
|
|
* OpenIB.org BSD license below:
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or
|
|
|
|
* without modification, are permitted provided that the following
|
|
|
|
* conditions are met:
|
|
|
|
*
|
|
|
|
* - Redistributions of source code must retain the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer.
|
|
|
|
*
|
|
|
|
* - Redistributions in binary form must reproduce the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer in the documentation and/or other materials
|
|
|
|
* provided with the distribution.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
* SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef RDMA_CORE_H
|
|
|
|
#define RDMA_CORE_H
|
|
|
|
|
|
|
|
#include <linux/idr.h>
|
|
|
|
#include <rdma/uverbs_types.h>
|
2017-08-03 21:06:55 +08:00
|
|
|
#include <rdma/uverbs_ioctl.h>
|
2017-04-04 18:31:42 +08:00
|
|
|
#include <rdma/ib_verbs.h>
|
|
|
|
#include <linux/mutex.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These functions initialize the context and cleanups its uobjects.
|
|
|
|
* The context has a list of objects which is protected by a mutex
|
|
|
|
* on the context. initialize_ucontext should be called when we create
|
|
|
|
* a context.
|
|
|
|
* cleanup_ucontext removes all uobjects from the context and puts them.
|
|
|
|
*/
|
|
|
|
void uverbs_cleanup_ucontext(struct ib_ucontext *ucontext, bool device_removed);
|
|
|
|
void uverbs_initialize_ucontext(struct ib_ucontext *ucontext);
|
|
|
|
|
2017-04-04 18:31:44 +08:00
|
|
|
/*
|
|
|
|
* uverbs_uobject_get is called in order to increase the reference count on
|
|
|
|
* an uobject. This is useful when a handler wants to keep the uobject's memory
|
|
|
|
* alive, regardless if this uobject is still alive in the context's objects
|
|
|
|
* repository. Objects are put via uverbs_uobject_put.
|
|
|
|
*/
|
|
|
|
void uverbs_uobject_get(struct ib_uobject *uobject);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In order to indicate we no longer needs this uobject, uverbs_uobject_put
|
|
|
|
* is called. When the reference count is decreased, the uobject is freed.
|
|
|
|
* For example, this is used when attaching a completion channel to a CQ.
|
|
|
|
*/
|
|
|
|
void uverbs_uobject_put(struct ib_uobject *uobject);
|
|
|
|
|
2017-04-04 18:31:46 +08:00
|
|
|
/* Indicate this fd is no longer used by this consumer, but its memory isn't
|
|
|
|
* necessarily released yet. When the last reference is put, we release the
|
|
|
|
* memory. After this call is executed, calling uverbs_uobject_get isn't
|
|
|
|
* allowed.
|
|
|
|
* This must be called from the release file_operations of the file!
|
|
|
|
*/
|
|
|
|
void uverbs_close_fd(struct file *f);
|
|
|
|
|
2017-08-03 21:06:55 +08:00
|
|
|
/*
|
|
|
|
* Get an ib_uobject that corresponds to the given id from ucontext, assuming
|
|
|
|
* the object is from the given type. Lock it to the required access when
|
|
|
|
* applicable.
|
|
|
|
* This function could create (access == NEW), destroy (access == DESTROY)
|
|
|
|
* or unlock (access == READ || access == WRITE) objects if required.
|
IB/core: Add support to finalize objects in one transaction
The new ioctl based infrastructure either commits or rollbacks
all objects of the method as one transaction. In order to do
that, we introduce a notion of dealing with a collection of
objects that are related to a specific method.
This also requires adding a notion of a method and attribute.
A method contains a hash of attributes, where each bucket
contains several attributes. The attributes are hashed according
to their namespace which resides in the four upper bits of the id.
For example, an object could be a CQ, which has an action of CREATE_CQ.
This action has multiple attributes. For example, the CQ's new handle
and the comp_channel. Each layer in this hierarchy - objects, methods
and attributes is split into namespaces. The basic example for that is
one namespace representing the default entities and another one
representing the driver specific entities.
When declaring these methods and attributes, we actually declare
their specifications. When a method is executed, we actually
allocates some space to hold auxiliary information. This auxiliary
information contains meta-data about the required objects, such
as pointers to their type information, pointers to the uobjects
themselves (if exist), etc.
The specification, along with the auxiliary information we allocated
and filled is given to the finalize_objects function.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-08-03 21:06:56 +08:00
|
|
|
* The action will be finalized only when uverbs_finalize_object or
|
|
|
|
* uverbs_finalize_objects are called.
|
2017-08-03 21:06:55 +08:00
|
|
|
*/
|
|
|
|
struct ib_uobject *uverbs_get_uobject_from_context(const struct uverbs_obj_type *type_attrs,
|
|
|
|
struct ib_ucontext *ucontext,
|
|
|
|
enum uverbs_obj_access access,
|
|
|
|
int id);
|
|
|
|
int uverbs_finalize_object(struct ib_uobject *uobj,
|
|
|
|
enum uverbs_obj_access access,
|
|
|
|
bool commit);
|
IB/core: Add support to finalize objects in one transaction
The new ioctl based infrastructure either commits or rollbacks
all objects of the method as one transaction. In order to do
that, we introduce a notion of dealing with a collection of
objects that are related to a specific method.
This also requires adding a notion of a method and attribute.
A method contains a hash of attributes, where each bucket
contains several attributes. The attributes are hashed according
to their namespace which resides in the four upper bits of the id.
For example, an object could be a CQ, which has an action of CREATE_CQ.
This action has multiple attributes. For example, the CQ's new handle
and the comp_channel. Each layer in this hierarchy - objects, methods
and attributes is split into namespaces. The basic example for that is
one namespace representing the default entities and another one
representing the driver specific entities.
When declaring these methods and attributes, we actually declare
their specifications. When a method is executed, we actually
allocates some space to hold auxiliary information. This auxiliary
information contains meta-data about the required objects, such
as pointers to their type information, pointers to the uobjects
themselves (if exist), etc.
The specification, along with the auxiliary information we allocated
and filled is given to the finalize_objects function.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-08-03 21:06:56 +08:00
|
|
|
/*
|
|
|
|
* Note that certain finalize stages could return a status:
|
|
|
|
* (a) alloc_commit could return a failure if the object is committed at the
|
|
|
|
* same time when the context is destroyed.
|
|
|
|
* (b) remove_commit could fail if the object wasn't destroyed successfully.
|
|
|
|
* Since multiple objects could be finalized in one transaction, it is very NOT
|
|
|
|
* recommended to have several finalize actions which have side effects.
|
|
|
|
* For example, it's NOT recommended to have a certain action which has both
|
|
|
|
* a commit action and a destroy action or two destroy objects in the same
|
|
|
|
* action. The rule of thumb is to have one destroy or commit action with
|
|
|
|
* multiple lookups.
|
|
|
|
* The first non zero return value of finalize_object is returned from this
|
|
|
|
* function. For example, this could happen when we couldn't destroy an
|
|
|
|
* object.
|
|
|
|
*/
|
|
|
|
int uverbs_finalize_objects(struct uverbs_attr_bundle *attrs_bundle,
|
|
|
|
struct uverbs_attr_spec_hash * const *spec_hash,
|
|
|
|
size_t num,
|
|
|
|
bool commit);
|
2017-08-03 21:06:55 +08:00
|
|
|
|
2017-04-04 18:31:42 +08:00
|
|
|
#endif /* RDMA_CORE_H */
|