linux/drivers/net/wireless/iwmc3200wifi/cfg80211.c

577 lines
15 KiB
C
Raw Normal View History

/*
* Intel Wireless Multicomm 3200 WiFi driver
*
* Copyright (C) 2009 Intel Corporation <ilw@linux.intel.com>
* Samuel Ortiz <samuel.ortiz@intel.com>
* Zhu Yi <yi.zhu@intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
*/
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <linux/ieee80211.h>
#include <net/cfg80211.h>
#include "iwm.h"
#include "commands.h"
#include "cfg80211.h"
#include "debug.h"
#define RATETAB_ENT(_rate, _rateid, _flags) \
{ \
.bitrate = (_rate), \
.hw_value = (_rateid), \
.flags = (_flags), \
}
#define CHAN2G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _flags) { \
.band = IEEE80211_BAND_5GHZ, \
.center_freq = 5000 + (5 * (_channel)), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
static struct ieee80211_rate iwm_rates[] = {
RATETAB_ENT(10, 0x1, 0),
RATETAB_ENT(20, 0x2, 0),
RATETAB_ENT(55, 0x4, 0),
RATETAB_ENT(110, 0x8, 0),
RATETAB_ENT(60, 0x10, 0),
RATETAB_ENT(90, 0x20, 0),
RATETAB_ENT(120, 0x40, 0),
RATETAB_ENT(180, 0x80, 0),
RATETAB_ENT(240, 0x100, 0),
RATETAB_ENT(360, 0x200, 0),
RATETAB_ENT(480, 0x400, 0),
RATETAB_ENT(540, 0x800, 0),
};
#define iwm_a_rates (iwm_rates + 4)
#define iwm_a_rates_size 8
#define iwm_g_rates (iwm_rates + 0)
#define iwm_g_rates_size 12
static struct ieee80211_channel iwm_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static struct ieee80211_channel iwm_5ghz_a_channels[] = {
CHAN5G(34, 0), CHAN5G(36, 0),
CHAN5G(38, 0), CHAN5G(40, 0),
CHAN5G(42, 0), CHAN5G(44, 0),
CHAN5G(46, 0), CHAN5G(48, 0),
CHAN5G(52, 0), CHAN5G(56, 0),
CHAN5G(60, 0), CHAN5G(64, 0),
CHAN5G(100, 0), CHAN5G(104, 0),
CHAN5G(108, 0), CHAN5G(112, 0),
CHAN5G(116, 0), CHAN5G(120, 0),
CHAN5G(124, 0), CHAN5G(128, 0),
CHAN5G(132, 0), CHAN5G(136, 0),
CHAN5G(140, 0), CHAN5G(149, 0),
CHAN5G(153, 0), CHAN5G(157, 0),
CHAN5G(161, 0), CHAN5G(165, 0),
CHAN5G(184, 0), CHAN5G(188, 0),
CHAN5G(192, 0), CHAN5G(196, 0),
CHAN5G(200, 0), CHAN5G(204, 0),
CHAN5G(208, 0), CHAN5G(212, 0),
CHAN5G(216, 0),
};
static struct ieee80211_supported_band iwm_band_2ghz = {
.channels = iwm_2ghz_channels,
.n_channels = ARRAY_SIZE(iwm_2ghz_channels),
.bitrates = iwm_g_rates,
.n_bitrates = iwm_g_rates_size,
};
static struct ieee80211_supported_band iwm_band_5ghz = {
.channels = iwm_5ghz_a_channels,
.n_channels = ARRAY_SIZE(iwm_5ghz_a_channels),
.bitrates = iwm_a_rates,
.n_bitrates = iwm_a_rates_size,
};
static int iwm_key_init(struct iwm_key *key, u8 key_index,
const u8 *mac_addr, struct key_params *params)
{
key->hdr.key_idx = key_index;
if (!mac_addr || is_broadcast_ether_addr(mac_addr)) {
key->hdr.multicast = 1;
memset(key->hdr.mac, 0xff, ETH_ALEN);
} else {
key->hdr.multicast = 0;
memcpy(key->hdr.mac, mac_addr, ETH_ALEN);
}
if (params) {
if (params->key_len > WLAN_MAX_KEY_LEN ||
params->seq_len > IW_ENCODE_SEQ_MAX_SIZE)
return -EINVAL;
key->cipher = params->cipher;
key->key_len = params->key_len;
key->seq_len = params->seq_len;
memcpy(key->key, params->key, key->key_len);
memcpy(key->seq, params->seq, key->seq_len);
}
return 0;
}
static int iwm_reset_profile(struct iwm_priv *iwm)
{
int ret;
if (!iwm->umac_profile_active)
return 0;
/*
* If there is a current active profile, but no
* default key, it's not worth trying to associate again.
