linux/fs/f2fs/data.c

2140 lines
50 KiB
C
Raw Normal View History

/*
* fs/f2fs/data.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/buffer_head.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/prefetch.h>
#include <linux/uio.h>
#include <linux/cleancache.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "trace.h"
#include <trace/events/f2fs.h>
static struct kmem_cache *extent_tree_slab;
static struct kmem_cache *extent_node_slab;
static void f2fs_read_end_io(struct bio *bio, int err)
{
Merge branch 'for-3.14/core' of git://git.kernel.dk/linux-block Pull core block IO changes from Jens Axboe: "The major piece in here is the immutable bio_ve series from Kent, the rest is fairly minor. It was supposed to go in last round, but various issues pushed it to this release instead. The pull request contains: - Various smaller blk-mq fixes from different folks. Nothing major here, just minor fixes and cleanups. - Fix for a memory leak in the error path in the block ioctl code from Christian Engelmayer. - Header export fix from CaiZhiyong. - Finally the immutable biovec changes from Kent Overstreet. This enables some nice future work on making arbitrarily sized bios possible, and splitting more efficient. Related fixes to immutable bio_vecs: - dm-cache immutable fixup from Mike Snitzer. - btrfs immutable fixup from Muthu Kumar. - bio-integrity fix from Nic Bellinger, which is also going to stable" * 'for-3.14/core' of git://git.kernel.dk/linux-block: (44 commits) xtensa: fixup simdisk driver to work with immutable bio_vecs block/blk-mq-cpu.c: use hotcpu_notifier() blk-mq: for_each_* macro correctness block: Fix memory leak in rw_copy_check_uvector() handling bio-integrity: Fix bio_integrity_verify segment start bug block: remove unrelated header files and export symbol blk-mq: uses page->list incorrectly blk-mq: use __smp_call_function_single directly btrfs: fix missing increment of bi_remaining Revert "block: Warn and free bio if bi_end_io is not set" block: Warn and free bio if bi_end_io is not set blk-mq: fix initializing request's start time block: blk-mq: don't export blk_mq_free_queue() block: blk-mq: make blk_sync_queue support mq block: blk-mq: support draining mq queue dm cache: increment bi_remaining when bi_end_io is restored block: fixup for generic bio chaining block: Really silence spurious compiler warnings block: Silence spurious compiler warnings block: Kill bio_pair_split() ...
2014-01-31 03:19:05 +08:00
struct bio_vec *bvec;
int i;
if (f2fs_bio_encrypted(bio)) {
if (err) {
f2fs_release_crypto_ctx(bio->bi_private);
} else {
f2fs_end_io_crypto_work(bio->bi_private, bio);
return;
}
}
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
if (!err) {
SetPageUptodate(page);
} else {
ClearPageUptodate(page);
SetPageError(page);
}
unlock_page(page);
}
bio_put(bio);
}
static void f2fs_write_end_io(struct bio *bio, int err)
{
struct f2fs_sb_info *sbi = bio->bi_private;
Merge branch 'for-3.14/core' of git://git.kernel.dk/linux-block Pull core block IO changes from Jens Axboe: "The major piece in here is the immutable bio_ve series from Kent, the rest is fairly minor. It was supposed to go in last round, but various issues pushed it to this release instead. The pull request contains: - Various smaller blk-mq fixes from different folks. Nothing major here, just minor fixes and cleanups. - Fix for a memory leak in the error path in the block ioctl code from Christian Engelmayer. - Header export fix from CaiZhiyong. - Finally the immutable biovec changes from Kent Overstreet. This enables some nice future work on making arbitrarily sized bios possible, and splitting more efficient. Related fixes to immutable bio_vecs: - dm-cache immutable fixup from Mike Snitzer. - btrfs immutable fixup from Muthu Kumar. - bio-integrity fix from Nic Bellinger, which is also going to stable" * 'for-3.14/core' of git://git.kernel.dk/linux-block: (44 commits) xtensa: fixup simdisk driver to work with immutable bio_vecs block/blk-mq-cpu.c: use hotcpu_notifier() blk-mq: for_each_* macro correctness block: Fix memory leak in rw_copy_check_uvector() handling bio-integrity: Fix bio_integrity_verify segment start bug block: remove unrelated header files and export symbol blk-mq: uses page->list incorrectly blk-mq: use __smp_call_function_single directly btrfs: fix missing increment of bi_remaining Revert "block: Warn and free bio if bi_end_io is not set" block: Warn and free bio if bi_end_io is not set blk-mq: fix initializing request's start time block: blk-mq: don't export blk_mq_free_queue() block: blk-mq: make blk_sync_queue support mq block: blk-mq: support draining mq queue dm cache: increment bi_remaining when bi_end_io is restored block: fixup for generic bio chaining block: Really silence spurious compiler warnings block: Silence spurious compiler warnings block: Kill bio_pair_split() ...
2014-01-31 03:19:05 +08:00
struct bio_vec *bvec;
int i;
Merge branch 'for-3.14/core' of git://git.kernel.dk/linux-block Pull core block IO changes from Jens Axboe: "The major piece in here is the immutable bio_ve series from Kent, the rest is fairly minor. It was supposed to go in last round, but various issues pushed it to this release instead. The pull request contains: - Various smaller blk-mq fixes from different folks. Nothing major here, just minor fixes and cleanups. - Fix for a memory leak in the error path in the block ioctl code from Christian Engelmayer. - Header export fix from CaiZhiyong. - Finally the immutable biovec changes from Kent Overstreet. This enables some nice future work on making arbitrarily sized bios possible, and splitting more efficient. Related fixes to immutable bio_vecs: - dm-cache immutable fixup from Mike Snitzer. - btrfs immutable fixup from Muthu Kumar. - bio-integrity fix from Nic Bellinger, which is also going to stable" * 'for-3.14/core' of git://git.kernel.dk/linux-block: (44 commits) xtensa: fixup simdisk driver to work with immutable bio_vecs block/blk-mq-cpu.c: use hotcpu_notifier() blk-mq: for_each_* macro correctness block: Fix memory leak in rw_copy_check_uvector() handling bio-integrity: Fix bio_integrity_verify segment start bug block: remove unrelated header files and export symbol blk-mq: uses page->list incorrectly blk-mq: use __smp_call_function_single directly btrfs: fix missing increment of bi_remaining Revert "block: Warn and free bio if bi_end_io is not set" block: Warn and free bio if bi_end_io is not set blk-mq: fix initializing request's start time block: blk-mq: don't export blk_mq_free_queue() block: blk-mq: make blk_sync_queue support mq block: blk-mq: support draining mq queue dm cache: increment bi_remaining when bi_end_io is restored block: fixup for generic bio chaining block: Really silence spurious compiler warnings block: Silence spurious compiler warnings block: Kill bio_pair_split() ...
2014-01-31 03:19:05 +08:00
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
f2fs_restore_and_release_control_page(&page);
Merge branch 'for-3.14/core' of git://git.kernel.dk/linux-block Pull core block IO changes from Jens Axboe: "The major piece in here is the immutable bio_ve series from Kent, the rest is fairly minor. It was supposed to go in last round, but various issues pushed it to this release instead. The pull request contains: - Various smaller blk-mq fixes from different folks. Nothing major here, just minor fixes and cleanups. - Fix for a memory leak in the error path in the block ioctl code from Christian Engelmayer. - Header export fix from CaiZhiyong. - Finally the immutable biovec changes from Kent Overstreet. This enables some nice future work on making arbitrarily sized bios possible, and splitting more efficient. Related fixes to immutable bio_vecs: - dm-cache immutable fixup from Mike Snitzer. - btrfs immutable fixup from Muthu Kumar. - bio-integrity fix from Nic Bellinger, which is also going to stable" * 'for-3.14/core' of git://git.kernel.dk/linux-block: (44 commits) xtensa: fixup simdisk driver to work with immutable bio_vecs block/blk-mq-cpu.c: use hotcpu_notifier() blk-mq: for_each_* macro correctness block: Fix memory leak in rw_copy_check_uvector() handling bio-integrity: Fix bio_integrity_verify segment start bug block: remove unrelated header files and export symbol blk-mq: uses page->list incorrectly blk-mq: use __smp_call_function_single directly btrfs: fix missing increment of bi_remaining Revert "block: Warn and free bio if bi_end_io is not set" block: Warn and free bio if bi_end_io is not set blk-mq: fix initializing request's start time block: blk-mq: don't export blk_mq_free_queue() block: blk-mq: make blk_sync_queue support mq block: blk-mq: support draining mq queue dm cache: increment bi_remaining when bi_end_io is restored block: fixup for generic bio chaining block: Really silence spurious compiler warnings block: Silence spurious compiler warnings block: Kill bio_pair_split() ...
