linux/drivers/s390/cio/qdio_main.c

1770 lines
43 KiB
C
Raw Normal View History

/*
* linux/drivers/s390/cio/qdio_main.c
*
* Linux for s390 qdio support, buffer handling, qdio API and module support.
*
* Copyright 2000,2008 IBM Corp.
* Author(s): Utz Bacher <utz.bacher@de.ibm.com>
* Jan Glauber <jang@linux.vnet.ibm.com>
* 2.6 cio integration by Cornelia Huck <cornelia.huck@de.ibm.com>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <asm/atomic.h>
#include <asm/debug.h>
#include <asm/qdio.h>
#include "cio.h"
#include "css.h"
#include "device.h"
#include "qdio.h"
#include "qdio_debug.h"
#include "qdio_perf.h"
MODULE_AUTHOR("Utz Bacher <utz.bacher@de.ibm.com>,"\
"Jan Glauber <jang@linux.vnet.ibm.com>");
MODULE_DESCRIPTION("QDIO base support");
MODULE_LICENSE("GPL");
static inline int do_siga_sync(struct subchannel_id schid,
unsigned int out_mask, unsigned int in_mask)
{
register unsigned long __fc asm ("0") = 2;
register struct subchannel_id __schid asm ("1") = schid;
register unsigned long out asm ("2") = out_mask;
register unsigned long in asm ("3") = in_mask;
int cc;
asm volatile(
" siga 0\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc)
: "d" (__fc), "d" (__schid), "d" (out), "d" (in) : "cc");
return cc;
}
static inline int do_siga_input(struct subchannel_id schid, unsigned int mask)
{
register unsigned long __fc asm ("0") = 1;
register struct subchannel_id __schid asm ("1") = schid;
register unsigned long __mask asm ("2") = mask;
int cc;
asm volatile(
" siga 0\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (cc)
: "d" (__fc), "d" (__schid), "d" (__mask) : "cc", "memory");
return cc;
}
/**
* do_siga_output - perform SIGA-w/wt function
* @schid: subchannel id or in case of QEBSM the subchannel token
* @mask: which output queues to process
* @bb: busy bit indicator, set only if SIGA-w/wt could not access a buffer
* @fc: function code to perform
*
* Returns cc or QDIO_ERROR_SIGA_ACCESS_EXCEPTION.
* Note: For IQDC unicast queues only the highest priority queue is processed.
*/
static inline int do_siga_output(unsigned long schid, unsigned long mask,
u32 *bb, unsigned int fc)
{
register unsigned long __fc asm("0") = fc;
register unsigned long __schid asm("1") = schid;
register unsigned long __mask asm("2") = mask;
int cc = QDIO_ERROR_SIGA_ACCESS_EXCEPTION;
asm volatile(
" siga 0\n"
"0: ipm %0\n"
" srl %0,28\n"
"1:\n"
EX_TABLE(0b, 1b)
: "+d" (cc), "+d" (__fc), "+d" (__schid), "+d" (__mask)
: : "cc", "memory");
*bb = ((unsigned int) __fc) >> 31;
return cc;
}
static inline int qdio_check_ccq(struct qdio_q *q, unsigned int ccq)
{
char dbf_text[15];
/* all done or next buffer state different */
if (ccq == 0 || ccq == 32)
return 0;
/* not all buffers processed */
if (ccq == 96 || ccq == 97)
return 1;
/* notify devices immediately */
sprintf(dbf_text, "%d", ccq);
QDIO_DBF_TEXT2(1, trace, dbf_text);
return -EIO;
}
/**
* qdio_do_eqbs - extract buffer states for QEBSM
* @q: queue to manipulate
* @state: state of the extracted buffers
* @start: buffer number to start at
* @count: count of buffers to examine
*
* Returns the number of successfull extracted equal buffer states.
* Stops processing if a state is different from the last buffers state.