*/
if (iwm->default_key < 0)
return 0;
/*
* Here we have an active profile, but a key setting changed.
* We thus have to invalidate the current profile, and push the
* new one. Keys will be pushed when association takes place.
*/
ret = iwm_invalidate_mlme_profile(iwm);
if (ret < 0) {
IWM_ERR(iwm, "Couldn't invalidate profile\n");
return ret;
}
return iwm_send_mlme_profile(iwm);
}
static int iwm_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, const u8 *mac_addr,
struct key_params *params)
{
struct iwm_priv *iwm = ndev_to_iwm(ndev);
struct iwm_key *key = &iwm->keys[key_index];
int ret;
IWM_DBG_WEXT(iwm, DBG, "Adding key for %pM\n", mac_addr);
memset(key, 0, sizeof(struct iwm_key));
ret = iwm_key_init(key, key_index, mac_addr, params);
if (ret < 0) {
IWM_ERR(iwm, "Invalid key_params\n");
return ret;
}
/*
* The WEP keys can be set before or after setting the essid.
* We need to handle both cases by simply pushing the keys after
* we send the profile.
* If the profile is not set yet (i.e. we're pushing keys before
* the essid), we set the cipher appropriately.
* If the profile is set, we havent associated yet because our
* cipher was incorrectly set. So we invalidate and send the
* profile again.
*/
if (key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
key->cipher == WLAN_CIPHER_SUITE_WEP104) {
u8 *ucast_cipher = &iwm->umac_profile->sec.ucast_cipher;
u8 *mcast_cipher = &iwm->umac_profile->sec.mcast_cipher;
IWM_DBG_WEXT(iwm, DBG, "WEP key\n");
if (key->cipher == WLAN_CIPHER_SUITE_WEP40)
*ucast_cipher = *mcast_cipher = UMAC_CIPHER_TYPE_WEP_40;
if (key->cipher == WLAN_CIPHER_SUITE_WEP104)
*ucast_cipher = *mcast_cipher =
UMAC_CIPHER_TYPE_WEP_104;
return iwm_reset_profile(iwm);
}
return iwm_set_key(iwm, 0, key);
}
static int iwm_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, const u8 *mac_addr, void *cookie,
void (*callback)(void *cookie,
struct key_params*))
{
struct iwm_priv *iwm = ndev_to_iwm(ndev);
struct iwm_key *key = &iwm->keys[key_index];
struct key_params params;
IWM_DBG_WEXT(iwm, DBG, "Getting key %d\n", key_index);
memset(&params, 0, sizeof(params));
params.cipher = key->cipher;
params.key_len = key->key_len;
params.seq_len = key->seq_len;
params.seq = key->seq;
params.key = key->key;
callback(cookie, &params);
return key->key_len ? 0 : -ENOENT;
}
static int iwm_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, const u8 *mac_addr)
{
struct iwm_priv *iwm = ndev_to_iwm(ndev);
struct iwm_key *key = &iwm->keys[key_index];
if (!iwm->keys[key_index].key_len) {
IWM_DBG_WEXT(iwm, DBG, "Key %d not used\n", key_index);
return 0;
}
if (key_index == iwm->default_key)
iwm->default_key = -1;
return iwm_set_key(iwm, 1, key);
}
static int iwm_cfg80211_set_default_key(struct wiphy *wiphy,
struct net_device *ndev,
u8 key_index)
{
struct iwm_priv *iwm = ndev_to_iwm(ndev);
int ret;
IWM_DBG_WEXT(iwm, DBG, "Default key index is: %d\n", key_index);
if (!iwm->keys[key_index].key_len) {
IWM_ERR(iwm, "Key %d not used\n", key_index);
return -EINVAL;
}
ret = iwm_set_tx_key(iwm, key_index);
if (ret < 0)
return ret;
iwm->default_key = key_index;
return iwm_reset_profile(iwm);
}
int iwm_cfg80211_inform_bss(struct iwm_priv *iwm)
{
struct wiphy *wiphy = iwm_to_wiphy(iwm);
struct iwm_bss_info *bss, *next;