2014-01-31 03:19:05 +08:00
if (unlikely(err)) {
set_page_dirty(page);
set_bit(AS_EIO, &page->mapping->flags);
f2fs_stop_checkpoint(sbi);
}
end_page_writeback(page);
dec_page_count(sbi, F2FS_WRITEBACK);
Merge branch 'for-3.14/core' of git://git.kernel.dk/linux-block Pull core block IO changes from Jens Axboe: "The major piece in here is the immutable bio_ve series from Kent, the rest is fairly minor. It was supposed to go in last round, but various issues pushed it to this release instead. The pull request contains: - Various smaller blk-mq fixes from different folks. Nothing major here, just minor fixes and cleanups. - Fix for a memory leak in the error path in the block ioctl code from Christian Engelmayer. - Header export fix from CaiZhiyong. - Finally the immutable biovec changes from Kent Overstreet. This enables some nice future work on making arbitrarily sized bios possible, and splitting more efficient. Related fixes to immutable bio_vecs: - dm-cache immutable fixup from Mike Snitzer. - btrfs immutable fixup from Muthu Kumar. - bio-integrity fix from Nic Bellinger, which is also going to stable" * 'for-3.14/core' of git://git.kernel.dk/linux-block: (44 commits) xtensa: fixup simdisk driver to work with immutable bio_vecs block/blk-mq-cpu.c: use hotcpu_notifier() blk-mq: for_each_* macro correctness block: Fix memory leak in rw_copy_check_uvector() handling bio-integrity: Fix bio_integrity_verify segment start bug block: remove unrelated header files and export symbol blk-mq: uses page->list incorrectly blk-mq: use __smp_call_function_single directly btrfs: fix missing increment of bi_remaining Revert "block: Warn and free bio if bi_end_io is not set" block: Warn and free bio if bi_end_io is not set blk-mq: fix initializing request's start time block: blk-mq: don't export blk_mq_free_queue() block: blk-mq: make blk_sync_queue support mq block: blk-mq: support draining mq queue dm cache: increment bi_remaining when bi_end_io is restored block: fixup for generic bio chaining block: Really silence spurious compiler warnings block: Silence spurious compiler warnings block: Kill bio_pair_split() ...
2014-01-31 03:19:05 +08:00
}
if (!get_pages(sbi, F2FS_WRITEBACK) &&
!list_empty(&sbi->cp_wait.task_list))
wake_up(&sbi->cp_wait);
bio_put(bio);
}
/*
* Low-level block read/write IO operations.
*/
static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
int npages, bool is_read)
{
struct bio *bio;
/* No failure on bio allocation */
bio = bio_alloc(GFP_NOIO, npages);
bio->bi_bdev = sbi->sb->s_bdev;
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
bio->bi_private = is_read ? NULL : sbi;
return bio;
}
static void __submit_merged_bio(struct f2fs_bio_info *io)
{
struct f2fs_io_info *fio = &io->fio;
if (!io->bio)
return;
if (is_read_io(fio->rw))
trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
else
trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
submit_bio(fio->rw, io->bio);
io->bio = NULL;
}
void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
enum page_type type, int rw)
{
enum page_type btype = PAGE_TYPE_OF_BIO(type);
struct f2fs_bio_info *io;
io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
down_write(&io->io_rwsem);
/* change META to META_FLUSH in the checkpoint procedure */
if (type >= META_FLUSH) {
io->fio.type = META_FLUSH;
if (test_opt(sbi, NOBARRIER))
io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
else
io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
}
__submit_merged_bio(io);
up_write(&io->io_rwsem);
}
/*
* Fill the locked page with data located in the block address.
* Return unlocked page.
*/
int f2fs_submit_page_bio(struct f2fs_io_info *fio)
{
struct bio *bio;
struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
trace_f2fs_submit_page_bio(page, fio);
f2fs_trace_ios(fio, 0);
/* Allocate a new bio */
bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
bio_put(bio);
f2fs_put_page(page, 1);
return -EFAULT;
}
submit_bio(fio->rw, bio);
return 0;
}
void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
{
struct f2fs_sb_info *sbi = fio->sbi;
enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
struct f2fs_bio_info *io;
bool is_read = is_read_io(fio->rw);
struct page *bio_page;
io = is_read ? &sbi->read_io : &sbi->write_io[btype];
verify_block_addr(sbi, fio->blk_addr);
down_write(&io->io_rwsem);
if (!is_read)
inc_page_count(sbi, F2FS_WRITEBACK);
if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
io->fio.rw != fio->rw))
__submit_merged_bio(io);
alloc_new:
if (io->bio == NULL) {
int bio_blocks = MAX_BIO_BLOCKS(sbi);
io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
io->fio = *fio;
}
bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
PAGE_CACHE_SIZE) {
__submit_merged_bio(io);
goto alloc_new;
}
io->last_block_in_bio = fio->blk_addr;
f2fs_trace_ios(fio, 0);
up_write(&io->io_rwsem);
trace_f2fs_submit_page_mbio(fio->page, fio);
}
/*
* Lock ordering for the change of data block address:
* ->data_page
* ->node_page
* update block addresses in the node page
*/
void set_data_blkaddr(struct dnode_of_data *dn)
{
struct f2fs_node *rn;
__le32 *addr_array;
struct page *node_page = dn->node_page;
unsigned int ofs_in_node = dn->ofs_in_node;
f2fs_wait_on_page_writeback(node_page, NODE);
rn = F2FS_NODE(node_page);
/* Get physical address of data block */
addr_array = blkaddr_in_node(rn);
addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
set_page_dirty(node_page);
}
int reserve_new_block(struct dnode_of_data *dn)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
return -EPERM;
if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
return -ENOSPC;
trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
dn->data_blkaddr = NEW_ADDR;
set_data_blkaddr(dn);
mark_inode_dirty(dn->inode);
sync_inode_page(dn);
return 0;
}
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
{
bool need_put = dn->inode_page ? false : true;
int err;
err = get_dnode_of_data(dn, index, ALLOC_NODE);
if (err)
return err;
if (dn->data_blkaddr == NULL_ADDR)
err = reserve_new_block(dn);
if (err || need_put)
f2fs_put_dnode(dn);
return err;
}
static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
pgoff_t start_fofs, end_fofs;
block_t start_blkaddr;
read_lock(&fi->ext_lock);
if (fi->ext.len == 0) {
read_unlock(&fi->ext_lock);
return false;
}
stat_inc_total_hit(inode->i_sb);
start_fofs = fi->ext.fofs;
end_fofs = fi->ext.fofs + fi->ext.len - 1;
start_blkaddr = fi->ext.blk;
if (pgofs >= start_fofs && pgofs <= end_fofs) {
*ei = fi->ext;
stat_inc_read_hit(inode->i_sb);
read_unlock(&fi->ext_lock);
return true;
}
read_unlock(&fi->ext_lock);
return false;
}
static bool update_extent_info(struct inode *inode, pgoff_t fofs,
block_t blkaddr)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
pgoff_t start_fofs, end_fofs;
block_t start_blkaddr, end_blkaddr;
int need_update = true;
write_lock(&fi->ext_lock);
start_fofs = fi->ext.fofs;
end_fofs = fi->ext.fofs + fi->ext.len - 1;
start_blkaddr = fi->ext.blk;
end_blkaddr = fi->ext.blk + fi->ext.len - 1;
/* Drop and initialize the matched extent */
if (fi->ext.len == 1 && fofs == start_fofs)
fi->ext.len = 0;
/* Initial extent */
if (fi->ext.len == 0) {
if (blkaddr != NULL_ADDR) {
fi->ext.fofs = fofs;
fi->ext.blk = blkaddr;
fi->ext.len = 1;
}
goto end_update;
}
/* Front merge */
if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
fi->ext.fofs--;
fi->ext.blk--;
fi->ext.len++;
goto end_update;
}
/* Back merge */