*/
static int qdio_do_eqbs(struct qdio_q *q, unsigned char *state,
int start, int count)
{
unsigned int ccq = 0;
int tmp_count = count, tmp_start = start;
int nr = q->nr;
int rc;
char dbf_text[15];
BUG_ON(!q->irq_ptr->sch_token);
if (!q->is_input_q)
nr += q->irq_ptr->nr_input_qs;
again:
ccq = do_eqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count);
rc = qdio_check_ccq(q, ccq);
/* At least one buffer was processed, return and extract the remaining
* buffers later.
*/
if ((ccq == 96) && (count != tmp_count))
return (count - tmp_count);
if (rc == 1) {
QDIO_DBF_TEXT5(1, trace, "eqAGAIN");
goto again;
}
if (rc < 0) {
QDIO_DBF_TEXT2(1, trace, "eqberr");
sprintf(dbf_text, "%2x,%2x,%d,%d", count, tmp_count, ccq, nr);
QDIO_DBF_TEXT2(1, trace, dbf_text);
q->handler(q->irq_ptr->cdev,
QDIO_ERROR_ACTIVATE_CHECK_CONDITION,
0, -1, -1, q->irq_ptr->int_parm);
return 0;
}
return count - tmp_count;
}
/**
* qdio_do_sqbs - set buffer states for QEBSM
* @q: queue to manipulate
* @state: new state of the buffers
* @start: first buffer number to change
* @count: how many buffers to change
*
* Returns the number of successfully changed buffers.
* Does retrying until the specified count of buffer states is set or an
* error occurs.
*/
static int qdio_do_sqbs(struct qdio_q *q, unsigned char state, int start,
int count)
{
unsigned int ccq = 0;
int tmp_count = count, tmp_start = start;
int nr = q->nr;
int rc;
char dbf_text[15];
BUG_ON(!q->irq_ptr->sch_token);
if (!q->is_input_q)
nr += q->irq_ptr->nr_input_qs;
again:
ccq = do_sqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count);
rc = qdio_check_ccq(q, ccq);
if (rc == 1) {
QDIO_DBF_TEXT5(1, trace, "sqAGAIN");
goto again;
}
if (rc < 0) {
QDIO_DBF_TEXT3(1, trace, "sqberr");
sprintf(dbf_text, "%2x,%2x", count, tmp_count);
QDIO_DBF_TEXT3(1, trace, dbf_text);
sprintf(dbf_text, "%d,%d", ccq, nr);
QDIO_DBF_TEXT3(1, trace, dbf_text);
q->handler(q->irq_ptr->cdev,
QDIO_ERROR_ACTIVATE_CHECK_CONDITION,
0, -1, -1, q->irq_ptr->int_parm);
return 0;
}
WARN_ON(tmp_count);
return count - tmp_count;
}
/* returns number of examined buffers and their common state in *state */
static inline int get_buf_states(struct qdio_q *q, unsigned int bufnr,
unsigned char *state, unsigned int count)
{
unsigned char __state = 0;
int i;
BUG_ON(bufnr > QDIO_MAX_BUFFERS_MASK);
BUG_ON(count > QDIO_MAX_BUFFERS_PER_Q);
if (is_qebsm(q))
return qdio_do_eqbs(q, state, bufnr, count);
for (i = 0; i < count; i++) {
if (!__state)
__state = q->slsb.val[bufnr];
else if (q->slsb.val[bufnr] != __state)
break;
bufnr = next_buf(bufnr);
}
*state = __state;
return i;
}
inline int get_buf_state(struct qdio_q *q, unsigned int bufnr,
unsigned char *state)
{
return get_buf_states(q, bufnr, state, 1);
