linux/drivers/net/ethernet/marvell/Makefile

13 lines
326 B
Makefile
Raw Normal View History

#
# Makefile for the Marvell device drivers.
#
obj-$(CONFIG_MVMDIO) += mvmdio.o
obj-$(CONFIG_MV643XX_ETH) += mv643xx_eth.o
net: mvneta: bm: add support for hardware buffer management Buffer manager (BM) is a dedicated hardware unit that can be used by all ethernet ports of Armada XP and 38x SoC's. It allows to offload CPU on RX path by sparing DRAM access on refilling buffer pool, hardware-based filling of descriptor ring data and better memory utilization due to HW arbitration for using 'short' pools for small packets. Tests performed with A388 SoC working as a network bridge between two packet generators showed increase of maximum processed 64B packets by ~20k (~555k packets with BM enabled vs ~535 packets without BM). Also when pushing 1500B-packets with a line rate achieved, CPU load decreased from around 25% without BM to 20% with BM. BM comprise up to 4 buffer pointers' (BP) rings kept in DRAM, which are called external BP pools - BPPE. Allocating and releasing buffer pointers (BP) to/from BPPE is performed indirectly by write/read access to a dedicated internal SRAM, where internal BP pools (BPPI) are placed. BM hardware controls status of BPPE automatically, as well as assigning proper buffers to RX descriptors. For more details please refer to Functional Specification of Armada XP or 38x SoC. In order to enable support for a separate hardware block, common for all ports, a new driver has to be implemented ('mvneta_bm'). It provides initialization sequence of address space, clocks, registers, SRAM, empty pools' structures and also obtaining optional configuration from DT (please refer to device tree binding documentation). mvneta_bm exposes also a necessary API to mvneta driver, as well as a dedicated structure with BM information (bm_priv), whose presence is used as a flag notifying of BM usage by port. It has to be ensured that mvneta_bm probe is executed prior to the ones in ports' driver. In case BM is not used or its probe fails, mvneta falls back to use software buffer management. A sequence executed in mvneta_probe function is modified in order to have an access to needed resources before possible port's BM initialization is done. According to port-pools mapping provided by DT appropriate registers are configured and the buffer pools are filled. RX path is modified accordingly. Becaues the hardware allows a wide variety of configuration options, following assumptions are made: * using BM mechanisms can be selectively disabled/enabled basing on DT configuration among the ports * 'long' pool's single buffer size is tied to port's MTU * using 'long' pool by port is obligatory and it cannot be shared * using 'short' pool for smaller packets is optional * one 'short' pool can be shared among all ports This commit enables hardware buffer management operation cooperating with existing mvneta driver. New device tree binding documentation is added and the one of mvneta is updated accordingly. [gregory.clement@free-electrons.com: removed the suspend/resume part] Signed-off-by: Marcin Wojtas <mw@semihalf.com> Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-14 16:39:03 +08:00
obj-$(CONFIG_MVNETA_BM) += mvneta_bm.o
net: mvneta: driver for Marvell Armada 370/XP network unit This patch contains a new network driver for the network unit of the ARM Marvell Armada 370 and the Armada XP. Both SoCs use the PJ4B processor, a Marvell-developed ARM core that implements the ARMv7 instruction set. Compared to previous ARM Marvell SoCs (Kirkwood, Orion, Discovery), the network unit in Armada 370 and Armada XP is highly different. This is the reason why this new 'mvneta' driver is needed, while the older ARM Marvell SoCs use the 'mv643xx_eth' driver. Here is an overview of the most important hardware changes that require a new, specific, driver for the network unit of Armada 370/XP: - The new network unit has a completely different design and layout for the RX and TX descriptors. They are now organized as a simple array (each RX and TX queue has base address and size of this array) rather than a linked list as in the old SoCs. - The new network unit has a different RXQ and TXQ management: this management is done using special read/write counter registers, while in the Old SocS, it was done using the Ownership bit in RX and TX descriptors. - The new network unit has different interrupt registers - The new network unit way of cleaning of interrupts is not done by writing to the cause register, but by updating per-queue counters - The new network unit has different GMAC registers (link, speed, duplex configuration) and different WRR registers. - The new network unit has lots of new units like PnC (Parser and Classifier), PMT, BM (Memory Buffer Management), xPON, and more. The driver proposed in the current patch only handles the basic features. Additional hardware features will progressively be supported as needed. This code has originally been written by Rami Rosen <rosenr@marvell.com>, and then reviewed and cleaned up by Thomas Petazzoni <thomas.petazzoni@free-electrons.com>. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Acked-by: David S. Miller <davem@davemloft.net>
2012-08-17 19:04:28 +08:00
obj-$(CONFIG_MVNETA) += mvneta.o
obj-$(CONFIG_MVPP2) += mvpp2.o
obj-$(CONFIG_PXA168_ETH) += pxa168_eth.o
obj-$(CONFIG_SKGE) += skge.o
obj-$(CONFIG_SKY2) += sky2.o