if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
fi->ext.len++;
goto end_update;
}
/* Split the existing extent */
if (fi->ext.len > 1 &&
fofs >= start_fofs && fofs <= end_fofs) {
if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
fi->ext.len = fofs - start_fofs;
} else {
fi->ext.fofs = fofs + 1;
fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
fi->ext.len -= fofs - start_fofs + 1;
}
} else {
need_update = false;
}
/* Finally, if the extent is very fragmented, let's drop the cache. */
if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
fi->ext.len = 0;
set_inode_flag(fi, FI_NO_EXTENT);
need_update = true;
}
end_update:
write_unlock(&fi->ext_lock);
return need_update;
}
static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct rb_node *parent, struct rb_node **p)
{
struct extent_node *en;
en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
if (!en)
return NULL;
en->ei = *ei;
INIT_LIST_HEAD(&en->list);
rb_link_node(&en->rb_node, parent, p);
rb_insert_color(&en->rb_node, &et->root);
et->count++;
atomic_inc(&sbi->total_ext_node);
return en;
}
static void __detach_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_node *en)
{
rb_erase(&en->rb_node, &et->root);
et->count--;
atomic_dec(&sbi->total_ext_node);
if (et->cached_en == en)
et->cached_en = NULL;
}
static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
nid_t ino)
{
struct extent_tree *et;
down_read(&sbi->extent_tree_lock);
et = radix_tree_lookup(&sbi->extent_tree_root, ino);
if (!et) {
up_read(&sbi->extent_tree_lock);
return NULL;
}
atomic_inc(&et->refcount);
up_read(&sbi->extent_tree_lock);
return et;
}
static struct extent_tree *__grab_extent_tree(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
nid_t ino = inode->i_ino;
down_write(&sbi->extent_tree_lock);
et = radix_tree_lookup(&sbi->extent_tree_root, ino);
if (!et) {
et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
memset(et, 0, sizeof(struct extent_tree));
et->ino = ino;
et->root = RB_ROOT;
et->cached_en = NULL;
rwlock_init(&et->lock);
atomic_set(&et->refcount, 0);
et->count = 0;
sbi->total_ext_tree++;
}
atomic_inc(&et->refcount);
up_write(&sbi->extent_tree_lock);
return et;
}
static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
unsigned int fofs)
{
struct rb_node *node = et->root.rb_node;
struct extent_node *en;
if (et->cached_en) {
struct extent_info *cei = &et->cached_en->ei;
if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
return et->cached_en;
}
while (node) {
en = rb_entry(node, struct extent_node, rb_node);
if (fofs < en->ei.fofs) {
node = node->rb_left;
} else if (fofs >= en->ei.fofs + en->ei.len) {
node = node->rb_right;
} else {
et->cached_en = en;
return en;
}
}
return NULL;
}
static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_node *en)
{
struct extent_node *prev;
struct rb_node *node;
node = rb_prev(&en->rb_node);
if (!node)
return NULL;
prev = rb_entry(node, struct extent_node, rb_node);
if (__is_back_mergeable(&en->ei, &prev->ei)) {
en->ei.fofs = prev->ei.fofs;
en->ei.blk = prev->ei.blk;
en->ei.len += prev->ei.len;
__detach_extent_node(sbi, et, prev);
return prev;
}
return NULL;
}
static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_node *en)
{
struct extent_node *next;
struct rb_node *node;
node = rb_next(&en->rb_node);
if (!node)
return NULL;
next = rb_entry(node, struct extent_node, rb_node);
if (__is_front_mergeable(&en->ei, &next->ei)) {
en->ei.len += next->ei.len;
__detach_extent_node(sbi, et, next);
return next;
}
return NULL;
}
static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct extent_node **den)
{
struct rb_node **p = &et->root.rb_node;
struct rb_node *parent = NULL;
struct extent_node *en;
while (*p) {
parent = *p;
en = rb_entry(parent, struct extent_node, rb_node);
if (ei->fofs < en->ei.fofs) {
if (__is_front_mergeable(ei, &en->ei)) {
f2fs_bug_on(sbi, !den);
en->ei.fofs = ei->fofs;
en->ei.blk = ei->blk;
en->ei.len += ei->len;
*den = __try_back_merge(sbi, et, en);
return en;
}
p = &(*p)->rb_left;
} else if (ei->fofs >= en->ei.fofs + en->ei.len) {
if (__is_back_mergeable(ei, &en->ei)) {
f2fs_bug_on(sbi, !den);
en->ei.len += ei->len;
*den = __try_front_merge(sbi, et, en);
return en;
}
p = &(*p)->rb_right;
} else {
f2fs_bug_on(sbi, 1);
}
}
return __attach_extent_node(sbi, et, ei, parent, p);
}
static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, bool free_all)
{
struct rb_node *node, *next;
struct extent_node *en;
unsigned int count = et->count;
node = rb_first(&et->root);
while (node) {
next = rb_next(node);
en = rb_entry(node, struct extent_node, rb_node);
if (free_all) {
spin_lock(&sbi->extent_lock);
if (!list_empty(&en->list))
list_del_init(&en->list);
spin_unlock(&sbi->extent_lock);
}
if (free_all || list_empty(&en->list)) {
__detach_extent_node(sbi, et, en);
kmem_cache_free(extent_node_slab, en);
}
node = next;
}
return count - et->count;
}
static void f2fs_init_extent_tree(struct inode *inode,
struct f2fs_extent *i_ext)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
struct extent_node *en;
struct extent_info ei;
if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
return;
et = __grab_extent_tree(inode);
write_lock(&et->lock);
if (et->count)
goto out;
set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
en = __insert_extent_tree(sbi, et, &ei, NULL);
if (en) {
et->cached_en = en;
spin_lock(&sbi->extent_lock);
list_add_tail(&en->list, &sbi->extent_list);
spin_unlock(&sbi->extent_lock);
}
out:
write_unlock(&et->lock);
atomic_dec(&et->refcount);
}
static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
struct extent_node *en;
trace_f2fs_lookup_extent_tree_start(inode, pgofs);
et = __find_extent_tree(sbi, inode->i_ino);
if (!et)
return false;
read_lock(&et->lock);
en = __lookup_extent_tree(et, pgofs);
if (en) {
*ei = en->ei;
spin_lock(&sbi->extent_lock);
if (!list_empty(&en->list))
list_move_tail(&en->list, &sbi->extent_list);
spin_unlock(&sbi->extent_lock);
stat_inc_read_hit(sbi->sb);
}
stat_inc_total_hit(sbi->sb);
read_unlock(&et->lock);
trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
atomic_dec(&et->refcount);
return en ? true : false;
}
static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
block_t blkaddr)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
struct extent_node *den = NULL;
struct extent_info ei, dei;
unsigned int endofs;
trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
et = __grab_extent_tree(inode);
write_lock(&et->lock);
/* 1. lookup and remove existing extent info in cache */
en = __lookup_extent_tree(et, fofs);
if (!en)
goto update_extent;
dei = en->ei;
__detach_extent_node(sbi, et, en);
/* 2. if extent can be split more, split and insert the left part */
if (dei.len > 1) {
/* insert left part of split extent into cache */
if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
set_extent_info(&ei, dei.fofs, dei.blk,
fofs - dei.fofs);
en1 = __insert_extent_tree(sbi, et, &ei, NULL);
}
/* insert right part of split extent into cache */
endofs = dei.fofs + dei.len - 1;
if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
set_extent_info(&ei, fofs + 1,
fofs - dei.fofs + dei.blk, endofs - fofs);
en2 = __insert_extent_tree(sbi, et, &ei, NULL);
}
}
update_extent:
/* 3. update extent in extent cache */
if (blkaddr) {
set_extent_info(&ei, fofs, blkaddr, 1);
en3 = __insert_extent_tree(sbi, et, &ei, &den);
}
/* 4. update in global extent list */
spin_lock(&sbi->extent_lock);
if (en && !list_empty(&en->list))