}
/* wrap-around safe setting of slsb states, returns number of changed buffers */
static inline int set_buf_states(struct qdio_q *q, int bufnr,
unsigned char state, int count)
{
int i;
BUG_ON(bufnr > QDIO_MAX_BUFFERS_MASK);
BUG_ON(count > QDIO_MAX_BUFFERS_PER_Q);
if (is_qebsm(q))
return qdio_do_sqbs(q, state, bufnr, count);
for (i = 0; i < count; i++) {
xchg(&q->slsb.val[bufnr], state);
bufnr = next_buf(bufnr);
}
return count;
}
static inline int set_buf_state(struct qdio_q *q, int bufnr,
unsigned char state)
{
return set_buf_states(q, bufnr, state, 1);
}
/* set slsb states to initial state */
void qdio_init_buf_states(struct qdio_irq *irq_ptr)
{
struct qdio_q *q;
int i;
for_each_input_queue(irq_ptr, q, i)
set_buf_states(q, 0, SLSB_P_INPUT_NOT_INIT,
QDIO_MAX_BUFFERS_PER_Q);
for_each_output_queue(irq_ptr, q, i)
set_buf_states(q, 0, SLSB_P_OUTPUT_NOT_INIT,
QDIO_MAX_BUFFERS_PER_Q);
}
static int qdio_siga_sync(struct qdio_q *q, unsigned int output,
unsigned int input)
{
int cc;
if (!need_siga_sync(q))
return 0;
qdio_perf_stat_inc(&perf_stats.siga_sync);
cc = do_siga_sync(q->irq_ptr->schid, output, input);
if (cc) {
QDIO_DBF_TEXT4(0, trace, "sigasync");
QDIO_DBF_HEX4(0, trace, &q, sizeof(void *));
QDIO_DBF_HEX3(0, trace, &cc, sizeof(int *));
}
return cc;
}
inline int qdio_siga_sync_q(struct qdio_q *q)
{
if (q->is_input_q)
return qdio_siga_sync(q, 0, q->mask);
else
return qdio_siga_sync(q, q->mask, 0);
}
static inline int qdio_siga_sync_out(struct qdio_q *q)
{
return qdio_siga_sync(q, ~0U, 0);
}
static inline int qdio_siga_sync_all(struct qdio_q *q)
{
return qdio_siga_sync(q, ~0U, ~0U);
}
static inline int qdio_do_siga_output(struct qdio_q *q, unsigned int *busy_bit)
{
unsigned int fc = 0;
unsigned long schid;
if (q->u.out.use_enh_siga) {
fc = 3;
}
if (!is_qebsm(q))
schid = *((u32 *)&q->irq_ptr->schid);
else {
schid = q->irq_ptr->sch_token;
fc |= 0x80;
}
return do_siga_output(schid, q->mask, busy_bit, fc);
}
static int qdio_siga_output(struct qdio_q *q)
{
int cc;
u32 busy_bit;
u64 start_time = 0;
char dbf_text[15];
QDIO_DBF_TEXT5(0, trace, "sigaout");
QDIO_DBF_HEX5(0, trace, &q, sizeof(void *));
qdio_perf_stat_inc(&perf_stats.siga_out);
again:
cc = qdio_do_siga_output(q, &busy_bit);
if (queue_type(q) == QDIO_IQDIO_QFMT && cc == 2 && busy_bit) {
sprintf(dbf_text, "bb%4x%2x", q->irq_ptr->schid.sch_no, q->nr);
QDIO_DBF_TEXT3(0, trace, dbf_text);
if (!start_time)
start_time = get_usecs();
else if ((get_usecs() - start_time) < QDIO_BUSY_BIT_PATIENCE)
goto again;
}
if (cc == 2 && busy_bit)
cc |= QDIO_ERROR_SIGA_BUSY;
if (cc)
QDIO_DBF_HEX3(0, trace, &cc, sizeof(int *));
return cc;
}
static inline int qdio_siga_input(struct qdio_q *q)
{
int cc;
QDIO_DBF_TEXT4(0, trace, "sigain");