struct iwm_umac_notif_bss_info *umac_bss;
struct ieee80211_mgmt *mgmt;
struct ieee80211_channel *channel;
struct ieee80211_supported_band *band;
s32 signal;
int freq;
list_for_each_entry_safe(bss, next, &iwm->bss_list, node) {
umac_bss = bss->bss;
mgmt = (struct ieee80211_mgmt *)(umac_bss->frame_buf);
if (umac_bss->band == UMAC_BAND_2GHZ)
band = wiphy->bands[IEEE80211_BAND_2GHZ];
else if (umac_bss->band == UMAC_BAND_5GHZ)
band = wiphy->bands[IEEE80211_BAND_5GHZ];
else {
IWM_ERR(iwm, "Invalid band: %d\n", umac_bss->band);
return -EINVAL;
}
freq = ieee80211_channel_to_frequency(umac_bss->channel);
channel = ieee80211_get_channel(wiphy, freq);
signal = umac_bss->rssi * 100;
if (!cfg80211_inform_bss_frame(wiphy, channel, mgmt,
le16_to_cpu(umac_bss->frame_len),
signal, GFP_KERNEL))
return -EINVAL;
}
return 0;
}
static int iwm_cfg80211_change_iface(struct wiphy *wiphy,
struct net_device *ndev,
enum nl80211_iftype type, u32 *flags,
struct vif_params *params)
{
struct wireless_dev *wdev;
struct iwm_priv *iwm;
u32 old_mode;
wdev = ndev->ieee80211_ptr;
iwm = ndev_to_iwm(ndev);
old_mode = iwm->conf.mode;
switch (type) {
case NL80211_IFTYPE_STATION:
iwm->conf.mode = UMAC_MODE_BSS;
break;
case NL80211_IFTYPE_ADHOC:
iwm->conf.mode = UMAC_MODE_IBSS;
break;
default:
return -EOPNOTSUPP;
}
wdev->iftype = type;
if ((old_mode == iwm->conf.mode) || !iwm->umac_profile)
return 0;
iwm->umac_profile->mode = cpu_to_le32(iwm->conf.mode);
if (iwm->umac_profile_active) {
int ret = iwm_invalidate_mlme_profile(iwm);
if (ret < 0)
IWM_ERR(iwm, "Couldn't invalidate profile\n");
}
return 0;
}
static int iwm_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_scan_request *request)
{
struct iwm_priv *iwm = ndev_to_iwm(ndev);
int ret;
if (!test_bit(IWM_STATUS_READY, &iwm->status)) {
IWM_ERR(iwm, "Scan while device is not ready\n");
return -EIO;
}
if (test_bit(IWM_STATUS_SCANNING, &iwm->status)) {
IWM_ERR(iwm, "Scanning already\n");
return -EAGAIN;
}
if (test_bit(IWM_STATUS_SCAN_ABORTING, &iwm->status)) {
IWM_ERR(iwm, "Scanning being aborted\n");
return -EAGAIN;
}
set_bit(IWM_STATUS_SCANNING, &iwm->status);
ret = iwm_scan_ssids(iwm, request->ssids, request->n_ssids);
if (ret) {
clear_bit(IWM_STATUS_SCANNING, &iwm->status);
return ret;
}
iwm->scan_request = request;
return 0;
}
static int iwm_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
if (changed & WIPHY_PARAM_RTS_THRESHOLD &&
(iwm->conf.rts_threshold != wiphy->rts_threshold)) {
int ret;
iwm->conf.rts_threshold = wiphy->rts_threshold;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX,
CFG_RTS_THRESHOLD,
iwm->conf.rts_threshold);
if (ret < 0)
return ret;
}
if (changed & WIPHY_PARAM_FRAG_THRESHOLD &&
(iwm->conf.frag_threshold != wiphy->frag_threshold)) {
int ret;
iwm->conf.frag_threshold = wiphy->frag_threshold;
ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX,
CFG_FRAG_THRESHOLD,
iwm->conf.frag_threshold);
if (ret < 0)
return ret;
}
return 0;
}
static int iwm_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_ibss_params *params)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
struct ieee80211_channel *chan = params->channel;
struct cfg80211_bss *bss;
if (!test_bit(IWM_STATUS_READY, &iwm->status))
return -EIO;
/* UMAC doesn't support creating IBSS network with specified bssid.