list_del(&en->list);
/*
* en1 and en2 split from en, they will become more and more smaller
* fragments after splitting several times. So if the length is smaller
* than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
*/
if (en1)
list_add_tail(&en1->list, &sbi->extent_list);
if (en2)
list_add_tail(&en2->list, &sbi->extent_list);
if (en3) {
if (list_empty(&en3->list))
list_add_tail(&en3->list, &sbi->extent_list);
else
list_move_tail(&en3->list, &sbi->extent_list);
}
if (den && !list_empty(&den->list))
list_del(&den->list);
spin_unlock(&sbi->extent_lock);
/* 5. release extent node */
if (en)
kmem_cache_free(extent_node_slab, en);
if (den)
kmem_cache_free(extent_node_slab, den);
write_unlock(&et->lock);
atomic_dec(&et->refcount);
}
void f2fs_preserve_extent_tree(struct inode *inode)
{
struct extent_tree *et;
struct extent_info *ext = &F2FS_I(inode)->ext;
bool sync = false;
if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
return;
et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
if (!et) {
if (ext->len) {
ext->len = 0;
update_inode_page(inode);
}
return;
}
read_lock(&et->lock);
if (et->count) {
struct extent_node *en;
if (et->cached_en) {
en = et->cached_en;
} else {
struct rb_node *node = rb_first(&et->root);
if (!node)
node = rb_last(&et->root);
en = rb_entry(node, struct extent_node, rb_node);
}
if (__is_extent_same(ext, &en->ei))
goto out;
*ext = en->ei;
sync = true;
} else if (ext->len) {
ext->len = 0;
sync = true;
}
out:
read_unlock(&et->lock);
atomic_dec(&et->refcount);
if (sync)
update_inode_page(inode);
}
void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
{
struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
struct extent_node *en, *tmp;
unsigned long ino = F2FS_ROOT_INO(sbi);
struct radix_tree_iter iter;
void **slot;
unsigned int found;
unsigned int node_cnt = 0, tree_cnt = 0;
if (!test_opt(sbi, EXTENT_CACHE))
return;
if (available_free_memory(sbi, EXTENT_CACHE))
return;
spin_lock(&sbi->extent_lock);
list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
if (!nr_shrink--)
break;
list_del_init(&en->list);
}
spin_unlock(&sbi->extent_lock);
down_read(&sbi->extent_tree_lock);
while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
unsigned i;
ino = treevec[found - 1]->ino + 1;
for (i = 0; i < found; i++) {
struct extent_tree *et = treevec[i];
atomic_inc(&et->refcount);
write_lock(&et->lock);
node_cnt += __free_extent_tree(sbi, et, false);
write_unlock(&et->lock);
atomic_dec(&et->refcount);
}
}
up_read(&sbi->extent_tree_lock);
down_write(&sbi->extent_tree_lock);
radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
F2FS_ROOT_INO(sbi)) {
struct extent_tree *et = (struct extent_tree *)*slot;
if (!atomic_read(&et->refcount) && !et->count) {
radix_tree_delete(&sbi->extent_tree_root, et->ino);
kmem_cache_free(extent_tree_slab, et);
sbi->total_ext_tree--;
tree_cnt++;
}
}
up_write(&sbi->extent_tree_lock);
trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
}
void f2fs_destroy_extent_tree(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
unsigned int node_cnt = 0;
if (!test_opt(sbi, EXTENT_CACHE))
return;
et = __find_extent_tree(sbi, inode->i_ino);
if (!et)
goto out;
/* free all extent info belong to this extent tree */
write_lock(&et->lock);
node_cnt = __free_extent_tree(sbi, et, true);
write_unlock(&et->lock);
atomic_dec(&et->refcount);
/* try to find and delete extent tree entry in radix tree */
down_write(&sbi->extent_tree_lock);
et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
if (!et) {
up_write(&sbi->extent_tree_lock);
goto out;
}
f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
kmem_cache_free(extent_tree_slab, et);
sbi->total_ext_tree--;
up_write(&sbi->extent_tree_lock);
out:
trace_f2fs_destroy_extent_tree(inode, node_cnt);
return;
}
void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
{
if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
f2fs_init_extent_tree(inode, i_ext);
write_lock(&F2FS_I(inode)->ext_lock);
get_extent_info(&F2FS_I(inode)->ext, *i_ext);
write_unlock(&F2FS_I(inode)->ext_lock);
}
static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
return false;
if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
return f2fs_lookup_extent_tree(inode, pgofs, ei);
return lookup_extent_info(inode, pgofs, ei);
}
void f2fs_update_extent_cache(struct dnode_of_data *dn)
{
struct f2fs_inode_info *fi = F2FS_I(dn->inode);
pgoff_t fofs;
f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
if (is_inode_flag_set(fi, FI_NO_EXTENT))
return;
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
dn->ofs_in_node;
if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
return f2fs_update_extent_tree(dn->inode, fofs,
dn->data_blkaddr);
if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
sync_inode_page(dn);
}
struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
{
struct address_space *mapping = inode->i_mapping;
struct dnode_of_data dn;
struct page *page;
struct extent_info ei;
int err;
struct f2fs_io_info fio = {
.sbi = F2FS_I_SB(inode),
.type = DATA,
.rw = rw,
.encrypted_page = NULL,
};
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
return read_mapping_page(mapping, index, NULL);
page = grab_cache_page(mapping, index);
if (!page)
return ERR_PTR(-ENOMEM);
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
dn.data_blkaddr = ei.blk + index - ei.fofs;
goto got_it;
}
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
if (err) {
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
f2fs_put_dnode(&dn);
if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
f2fs_put_page(page, 1);
return ERR_PTR(-ENOENT);
}
got_it:
if (PageUptodate(page)) {
unlock_page(page);
return page;
}
/*
* A new dentry page is allocated but not able to be written, since its
* new inode page couldn't be allocated due to -ENOSPC.
* In such the case, its blkaddr can be remained as NEW_ADDR.
* see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
*/
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
SetPageUptodate(page);
unlock_page(page);
return page;
}
fio.blk_addr = dn.data_blkaddr;
fio.page = page;
err = f2fs_submit_page_bio(&fio);
if (err)
return ERR_PTR(err);
return page;
}
struct page *find_data_page(struct inode *inode, pgoff_t index)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
page = find_get_page(mapping, index);
if (page && PageUptodate(page))
return page;
f2fs_put_page(page, 0);
page = get_read_data_page(inode, index, READ_SYNC);
if (IS_ERR(page))
return page;
if (PageUptodate(page))
return page;
wait_on_page_locked(page);
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 0);
return ERR_PTR(-EIO);
}
return page;
}
/*
* If it tries to access a hole, return an error.
* Because, the callers, functions in dir.c and GC, should be able to know
* whether this page exists or not.
*/
struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
repeat:
page = get_read_data_page(inode, index, READ_SYNC);
if (IS_ERR(page))
return page;
/* wait for read completion */
lock_page(page);
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 1);
return ERR_PTR(-EIO);
}
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
return page;
}
/*
* Caller ensures that this data page is never allocated.
* A new zero-filled data page is allocated in the page cache.
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 15:21:29 +08:00
*
* Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
* f2fs_unlock_op().