QDIO_DBF_HEX4(0, trace, &q, sizeof(void *));
qdio_perf_stat_inc(&perf_stats.siga_in);
cc = do_siga_input(q->irq_ptr->schid, q->mask);
if (cc)
QDIO_DBF_HEX3(0, trace, &cc, sizeof(int *));
return cc;
}
/* called from thinint inbound handler */
void qdio_sync_after_thinint(struct qdio_q *q)
{
if (pci_out_supported(q)) {
if (need_siga_sync_thinint(q))
qdio_siga_sync_all(q);
else if (need_siga_sync_out_thinint(q))
qdio_siga_sync_out(q);
} else
qdio_siga_sync_q(q);
}
inline void qdio_stop_polling(struct qdio_q *q)
{
spin_lock_bh(&q->u.in.lock);
if (!q->u.in.polling) {
spin_unlock_bh(&q->u.in.lock);
return;
}
q->u.in.polling = 0;
qdio_perf_stat_inc(&perf_stats.debug_stop_polling);
/* show the card that we are not polling anymore */
set_buf_state(q, q->last_move_ftc, SLSB_P_INPUT_NOT_INIT);
spin_unlock_bh(&q->u.in.lock);
}
static void announce_buffer_error(struct qdio_q *q)
{
char dbf_text[15];
if (q->is_input_q)
QDIO_DBF_TEXT3(1, trace, "inperr");
else
QDIO_DBF_TEXT3(0, trace, "outperr");
sprintf(dbf_text, "%x-%x-%x", q->first_to_check,
q->sbal[q->first_to_check]->element[14].flags,
q->sbal[q->first_to_check]->element[15].flags);
QDIO_DBF_TEXT3(1, trace, dbf_text);
QDIO_DBF_HEX2(1, trace, q->sbal[q->first_to_check], 256);
q->qdio_error = QDIO_ERROR_SLSB_STATE;
}
static int get_inbound_buffer_frontier(struct qdio_q *q)
{
int count, stop;
unsigned char state;
/*
* If we still poll don't update last_move_ftc, keep the
* previously ACK buffer there.
*/
if (!q->u.in.polling)
q->last_move_ftc = q->first_to_check;
/*
* Don't check 128 buffers, as otherwise qdio_inbound_q_moved
* would return 0.
*/
count = min(atomic_read(&q->nr_buf_used), QDIO_MAX_BUFFERS_MASK);
stop = add_buf(q->first_to_check, count);
/*
* No siga sync here, as a PCI or we after a thin interrupt
* will sync the queues.
*/
/* need to set count to 1 for non-qebsm */
if (!is_qebsm(q))
count = 1;
check_next:
if (q->first_to_check == stop)
goto out;
count = get_buf_states(q, q->first_to_check, &state, count);
if (!count)
goto out;
switch (state) {
case SLSB_P_INPUT_PRIMED:
QDIO_DBF_TEXT5(0, trace, "inptprim");
/*
* Only ACK the first buffer. The ACK will be removed in
* qdio_stop_polling.
*/
if (q->u.in.polling)
state = SLSB_P_INPUT_NOT_INIT;
else {
q->u.in.polling = 1;
state = SLSB_P_INPUT_ACK;
}
set_buf_state(q, q->first_to_check, state);
/*
* Need to change all PRIMED buffers to NOT_INIT, otherwise
* we're loosing initiative in the thinint code.
*/
if (count > 1)
set_buf_states(q, next_buf(q->first_to_check),
SLSB_P_INPUT_NOT_INIT, count - 1);
/*
* No siga-sync needed for non-qebsm here, as the inbound queue
* will be synced on the next siga-r, resp.
* tiqdio_is_inbound_q_done will do the siga-sync.
