linux/arch/x86/include/asm/spinlock.h

53 lines
1.4 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_SPINLOCK_H
#define _ASM_X86_SPINLOCK_H
x86, ticketlock: Add slowpath logic Maintain a flag in the LSB of the ticket lock tail which indicates whether anyone is in the lock slowpath and may need kicking when the current holder unlocks. The flags are set when the first locker enters the slowpath, and cleared when unlocking to an empty queue (ie, no contention). In the specific implementation of lock_spinning(), make sure to set the slowpath flags on the lock just before blocking. We must do this before the last-chance pickup test to prevent a deadlock with the unlocker: Unlocker Locker test for lock pickup -> fail unlock test slowpath -> false set slowpath flags block Whereas this works in any ordering: Unlocker Locker set slowpath flags test for lock pickup -> fail block unlock test slowpath -> true, kick If the unlocker finds that the lock has the slowpath flag set but it is actually uncontended (ie, head == tail, so nobody is waiting), then it clears the slowpath flag. The unlock code uses a locked add to update the head counter. This also acts as a full memory barrier so that its safe to subsequently read back the slowflag state, knowing that the updated lock is visible to the other CPUs. If it were an unlocked add, then the flag read may just be forwarded from the store buffer before it was visible to the other CPUs, which could result in a deadlock. Unfortunately this means we need to do a locked instruction when unlocking with PV ticketlocks. However, if PV ticketlocks are not enabled, then the old non-locked "add" is the only unlocking code. Note: this code relies on gcc making sure that unlikely() code is out of line of the fastpath, which only happens when OPTIMIZE_SIZE=n. If it doesn't the generated code isn't too bad, but its definitely suboptimal. Thanks to Srivatsa Vaddagiri for providing a bugfix to the original version of this change, which has been folded in. Thanks to Stephan Diestelhorst for commenting on some code which relied on an inaccurate reading of the x86 memory ordering rules. Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org> Link: http://lkml.kernel.org/r/1376058122-8248-11-git-send-email-raghavendra.kt@linux.vnet.ibm.com Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Stephan Diestelhorst <stephan.diestelhorst@amd.com> Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-09 22:21:58 +08:00
#include <linux/jump_label.h>
#include <linux/atomic.h>
#include <asm/page.h>
#include <asm/processor.h>
x86: FIFO ticket spinlocks Introduce ticket lock spinlocks for x86 which are FIFO. The implementation is described in the comments. The straight-line lock/unlock instruction sequence is slightly slower than the dec based locks on modern x86 CPUs, however the difference is quite small on Core2 and Opteron when working out of cache, and becomes almost insignificant even on P4 when the lock misses cache. trylock is more significantly slower, but they are relatively rare. On an 8 core (2 socket) Opteron, spinlock unfairness is extremely noticable, with a userspace test having a difference of up to 2x runtime per thread, and some threads are starved or "unfairly" granted the lock up to 1 000 000 (!) times. After this patch, all threads appear to finish at exactly the same time. The memory ordering of the lock does conform to x86 standards, and the implementation has been reviewed by Intel and AMD engineers. The algorithm also tells us how many CPUs are contending the lock, so lockbreak becomes trivial and we no longer have to waste 4 bytes per spinlock for it. After this, we can no longer spin on any locks with preempt enabled and cannot reenable interrupts when spinning on an irq safe lock, because at that point we have already taken a ticket and the would deadlock if the same CPU tries to take the lock again. These are questionable anyway: if the lock happens to be called under a preempt or interrupt disabled section, then it will just have the same latency problems. The real fix is to keep critical sections short, and ensure locks are reasonably fair (which this patch does). Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-01-30 20:31:21 +08:00
#include <linux/compiler.h>