* Note that, ipage is set only by make_empty_dir.
*/
struct page *get_new_data_page(struct inode *inode,
struct page *ipage, pgoff_t index, bool new_i_size)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
struct dnode_of_data dn;
int err;
repeat:
page = grab_cache_page(mapping, index);
if (!page)
return ERR_PTR(-ENOMEM);
set_new_dnode(&dn, inode, ipage, NULL, 0);
err = f2fs_reserve_block(&dn, index);
if (err) {
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
if (!ipage)
f2fs_put_dnode(&dn);
if (PageUptodate(page))
goto got_it;
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
SetPageUptodate(page);
} else {
f2fs_put_page(page, 1);
page = get_read_data_page(inode, index, READ_SYNC);
if (IS_ERR(page))
goto repeat;
/* wait for read completion */
lock_page(page);
}
got_it:
if (new_i_size &&
i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
/* Only the directory inode sets new_i_size */
set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
}
return page;
}
static int __allocate_data_block(struct dnode_of_data *dn)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
struct f2fs_inode_info *fi = F2FS_I(dn->inode);
struct f2fs_summary sum;
struct node_info ni;
int seg = CURSEG_WARM_DATA;
pgoff_t fofs;
if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
return -EPERM;
dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
if (dn->data_blkaddr == NEW_ADDR)
goto alloc;
if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
return -ENOSPC;
alloc:
get_node_info(sbi, dn->nid, &ni);
set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
seg = CURSEG_DIRECT_IO;
allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
&sum, seg);
/* direct IO doesn't use extent cache to maximize the performance */
set_data_blkaddr(dn);
/* update i_size */
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
dn->ofs_in_node;
if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
return 0;
}
static void __allocate_data_blocks(struct inode *inode, loff_t offset,
size_t count)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
u64 start = F2FS_BYTES_TO_BLK(offset);
u64 len = F2FS_BYTES_TO_BLK(count);
bool allocated;
u64 end_offset;
while (len) {
f2fs_balance_fs(sbi);
f2fs_lock_op(sbi);
/* When reading holes, we need its node page */
set_new_dnode(&dn, inode, NULL, NULL, 0);
if (get_dnode_of_data(&dn, start, ALLOC_NODE))
goto out;
allocated = false;
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
while (dn.ofs_in_node < end_offset && len) {
block_t blkaddr;
blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
if (__allocate_data_block(&dn))
goto sync_out;
allocated = true;
}
len--;
start++;
dn.ofs_in_node++;
}
if (allocated)
sync_inode_page(&dn);
f2fs_put_dnode(&dn);
f2fs_unlock_op(sbi);
}
return;
sync_out:
if (allocated)
sync_inode_page(&dn);
f2fs_put_dnode(&dn);
out:
f2fs_unlock_op(sbi);
return;
}
/*
* f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
* f2fs_map_blocks structure.
* If original data blocks are allocated, then give them to blockdev.
* Otherwise,
* a. preallocate requested block addresses
* b. do not use extent cache for better performance
* c. give the block addresses to blockdev
*/
static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
int create, bool fiemap)
{
unsigned int maxblocks = map->m_len;
struct dnode_of_data dn;
int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
pgoff_t pgofs, end_offset;
int err = 0, ofs = 1;
struct extent_info ei;
bool allocated = false;
map->m_len = 0;
map->m_flags = 0;
/* it only supports block size == page size */
pgofs = (pgoff_t)map->m_lblk;
if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
map->m_pblk = ei.blk + pgofs - ei.fofs;
map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
map->m_flags = F2FS_MAP_MAPPED;
goto out;
}
if (create)
f2fs_lock_op(F2FS_I_SB(inode));
/* When reading holes, we need its node page */
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, pgofs, mode);
if (err) {
if (err == -ENOENT)
err = 0;
goto unlock_out;
}
if (dn.data_blkaddr == NEW_ADDR && !fiemap)
goto put_out;
if (dn.data_blkaddr != NULL_ADDR) {
map->m_flags = F2FS_MAP_MAPPED;
map->m_pblk = dn.data_blkaddr;
if (dn.data_blkaddr == NEW_ADDR)
map->m_flags |= F2FS_MAP_UNWRITTEN;
} else if (create) {
err = __allocate_data_block(&dn);
if (err)
goto put_out;
allocated = true;
map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
map->m_pblk = dn.data_blkaddr;
} else {
goto put_out;
}
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
map->m_len = 1;
dn.ofs_in_node++;
pgofs++;
get_next:
if (dn.ofs_in_node >= end_offset) {
if (allocated)
sync_inode_page(&dn);
allocated = false;
f2fs_put_dnode(&dn);
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, pgofs, mode);
if (err) {
if (err == -ENOENT)
err = 0;
goto unlock_out;
}
if (dn.data_blkaddr == NEW_ADDR && !fiemap)
goto put_out;
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
}
if (maxblocks > map->m_len) {
block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
if (blkaddr == NULL_ADDR && create) {
err = __allocate_data_block(&dn);
if (err)
goto sync_out;
allocated = true;
map->m_flags |= F2FS_MAP_NEW;
blkaddr = dn.data_blkaddr;
}
/* Give more consecutive addresses for the readahead */
if ((map->m_pblk != NEW_ADDR &&
blkaddr == (map->m_pblk + ofs)) ||
(map->m_pblk == NEW_ADDR &&
blkaddr == NEW_ADDR)) {
ofs++;
dn.ofs_in_node++;
pgofs++;
map->m_len++;
goto get_next;
}
}
sync_out:
if (allocated)
sync_inode_page(&dn);
put_out:
f2fs_put_dnode(&dn);
unlock_out:
if (create)
f2fs_unlock_op(F2FS_I_SB(inode));
out:
trace_f2fs_map_blocks(inode, map, err);
return err;
}
static int __get_data_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh, int create, bool fiemap)
{
struct f2fs_map_blocks map;
int ret;
map.m_lblk = iblock;
map.m_len = bh->b_size >> inode->i_blkbits;
ret = f2fs_map_blocks(inode, &map, create, fiemap);
if (!ret) {
map_bh(bh, inode->i_sb, map.m_pblk);
bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
bh->b_size = map.m_len << inode->i_blkbits;
}
return ret;
}
static int get_data_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
return __get_data_block(inode, iblock, bh_result, create, false);
}
static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
return __get_data_block(inode, iblock, bh_result, create, true);
}
static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
{
return (offset >> inode->i_blkbits);
}
static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
{
return (blk << inode->i_blkbits);
}
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
u64 start, u64 len)
{
struct buffer_head map_bh;
sector_t start_blk, last_blk;
loff_t isize = i_size_read(inode);
u64 logical = 0, phys = 0, size = 0;
u32 flags = 0;
bool past_eof = false, whole_file = false;
int ret = 0;
ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
if (ret)
return ret;
mutex_lock(&inode->i_mutex);
if (len >= isize) {
whole_file = true;
len = isize;
}
if (logical_to_blk(inode, len) == 0)
len = blk_to_logical(inode, 1);
start_blk = logical_to_blk(inode, start);
last_blk = logical_to_blk(inode, start + len - 1);
next:
memset(&map_bh, 0, sizeof(struct buffer_head));
map_bh.b_size = len;
ret = get_data_block_fiemap(inode, start_blk, &map_bh, 0);
if (ret)
goto out;
/* HOLE */
if (!buffer_mapped(&map_bh)) {
start_blk++;
if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
past_eof = 1;
if (past_eof && size) {
flags |= FIEMAP_EXTENT_LAST;
ret = fiemap_fill_next_extent(fieinfo, logical,
phys, size, flags);
} else if (size) {
ret = fiemap_fill_next_extent(fieinfo, logical,
phys, size, flags);
size = 0;
}
/* if we have holes up to/past EOF then we're done */
if (start_blk > last_blk || past_eof || ret)
goto out;
} else {
if (start_blk > last_blk && !whole_file) {
ret = fiemap_fill_next_extent(fieinfo, logical,
phys, size, flags);
goto out;
}
/*
* if size != 0 then we know we already have an extent
* to add, so add it.