*/
q->first_to_check = add_buf(q->first_to_check, count);
atomic_sub(count, &q->nr_buf_used);
goto check_next;
case SLSB_P_INPUT_ERROR:
announce_buffer_error(q);
/* process the buffer, the upper layer will take care of it */
q->first_to_check = add_buf(q->first_to_check, count);
atomic_sub(count, &q->nr_buf_used);
break;
case SLSB_CU_INPUT_EMPTY:
case SLSB_P_INPUT_NOT_INIT:
case SLSB_P_INPUT_ACK:
QDIO_DBF_TEXT5(0, trace, "inpnipro");
break;
default:
BUG();
}
out:
QDIO_DBF_HEX4(0, trace, &q->first_to_check, sizeof(int));
return q->first_to_check;
}
int qdio_inbound_q_moved(struct qdio_q *q)
{
int bufnr;
bufnr = get_inbound_buffer_frontier(q);
if ((bufnr != q->last_move_ftc) || q->qdio_error) {
if (!need_siga_sync(q) && !pci_out_supported(q))
q->u.in.timestamp = get_usecs();
QDIO_DBF_TEXT4(0, trace, "inhasmvd");
QDIO_DBF_HEX4(0, trace, &q, sizeof(void *));
return 1;
} else
return 0;
}
static int qdio_inbound_q_done(struct qdio_q *q)
{
unsigned char state;
#ifdef CONFIG_QDIO_DEBUG
char dbf_text[15];
#endif
if (!atomic_read(&q->nr_buf_used))
return 1;
/*
* We need that one for synchronization with the adapter, as it
* does a kind of PCI avoidance.
*/
qdio_siga_sync_q(q);
get_buf_state(q, q->first_to_check, &state);
if (state == SLSB_P_INPUT_PRIMED)
/* we got something to do */
return 0;
/* on VM, we don't poll, so the q is always done here */
if (need_siga_sync(q) || pci_out_supported(q))
return 1;
/*
* At this point we know, that inbound first_to_check
* has (probably) not moved (see qdio_inbound_processing).
*/
if (get_usecs() > q->u.in.timestamp + QDIO_INPUT_THRESHOLD) {
#ifdef CONFIG_QDIO_DEBUG
QDIO_DBF_TEXT4(0, trace, "inqisdon");
QDIO_DBF_HEX4(0, trace, &q, sizeof(void *));
sprintf(dbf_text, "pf%02x", q->first_to_check);
QDIO_DBF_TEXT4(0, trace, dbf_text);
#endif /* CONFIG_QDIO_DEBUG */
return 1;
} else {
#ifdef CONFIG_QDIO_DEBUG
QDIO_DBF_TEXT4(0, trace, "inqisntd");
QDIO_DBF_HEX4(0, trace, &q, sizeof(void *));
sprintf(dbf_text, "pf%02x", q->first_to_check);
QDIO_DBF_TEXT4(0, trace, dbf_text);
#endif /* CONFIG_QDIO_DEBUG */
return 0;
}
}
void qdio_kick_inbound_handler(struct qdio_q *q)
{
int count, start, end;
#ifdef CONFIG_QDIO_DEBUG
char dbf_text[15];
#endif
qdio_perf_stat_inc(&perf_stats.inbound_handler);
start = q->first_to_kick;
end = q->first_to_check;
if (end >= start)
count = end - start;
else
count = end + QDIO_MAX_BUFFERS_PER_Q - start;
#ifdef CONFIG_QDIO_DEBUG
sprintf(dbf_text, "s=%2xc=%2x", start, count);
QDIO_DBF_TEXT4(0, trace, dbf_text);
#endif /* CONFIG_QDIO_DEBUG */
if (unlikely(q->irq_ptr->state != QDIO_IRQ_STATE_ACTIVE))
return;
q->handler(q->irq_ptr->cdev, q->qdio_error, q->nr,
start, count, q->irq_ptr->int_parm);
/* for the next time */
q->first_to_kick = q->first_to_check;
q->qdio_error = 0;
}
static void __qdio_inbound_processing(struct qdio_q *q)
{
qdio_perf_stat_inc(&perf_stats.tasklet_inbound);
again:
if (!qdio_inbound_q_moved(q))
return;
qdio_kick_inbound_handler(q);
if (!qdio_inbound_q_done(q))
/* means poll time is not yet over */
goto again;
qdio_stop_polling(q);
/*
* We need to check again to not lose initiative after
* resetting the ACK state.