* This should be removed after we have join only mode supported. */
if (params->bssid)
return -EOPNOTSUPP;
bss = cfg80211_get_ibss(iwm_to_wiphy(iwm), NULL,
params->ssid, params->ssid_len);
if (!bss) {
iwm_scan_one_ssid(iwm, params->ssid, params->ssid_len);
schedule_timeout_interruptible(2 * HZ);
bss = cfg80211_get_ibss(iwm_to_wiphy(iwm), NULL,
params->ssid, params->ssid_len);
}
/* IBSS join only mode is not supported by UMAC ATM */
if (bss) {
cfg80211_put_bss(bss);
return -EOPNOTSUPP;
}
iwm->channel = ieee80211_frequency_to_channel(chan->center_freq);
iwm->umac_profile->ibss.band = chan->band;
iwm->umac_profile->ibss.channel = iwm->channel;
iwm->umac_profile->ssid.ssid_len = params->ssid_len;
memcpy(iwm->umac_profile->ssid.ssid, params->ssid, params->ssid_len);
if (params->bssid)
memcpy(&iwm->umac_profile->bssid[0], params->bssid, ETH_ALEN);
return iwm_send_mlme_profile(iwm);
}
static int iwm_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
{
struct iwm_priv *iwm = wiphy_to_iwm(wiphy);
if (iwm->umac_profile_active)
return iwm_invalidate_mlme_profile(iwm);
return 0;
}
static struct cfg80211_ops iwm_cfg80211_ops = {
.change_virtual_intf = iwm_cfg80211_change_iface,
.add_key = iwm_cfg80211_add_key,
.get_key = iwm_cfg80211_get_key,
.del_key = iwm_cfg80211_del_key,
.set_default_key = iwm_cfg80211_set_default_key,
.scan = iwm_cfg80211_scan,
.set_wiphy_params = iwm_cfg80211_set_wiphy_params,
.join_ibss = iwm_cfg80211_join_ibss,
.leave_ibss = iwm_cfg80211_leave_ibss,
};
struct wireless_dev *iwm_wdev_alloc(int sizeof_bus, struct device *dev)
{
int ret = 0;
struct wireless_dev *wdev;
/*
* We're trying to have the following memory
* layout:
*
* +-------------------------+
* | struct wiphy |
* +-------------------------+
* | struct iwm_priv |
* +-------------------------+
* | bus private data |
* | (e.g. iwm_priv_sdio) |
* +-------------------------+
*
*/
wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
if (!wdev) {
dev_err(dev, "Couldn't allocate wireless device\n");
return ERR_PTR(-ENOMEM);
}
wdev->wiphy = wiphy_new(&iwm_cfg80211_ops,
sizeof(struct iwm_priv) + sizeof_bus);
if (!wdev->wiphy) {
dev_err(dev, "Couldn't allocate wiphy device\n");
ret = -ENOMEM;
goto out_err_new;
}
set_wiphy_dev(wdev->wiphy, dev);
wdev->wiphy->max_scan_ssids = UMAC_WIFI_IF_PROBE_OPTION_MAX;
wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC);
wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &iwm_band_2ghz;
wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &iwm_band_5ghz;
wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
ret = wiphy_register(wdev->wiphy);
if (ret < 0) {
dev_err(dev, "Couldn't register wiphy device\n");
goto out_err_register;
}
return wdev;
out_err_register:
wiphy_free(wdev->wiphy);
out_err_new:
kfree(wdev);
return ERR_PTR(ret);
}
void iwm_wdev_free(struct iwm_priv *iwm)
{
struct wireless_dev *wdev = iwm_to_wdev(iwm);
if (!wdev)
return;
wiphy_unregister(wdev->wiphy);
wiphy_free(wdev->wiphy);
kfree(wdev);
}