*/
if (size) {
ret = fiemap_fill_next_extent(fieinfo, logical,
phys, size, flags);
if (ret)
goto out;
}
logical = blk_to_logical(inode, start_blk);
phys = blk_to_logical(inode, map_bh.b_blocknr);
size = map_bh.b_size;
flags = 0;
if (buffer_unwritten(&map_bh))
flags = FIEMAP_EXTENT_UNWRITTEN;
start_blk += logical_to_blk(inode, size);
/*
* If we are past the EOF, then we need to make sure as
* soon as we find a hole that the last extent we found
* is marked with FIEMAP_EXTENT_LAST
*/
if (!past_eof && logical + size >= isize)
past_eof = true;
}
cond_resched();
if (fatal_signal_pending(current))
ret = -EINTR;
else
goto next;
out:
if (ret == 1)
ret = 0;
mutex_unlock(&inode->i_mutex);
return ret;
}
/*
* This function was originally taken from fs/mpage.c, and customized for f2fs.
* Major change was from block_size == page_size in f2fs by default.
*/
static int f2fs_mpage_readpages(struct address_space *mapping,
struct list_head *pages, struct page *page,
unsigned nr_pages)
{
struct bio *bio = NULL;
unsigned page_idx;
sector_t last_block_in_bio = 0;
struct inode *inode = mapping->host;
const unsigned blkbits = inode->i_blkbits;
const unsigned blocksize = 1 << blkbits;
sector_t block_in_file;
sector_t last_block;
sector_t last_block_in_file;
sector_t block_nr;
struct block_device *bdev = inode->i_sb->s_bdev;
struct f2fs_map_blocks map;
map.m_pblk = 0;
map.m_lblk = 0;
map.m_len = 0;
map.m_flags = 0;
for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
prefetchw(&page->flags);
if (pages) {
page = list_entry(pages->prev, struct page, lru);
list_del(&page->lru);
if (add_to_page_cache_lru(page, mapping,
page->index, GFP_KERNEL))
goto next_page;
}
block_in_file = (sector_t)page->index;
last_block = block_in_file + nr_pages;
last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
blkbits;
if (last_block > last_block_in_file)
last_block = last_block_in_file;
/*
* Map blocks using the previous result first.
*/
if ((map.m_flags & F2FS_MAP_MAPPED) &&
block_in_file > map.m_lblk &&
block_in_file < (map.m_lblk + map.m_len))
goto got_it;
/*
* Then do more f2fs_map_blocks() calls until we are
* done with this page.
*/
map.m_flags = 0;
if (block_in_file < last_block) {
map.m_lblk = block_in_file;
map.m_len = last_block - block_in_file;
if (f2fs_map_blocks(inode, &map, 0, false))
goto set_error_page;
}
got_it:
if ((map.m_flags & F2FS_MAP_MAPPED)) {
block_nr = map.m_pblk + block_in_file - map.m_lblk;
SetPageMappedToDisk(page);
if (!PageUptodate(page) && !cleancache_get_page(page)) {
SetPageUptodate(page);
goto confused;
}
} else {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
SetPageUptodate(page);
unlock_page(page);
goto next_page;
}
/*
* This page will go to BIO. Do we need to send this
* BIO off first?
*/
if (bio && (last_block_in_bio != block_nr - 1)) {
submit_and_realloc:
submit_bio(READ, bio);
bio = NULL;
}
if (bio == NULL) {
struct f2fs_crypto_ctx *ctx = NULL;
if (f2fs_encrypted_inode(inode) &&
S_ISREG(inode->i_mode)) {
struct page *cpage;
ctx = f2fs_get_crypto_ctx(inode);
if (IS_ERR(ctx))
goto set_error_page;
/* wait the page to be moved by cleaning */
cpage = find_lock_page(
META_MAPPING(F2FS_I_SB(inode)),
block_nr);
if (cpage) {
f2fs_wait_on_page_writeback(cpage,
DATA);
f2fs_put_page(cpage, 1);
}
}
bio = bio_alloc(GFP_KERNEL,
min_t(int, nr_pages, bio_get_nr_vecs(bdev)));
if (!bio) {
if (ctx)
f2fs_release_crypto_ctx(ctx);
goto set_error_page;
}
bio->bi_bdev = bdev;
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
bio->bi_end_io = f2fs_read_end_io;
bio->bi_private = ctx;
}
if (bio_add_page(bio, page, blocksize, 0) < blocksize)
goto submit_and_realloc;
last_block_in_bio = block_nr;
goto next_page;
set_error_page:
SetPageError(page);
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
unlock_page(page);
goto next_page;
confused:
if (bio) {
submit_bio(READ, bio);
bio = NULL;
}
unlock_page(page);
next_page:
if (pages)
page_cache_release(page);
}
BUG_ON(pages && !list_empty(pages));
if (bio)
submit_bio(READ, bio);
return 0;
}
static int f2fs_read_data_page(struct file *file, struct page *page)
{
struct inode *inode = page->mapping->host;
int ret = -EAGAIN;
trace_f2fs_readpage(page, DATA);
/* If the file has inline data, try to read it directly */
if (f2fs_has_inline_data(inode))
ret = f2fs_read_inline_data(inode, page);
if (ret == -EAGAIN)
ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
return ret;
}
static int f2fs_read_data_pages(struct file *file,
struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
struct inode *inode = file->f_mapping->host;
/* If the file has inline data, skip readpages */
if (f2fs_has_inline_data(inode))
return 0;
return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
}
int do_write_data_page(struct f2fs_io_info *fio)
{
struct page *page = fio->page;
struct inode *inode = page->mapping->host;
struct dnode_of_data dn;
int err = 0;
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
if (err)
return err;
fio->blk_addr = dn.data_blkaddr;
/* This page is already truncated */
if (fio->blk_addr == NULL_ADDR) {
ClearPageUptodate(page);
goto out_writepage;
}
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
fio->encrypted_page = f2fs_encrypt(inode, fio->page);
if (IS_ERR(fio->encrypted_page)) {
err = PTR_ERR(fio->encrypted_page);
goto out_writepage;
}
}
set_page_writeback(page);
/*
* If current allocation needs SSR,
* it had better in-place writes for updated data.
*/
if (unlikely(fio->blk_addr != NEW_ADDR &&
!is_cold_data(page) &&
need_inplace_update(inode))) {
rewrite_data_page(fio);
set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
trace_f2fs_do_write_data_page(page, IPU);
} else {
write_data_page(&dn, fio);
set_data_blkaddr(&dn);
f2fs_update_extent_cache(&dn);
trace_f2fs_do_write_data_page(page, OPU);
set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
if (page->index == 0)
set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
}
out_writepage:
f2fs_put_dnode(&dn);
return err;
}
static int f2fs_write_data_page(struct page *page,
struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
loff_t i_size = i_size_read(inode);
const pgoff_t end_index = ((unsigned long long) i_size)
>> PAGE_CACHE_SHIFT;
unsigned offset = 0;
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 15:21:29 +08:00
bool need_balance_fs = false;
int err = 0;
struct f2fs_io_info fio = {
.sbi = sbi,
.type = DATA,
.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
.page = page,
.encrypted_page = NULL,
};
trace_f2fs_writepage(page, DATA);
if (page->index < end_index)
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 15:21:29 +08:00
goto write;
/*
* If the offset is out-of-range of file size,
* this page does not have to be written to disk.