*/
if (!qdio_inbound_q_done(q))
goto again;
}
/* inbound tasklet */
void qdio_inbound_processing(unsigned long data)
{
struct qdio_q *q = (struct qdio_q *)data;
__qdio_inbound_processing(q);
}
static int get_outbound_buffer_frontier(struct qdio_q *q)
{
int count, stop;
unsigned char state;
if (((queue_type(q) != QDIO_IQDIO_QFMT) && !pci_out_supported(q)) ||
(queue_type(q) == QDIO_IQDIO_QFMT && multicast_outbound(q)))
qdio_siga_sync_q(q);
/*
* Don't check 128 buffers, as otherwise qdio_inbound_q_moved
* would return 0.
*/
count = min(atomic_read(&q->nr_buf_used), QDIO_MAX_BUFFERS_MASK);
stop = add_buf(q->first_to_check, count);
/* need to set count to 1 for non-qebsm */
if (!is_qebsm(q))
count = 1;
check_next:
if (q->first_to_check == stop)
return q->first_to_check;
count = get_buf_states(q, q->first_to_check, &state, count);
if (!count)
return q->first_to_check;
switch (state) {
case SLSB_P_OUTPUT_EMPTY:
/* the adapter got it */
QDIO_DBF_TEXT5(0, trace, "outpempt");
atomic_sub(count, &q->nr_buf_used);
q->first_to_check = add_buf(q->first_to_check, count);
/*
* We fetch all buffer states at once. get_buf_states may
* return count < stop. For QEBSM we do not loop.
*/
if (is_qebsm(q))
break;
goto check_next;
case SLSB_P_OUTPUT_ERROR:
announce_buffer_error(q);
/* process the buffer, the upper layer will take care of it */
q->first_to_check = add_buf(q->first_to_check, count);
atomic_sub(count, &q->nr_buf_used);
break;
case SLSB_CU_OUTPUT_PRIMED:
/* the adapter has not fetched the output yet */
QDIO_DBF_TEXT5(0, trace, "outpprim");
break;
case SLSB_P_OUTPUT_NOT_INIT:
case SLSB_P_OUTPUT_HALTED:
break;
default:
BUG();
}
return q->first_to_check;
}
/* all buffers processed? */
static inline int qdio_outbound_q_done(struct qdio_q *q)
{
return atomic_read(&q->nr_buf_used) == 0;
}
static inline int qdio_outbound_q_moved(struct qdio_q *q)
{
int bufnr;
bufnr = get_outbound_buffer_frontier(q);
if ((bufnr != q->last_move_ftc) || q->qdio_error) {
q->last_move_ftc = bufnr;
QDIO_DBF_TEXT4(0, trace, "oqhasmvd");
QDIO_DBF_HEX4(0, trace, &q, sizeof(void *));
return 1;
} else
return 0;
}
/*
* VM could present us cc=2 and busy bit set on SIGA-write
* during reconfiguration of their Guest LAN (only in iqdio mode,
* otherwise qdio is asynchronous and cc=2 and busy bit there will take
* the queues down immediately).
*
* Therefore qdio_siga_output will try for a short time constantly,
* if such a condition occurs. If it doesn't change, it will
* increase the busy_siga_counter and save the timestamp, and
* schedule the queue for later processing. qdio_outbound_processing
* will check out the counter. If non-zero, it will call qdio_kick_outbound_q
* as often as the value of the counter. This will attempt further SIGA
* instructions. For each successful SIGA, the counter is
* decreased, for failing SIGAs the counter remains the same, after
* all. After some time of no movement, qdio_kick_outbound_q will
* finally fail and reflect corresponding error codes to call
* the upper layer module and have it take the queues down.