x86/paravirt: add hooks for spinlock operations Ticket spinlocks have absolutely ghastly worst-case performance characteristics in a virtual environment. If there is any contention for physical CPUs (ie, there are more runnable vcpus than cpus), then ticket locks can cause the system to end up spending 90+% of its time spinning. The problem is that (v)cpus waiting on a ticket spinlock will be granted access to the lock in strict order they got their tickets. If the hypervisor scheduler doesn't give the vcpus time in that order, they will burn timeslices waiting for the scheduler to give the right vcpu some time. In the worst case it could take O(n^2) vcpu scheduler timeslices for everyone waiting on the lock to get it, not counting new cpus trying to take the lock while the log-jam is sorted out. These hooks allow a paravirt backend to replace the spinlock implementation. At the very least, this could revert the implementation back to the old lock algorithm, which allows the next scheduled vcpu to take the lock, and has basically fairly good performance. It also allows the spinlocks to take advantages of the hypervisor features to make locks more efficient (spin and block, for example). The cost to native execution is an extra direct call when using a spinlock function. There's no overhead if CONFIG_PARAVIRT is turned off. The lock structure is fixed at a single "unsigned int", initialized to zero, but the spinlock implementation can use it as it wishes. Thanks to Thomas Friebel's Xen Summit talk "Preventing Guests from Spinning Around" for pointing out this problem. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <clameter@linux-foundation.org> Cc: Petr Tesarik <ptesarik@suse.cz> Cc: Virtualization <virtualization@lists.linux-foundation.org> Cc: Xen devel <xen-devel@lists.xensource.com> Cc: Thomas Friebel <thomas.friebel@amd.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-08 03:07:50 +08:00
#include <asm/paravirt.h>
x86, ticketlock: Add slowpath logic Maintain a flag in the LSB of the ticket lock tail which indicates whether anyone is in the lock slowpath and may need kicking when the current holder unlocks. The flags are set when the first locker enters the slowpath, and cleared when unlocking to an empty queue (ie, no contention). In the specific implementation of lock_spinning(), make sure to set the slowpath flags on the lock just before blocking. We must do this before the last-chance pickup test to prevent a deadlock with the unlocker: Unlocker Locker test for lock pickup -> fail unlock test slowpath -> false set slowpath flags block Whereas this works in any ordering: Unlocker Locker set slowpath flags test for lock pickup -> fail block unlock test slowpath -> true, kick If the unlocker finds that the lock has the slowpath flag set but it is actually uncontended (ie, head == tail, so nobody is waiting), then it clears the slowpath flag. The unlock code uses a locked add to update the head counter. This also acts as a full memory barrier so that its safe to subsequently read back the slowflag state, knowing that the updated lock is visible to the other CPUs. If it were an unlocked add, then the flag read may just be forwarded from the store buffer before it was visible to the other CPUs, which could result in a deadlock. Unfortunately this means we need to do a locked instruction when unlocking with PV ticketlocks. However, if PV ticketlocks are not enabled, then the old non-locked "add" is the only unlocking code. Note: this code relies on gcc making sure that unlikely() code is out of line of the fastpath, which only happens when OPTIMIZE_SIZE=n. If it doesn't the generated code isn't too bad, but its definitely suboptimal. Thanks to Srivatsa Vaddagiri for providing a bugfix to the original version of this change, which has been folded in. Thanks to Stephan Diestelhorst for commenting on some code which relied on an inaccurate reading of the x86 memory ordering rules. Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org> Link: http://lkml.kernel.org/r/1376058122-8248-11-git-send-email-raghavendra.kt@linux.vnet.ibm.com Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Stephan Diestelhorst <stephan.diestelhorst@amd.com> Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-09 22:21:58 +08:00
#include <asm/bitops.h>
/*
* Your basic SMP spinlocks, allowing only a single CPU anywhere
*
* Simple spin lock operations. There are two variants, one clears IRQ's
* on the local processor, one does not.
*
* These are fair FIFO ticket locks, which support up to 2^16 CPUs.