*/
offset = i_size & (PAGE_CACHE_SIZE - 1);
if ((page->index >= end_index + 1) || !offset)
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 15:21:29 +08:00
goto out;
zero_user_segment(page, offset, PAGE_CACHE_SIZE);
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 15:21:29 +08:00
write:
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto redirty_out;
if (f2fs_is_drop_cache(inode))
goto out;
if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
available_free_memory(sbi, BASE_CHECK))
goto redirty_out;
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 15:21:29 +08:00
/* Dentry blocks are controlled by checkpoint */
if (S_ISDIR(inode->i_mode)) {
if (unlikely(f2fs_cp_error(sbi)))
goto redirty_out;
err = do_write_data_page(&fio);
goto done;
}
/* we should bypass data pages to proceed the kworkder jobs */
if (unlikely(f2fs_cp_error(sbi))) {
SetPageError(page);
goto out;
}
if (!wbc->for_reclaim)
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 15:21:29 +08:00
need_balance_fs = true;
else if (has_not_enough_free_secs(sbi, 0))
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 15:21:29 +08:00
goto redirty_out;
err = -EAGAIN;
f2fs_lock_op(sbi);
if (f2fs_has_inline_data(inode))
err = f2fs_write_inline_data(inode, page);
if (err == -EAGAIN)
err = do_write_data_page(&fio);
f2fs_unlock_op(sbi);
done:
if (err && err != -ENOENT)
goto redirty_out;
clear_cold_data(page);
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 15:21:29 +08:00
out:
inode_dec_dirty_pages(inode);
if (err)
ClearPageUptodate(page);
unlock_page(page);
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 15:21:29 +08:00
if (need_balance_fs)
f2fs_balance_fs(sbi);
if (wbc->for_reclaim)
f2fs_submit_merged_bio(sbi, DATA, WRITE);
return 0;
redirty_out:
redirty_page_for_writepage(wbc, page);
return AOP_WRITEPAGE_ACTIVATE;
}
static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
void *data)
{
struct address_space *mapping = data;
int ret = mapping->a_ops->writepage(page, wbc);
mapping_set_error(mapping, ret);
return ret;
}
static int f2fs_write_data_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct inode *inode = mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
bool locked = false;
int ret;
long diff;
trace_f2fs_writepages(mapping->host, wbc, DATA);
/* deal with chardevs and other special file */
if (!mapping->a_ops->writepage)
return 0;
if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
available_free_memory(sbi, DIRTY_DENTS))
goto skip_write;
f2fs: avoid to trigger writepage during POR This patch doesn't make any effect on previous behavior, since f2fs_write_data_page bypasses writing the page during POR. But, the difference is that this patch avoids holding writepages mutex. This is to avoid the following false warning, since this can happen only when mount and shutdown are triggered at the same time. ====================================================== [ INFO: possible circular locking dependency detected ] 4.0.0-rc1+ #3 Tainted: G O ------------------------------------------------------- kworker/u8:0/2270 is trying to acquire lock: (&sbi->gc_mutex){+.+.+.}, at: [<ffffffffa02bdd33>] f2fs_balance_fs+0x73/0x90 [f2fs] but task is already holding lock: (&sbi->writepages){+.+...}, at: [<ffffffffa02b261b>] f2fs_write_data_pages+0xcb/0x3a0 [f2fs] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (&sbi->writepages){+.+...}: [<ffffffff810e2b11>] lock_acquire+0xe1/0x2f0 [<ffffffff8185e1b3>] mutex_lock_nested+0x63/0x530 [<ffffffffa02b261b>] f2fs_write_data_pages+0xcb/0x3a0 [f2fs] [<ffffffff811c38c1>] do_writepages+0x21/0x50 [<ffffffff8126c5a6>] __writeback_single_inode+0x76/0xbf0 [<ffffffff8126e23a>] writeback_single_inode+0xea/0x1c0 [<ffffffff8126e425>] write_inode_now+0x95/0xa0 [<ffffffff81259dab>] iput+0x20b/0x3f0 [<ffffffffa02c1c8b>] recover_data.constprop.14+0x26b/0xa80 [f2fs] [<ffffffffa02c2776>] recover_fsync_data+0x2b6/0x5e0 [f2fs] [<ffffffffa02a9744>] f2fs_fill_super+0xb24/0xb90 [f2fs] [<ffffffff8123d7f4>] mount_bdev+0x1a4/0x1e0 [<ffffffffa02a3c85>] f2fs_mount+0x15/0x20 [f2fs] [<ffffffff8123e159>] mount_fs+0x39/0x180 [<ffffffff8125e51b>] vfs_kern_mount+0x6b/0x160 [<ffffffff81261554>] do_mount+0x204/0xbe0 [<ffffffff8126223b>] SyS_mount+0x8b/0xe0 [<ffffffff81863e6d>] system_call_fastpath+0x16/0x1b -> #1 (&sbi->cp_mutex){+.+...}: [<ffffffff810e2b11>] lock_acquire+0xe1/0x2f0 [<ffffffff8185e1b3>] mutex_lock_nested+0x63/0x530 [<ffffffffa02acbf2>] write_checkpoint+0x42/0x1230 [f2fs] [<ffffffffa02a847d>] f2fs_sync_fs+0x9d/0x2a0 [f2fs] [<ffffffff81272f82>] sync_filesystem+0x82/0xb0 [<ffffffff8123c214>] generic_shutdown_super+0x34/0x100 [<ffffffff8123c5f7>] kill_block_super+0x27/0x70 [<ffffffffa02a3c60>] kill_f2fs_super+0x20/0x30 [f2fs] [<ffffffff8123ca49>] deactivate_locked_super+0x49/0x80 [<ffffffff8123d05e>] deactivate_super+0x4e/0x70 [<ffffffff8125df63>] cleanup_mnt+0x43/0x90 [<ffffffff8125e002>] __cleanup_mnt+0x12/0x20 [<ffffffff810a82e4>] task_work_run+0xc4/0xf0 [<ffffffff8101f0bd>] do_notify_resume+0x8d/0xa0 [<ffffffff81864141>] int_signal+0x12/0x17 -> #0 (&sbi->gc_mutex){+.+.+.}: [<ffffffff810e2866>] __lock_acquire+0x1ac6/0x1c90 [<ffffffff810e2b11>] lock_acquire+0xe1/0x2f0 [<ffffffff8185e1b3>] mutex_lock_nested+0x63/0x530 [<ffffffffa02bdd33>] f2fs_balance_fs+0x73/0x90 [f2fs] [<ffffffffa02b5938>] f2fs_write_data_page+0x348/0x5b0 [f2fs] [<ffffffffa02af9da>] __f2fs_writepage+0x1a/0x50 [f2fs] [<ffffffff811c1b54>] write_cache_pages+0x274/0x6f0 [<ffffffffa02b2630>] f2fs_write_data_pages+0xe0/0x3a0 [f2fs] [<ffffffff811c38c1>] do_writepages+0x21/0x50 [<ffffffff8126c5a6>] __writeback_single_inode+0x76/0xbf0 [<ffffffff8126d44a>] writeback_sb_inodes+0x32a/0x710 [<ffffffff8126d8cf>] __writeback_inodes_wb+0x9f/0xd0 [<ffffffff8126dcdb>] wb_writeback+0x3db/0x850 [<ffffffff8126e848>] bdi_writeback_workfn+0x148/0x980 [<ffffffff810a3782>] process_one_work+0x1e2/0x840 [<ffffffff810a3f01>] worker_thread+0x121/0x460 [<ffffffff810a9dc8>] kthread+0xf8/0x110 [<ffffffff81863dbc>] ret_from_fork+0x7c/0xb0 Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2015-02-28 05:37:39 +08:00
/* during POR, we don't need to trigger writepage at all. */
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto skip_write;
diff = nr_pages_to_write(sbi, DATA, wbc);
if (!S_ISDIR(inode->i_mode)) {
mutex_lock(&sbi->writepages);
locked = true;
}
ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
if (locked)
mutex_unlock(&sbi->writepages);
f2fs_submit_merged_bio(sbi, DATA, WRITE);
remove_dirty_dir_inode(inode);
wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
return ret;
skip_write:
wbc->pages_skipped += get_dirty_pages(inode);
return 0;
}
static void f2fs_write_failed(struct address_space *mapping, loff_t to)
{
struct inode *inode = mapping->host;
if (to > inode->i_size) {
truncate_pagecache(inode, inode->i_size);
truncate_blocks(inode, inode->i_size, true);
}
}
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *page, *ipage;
pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
struct dnode_of_data dn;
int err = 0;
trace_f2fs_write_begin(inode, pos, len, flags);
f2fs_balance_fs(sbi);
/*
* We should check this at this moment to avoid deadlock on inode page
* and #0 page. The locking rule for inline_data conversion should be:
* lock_page(page #0) -> lock_page(inode_page)
*/
if (index != 0) {
err = f2fs_convert_inline_inode(inode);
if (err)
goto fail;
}
repeat:
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page) {
err = -ENOMEM;
goto fail;
}
*pagep = page;
f2fs: use rw_sem instead of fs_lock(locks mutex) The fs_locks is used to block other ops(ex, recovery) when doing checkpoint. And each other operate routine(besides checkpoint) needs to acquire a fs_lock, there is a terrible problem here, if these are too many concurrency threads acquiring fs_lock, so that they will block each other and may lead to some performance problem, but this is not the phenomenon we want to see. Though there are some optimization patches introduced to enhance the usage of fs_lock, but the thorough solution is using a *rw_sem* to replace the fs_lock. Checkpoint routine takes write_sem, and other ops take read_sem, so that we can block other ops(ex, recovery) when doing checkpoint, and other ops will not disturb each other, this can avoid the problem described above completely. Because of the weakness of rw_sem, the above change may introduce a potential problem that the checkpoint thread might get starved if other threads are intensively locking the read semaphore for I/O.(Pointed out by Xu Jin) In order to avoid this, a wait_list is introduced, the appending read semaphore ops will be dropped into the wait_list if checkpoint thread is waiting for write semaphore, and will be waked up when checkpoint thread gives up write semaphore. Thanks to Kim's previous review and test, and will be very glad to see other guys' performance tests about this patch. V2: -fix the potential starvation problem. -use more suitable func name suggested by Xu Jin. Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> [Jaegeuk Kim: adjust minor coding standard] Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-09-27 18:08:30 +08:00
f2fs_lock_op(sbi);
/* check inline_data */
ipage = get_node_page(sbi, inode->i_ino);
if (IS_ERR(ipage)) {
err = PTR_ERR(ipage);
goto unlock_fail;
}
set_new_dnode(&dn, inode, ipage, ipage, 0);
if (f2fs_has_inline_data(inode)) {
if (pos + len <= MAX_INLINE_DATA) {
read_inline_data(page, ipage);
set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
sync_inode_page(&dn);
goto put_next;
}
err = f2fs_convert_inline_page(&dn, page);
if (err)
goto put_fail;
}
err = f2fs_reserve_block(&dn, index);
if (err)
goto put_fail;
put_next:
f2fs_put_dnode(&dn);
f2fs_unlock_op(sbi);
if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
return 0;
f2fs_wait_on_page_writeback(page, DATA);
if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
unsigned start = pos & (PAGE_CACHE_SIZE - 1);
unsigned end = start + len;
/* Reading beyond i_size is simple: memset to zero */
zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
goto out;
}
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
} else {
struct f2fs_io_info fio = {
.sbi = sbi,
.type = DATA,
.rw = READ_SYNC,
.blk_addr = dn.data_blkaddr,
.page = page,
.encrypted_page = NULL,
};
err = f2fs_submit_page_bio(&fio);
if (err)
goto fail;
lock_page(page);
if (unlikely(!PageUptodate(page))) {
f2fs_put_page(page, 1);
err = -EIO;
goto fail;
}
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
/* avoid symlink page */
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
err = f2fs_decrypt_one(inode, page);
if (err) {
f2fs_put_page(page, 1);
goto fail;
}
}
}
out:
SetPageUptodate(page);
clear_cold_data(page);
return 0;
put_fail:
f2fs_put_dnode(&dn);
unlock_fail:
f2fs_unlock_op(sbi);
f2fs_put_page(page, 1);
fail:
f2fs_write_failed(mapping, pos + len);
return err;
}
static int f2fs_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = page->mapping->host;
trace_f2fs_write_end(inode, pos, len, copied);
set_page_dirty(page);
if (pos + copied > i_size_read(inode)) {
i_size_write(inode, pos + copied);
mark_inode_dirty(inode);
update_inode_page(inode);
}
f2fs_put_page(page, 1);
return copied;
}
static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
loff_t offset)
{
unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
if (iov_iter_rw(iter) == READ)
return 0;
if (offset & blocksize_mask)
return -EINVAL;
if (iov_iter_alignment(iter) & blocksize_mask)
return -EINVAL;
return 0;
}
static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
loff_t offset)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_iter_count(iter);
int err;
/* we don't need to use inline_data strictly */
if (f2fs_has_inline_data(inode)) {
err = f2fs_convert_inline_inode(inode);
if (err)
return err;
}
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
return 0;
if (check_direct_IO(inode, iter, offset))
return 0;
trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
if (iov_iter_rw(iter) == WRITE)
__allocate_data_blocks(inode, offset, count);
err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
if (err < 0 && iov_iter_rw(iter) == WRITE)
f2fs_write_failed(mapping, offset + count);
trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
return err;
}
void f2fs_invalidate_page(struct page *page, unsigned int offset,
unsigned int length)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
(offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
return;
if (PageDirty(page)) {
if (inode->i_ino == F2FS_META_INO(sbi))
dec_page_count(sbi, F2FS_DIRTY_META);
else if (inode->i_ino == F2FS_NODE_INO(sbi))
dec_page_count(sbi, F2FS_DIRTY_NODES);
else
inode_dec_dirty_pages(inode);
}
ClearPagePrivate(page);
}
int f2fs_release_page(struct page *page, gfp_t wait)
{
/* If this is dirty page, keep PagePrivate */
if (PageDirty(page))
return 0;
ClearPagePrivate(page);
return 1;
}
static int f2fs_set_data_page_dirty(struct page *page)
{
struct address_space *mapping = page->mapping;
struct inode *inode = mapping->host;
trace_f2fs_set_page_dirty(page, DATA);
SetPageUptodate(page);
if (f2fs_is_atomic_file(inode)) {
register_inmem_page(inode, page);
return 1;
}
if (!PageDirty(page)) {
__set_page_dirty_nobuffers(page);
update_dirty_page(inode, page);
return 1;
}
return 0;
}
static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
{
struct inode *inode = mapping->host;
/* we don't need to use inline_data strictly */
if (f2fs_has_inline_data(inode)) {
int err = f2fs_convert_inline_inode(inode);
if (err)
return err;
}
return generic_block_bmap(mapping, block, get_data_block);
}
void init_extent_cache_info(struct f2fs_sb_info *sbi)
{
INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
init_rwsem(&sbi->extent_tree_lock);
INIT_LIST_HEAD(&sbi->extent_list);
spin_lock_init(&sbi->extent_lock);
sbi->total_ext_tree = 0;
atomic_set(&sbi->total_ext_node, 0);
}
int __init create_extent_cache(void)
{
extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
sizeof(struct extent_tree));
if (!extent_tree_slab)
return -ENOMEM;
extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
sizeof(struct extent_node));
if (!extent_node_slab) {
kmem_cache_destroy(extent_tree_slab);
return -ENOMEM;
}
return 0;
}
void destroy_extent_cache(void)
{
kmem_cache_destroy(extent_node_slab);
kmem_cache_destroy(extent_tree_slab);
}
const struct address_space_operations f2fs_dblock_aops = {
.readpage = f2fs_read_data_page,
.readpages = f2fs_read_data_pages,
.writepage = f2fs_write_data_page,
.writepages = f2fs_write_data_pages,
.write_begin = f2fs_write_begin,
.write_end = f2fs_write_end,
.set_page_dirty = f2fs_set_data_page_dirty,
.invalidatepage = f2fs_invalidate_page,
.releasepage = f2fs_release_page,
.direct_IO = f2fs_direct_IO,
.bmap = f2fs_bmap,
};