*
* (the type definitions are in asm/spinlock_types.h)
*/
x86, spinlock: Replace pv spinlocks with pv ticketlocks Rather than outright replacing the entire spinlock implementation in order to paravirtualize it, keep the ticket lock implementation but add a couple of pvops hooks on the slow patch (long spin on lock, unlocking a contended lock). Ticket locks have a number of nice properties, but they also have some surprising behaviours in virtual environments. They enforce a strict FIFO ordering on cpus trying to take a lock; however, if the hypervisor scheduler does not schedule the cpus in the correct order, the system can waste a huge amount of time spinning until the next cpu can take the lock. (See Thomas Friebel's talk "Prevent Guests from Spinning Around" http://www.xen.org/files/xensummitboston08/LHP.pdf for more details.) To address this, we add two hooks: - __ticket_spin_lock which is called after the cpu has been spinning on the lock for a significant number of iterations but has failed to take the lock (presumably because the cpu holding the lock has been descheduled). The lock_spinning pvop is expected to block the cpu until it has been kicked by the current lock holder. - __ticket_spin_unlock, which on releasing a contended lock (there are more cpus with tail tickets), it looks to see if the next cpu is blocked and wakes it if so. When compiled with CONFIG_PARAVIRT_SPINLOCKS disabled, a set of stub functions causes all the extra code to go away. Results: ======= setup: 32 core machine with 32 vcpu KVM guest (HT off) with 8GB RAM base = 3.11-rc patched = base + pvspinlock V12 +-----------------+----------------+--------+ dbench (Throughput in MB/sec. Higher is better) +-----------------+----------------+--------+ | base (stdev %)|patched(stdev%) | %gain | +-----------------+----------------+--------+ | 15035.3 (0.3) |15150.0 (0.6) | 0.8 | | 1470.0 (2.2) | 1713.7 (1.9) | 16.6 | | 848.6 (4.3) | 967.8 (4.3) | 14.0 | | 652.9 (3.5) | 685.3 (3.7) | 5.0 | +-----------------+----------------+--------+ pvspinlock shows benefits for overcommit ratio > 1 for PLE enabled cases, and undercommits results are flat Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org> Link: http://lkml.kernel.org/r/1376058122-8248-2-git-send-email-raghavendra.kt@linux.vnet.ibm.com Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Tested-by: Attilio Rao <attilio.rao@citrix.com> [ Raghavendra: Changed SPIN_THRESHOLD, fixed redefinition of arch_spinlock_t] Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-09 22:21:49 +08:00
/* How long a lock should spin before we consider blocking */
#define SPIN_THRESHOLD (1 << 15)
locking/qspinlock, x86: Enable x86-64 to use queued spinlocks This patch makes the necessary changes at the x86 architecture specific layer to enable the use of queued spinlocks for x86-64. As x86-32 machines are typically not multi-socket. The benefit of queue spinlock may not be apparent. So queued spinlocks are not enabled. Currently, there is some incompatibilities between the para-virtualized spinlock code (which hard-codes the use of ticket spinlock) and the queued spinlocks. Therefore, the use of queued spinlocks is disabled when the para-virtualized spinlock is enabled. The arch/x86/include/asm/qspinlock.h header file includes some x86 specific optimization which will make the queueds spinlock code perform better than the generic implementation. Signed-off-by: Waiman Long <Waiman.Long@hp.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Daniel J Blueman <daniel@numascale.com> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Douglas Hatch <doug.hatch@hp.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paolo Bonzini <paolo.bonzini@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Scott J Norton <scott.norton@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: virtualization@lists.linux-foundation.org Cc: xen-devel@lists.xenproject.org Link: http://lkml.kernel.org/r/1429901803-29771-3-git-send-email-Waiman.Long@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-25 02:56:31 +08:00
#include <asm/qspinlock.h>
/*
* Read-write spinlocks, allowing multiple readers
* but only one writer.
*
* NOTE! it is quite common to have readers in interrupts
* but no interrupt writers. For those circumstances we
* can "mix" irq-safe locks - any writer needs to get a
* irq-safe write-lock, but readers can get non-irqsafe
* read-locks.
*
* On x86, we implement read-write locks using the generic qrwlock with
* x86 specific optimization.
*/
#include <asm/qrwlock.h>
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
#define arch_spin_relax(lock) cpu_relax()
#define arch_read_relax(lock) cpu_relax()
#define arch_write_relax(lock) cpu_relax()
#endif /* _ASM_X86_SPINLOCK_H */