*
* Note that this is a change from the original HiperSockets design
* (saying cc=2 and busy bit means take the queues down), but in
* these days Guest LAN didn't exist... excessive cc=2 with busy bit
* conditions will still take the queues down, but the threshold is
* higher due to the Guest LAN environment.
*
* Called from outbound tasklet and do_QDIO handler.
*/
static void qdio_kick_outbound_q(struct qdio_q *q)
{
int rc;
#ifdef CONFIG_QDIO_DEBUG
char dbf_text[15];
QDIO_DBF_TEXT5(0, trace, "kickoutq");
QDIO_DBF_HEX5(0, trace, &q, sizeof(void *));
#endif /* CONFIG_QDIO_DEBUG */
if (!need_siga_out(q))
return;
rc = qdio_siga_output(q);
switch (rc) {
case 0:
/* TODO: improve error handling for CC=0 case */
#ifdef CONFIG_QDIO_DEBUG
if (q->u.out.timestamp) {
QDIO_DBF_TEXT3(0, trace, "cc2reslv");
sprintf(dbf_text, "%4x%2x%2x", q->irq_ptr->schid.sch_no,
q->nr,
atomic_read(&q->u.out.busy_siga_counter));
QDIO_DBF_TEXT3(0, trace, dbf_text);
}
#endif /* CONFIG_QDIO_DEBUG */
/* went smooth this time, reset timestamp */
q->u.out.timestamp = 0;
break;
/* cc=2 and busy bit */
case (2 | QDIO_ERROR_SIGA_BUSY):
atomic_inc(&q->u.out.busy_siga_counter);
/* if the last siga was successful, save timestamp here */
if (!q->u.out.timestamp)
q->u.out.timestamp = get_usecs();
/* if we're in time, don't touch qdio_error */
if (get_usecs() - q->u.out.timestamp < QDIO_BUSY_BIT_GIVE_UP) {
tasklet_schedule(&q->tasklet);
break;
}
QDIO_DBF_TEXT2(0, trace, "cc2REPRT");
#ifdef CONFIG_QDIO_DEBUG
sprintf(dbf_text, "%4x%2x%2x", q->irq_ptr->schid.sch_no, q->nr,
atomic_read(&q->u.out.busy_siga_counter));
QDIO_DBF_TEXT3(0, trace, dbf_text);
#endif /* CONFIG_QDIO_DEBUG */
default:
/* for plain cc=1, 2 or 3 */
q->qdio_error = rc;
}
}
static void qdio_kick_outbound_handler(struct qdio_q *q)
{
int start, end, count;
#ifdef CONFIG_QDIO_DEBUG
char dbf_text[15];
#endif
start = q->first_to_kick;
end = q->last_move_ftc;
if (end >= start)
count = end - start;
else
count = end + QDIO_MAX_BUFFERS_PER_Q - start;
#ifdef CONFIG_QDIO_DEBUG
QDIO_DBF_TEXT4(0, trace, "kickouth");
QDIO_DBF_HEX4(0, trace, &q, sizeof(void *));
sprintf(dbf_text, "s=%2xc=%2x", start, count);
QDIO_DBF_TEXT4(0, trace, dbf_text);
#endif /* CONFIG_QDIO_DEBUG */
if (unlikely(q->irq_ptr->state != QDIO_IRQ_STATE_ACTIVE))
return;
q->handler(q->irq_ptr->cdev, q->qdio_error, q->nr, start, count,
q->irq_ptr->int_parm);
/* for the next time: */
q->first_to_kick = q->last_move_ftc;
q->qdio_error = 0;
}
static void __qdio_outbound_processing(struct qdio_q *q)
{
int siga_attempts;
qdio_perf_stat_inc(&perf_stats.tasklet_outbound);
/* see comment in qdio_kick_outbound_q */
siga_attempts = atomic_read(&q->u.out.busy_siga_counter);
while (siga_attempts--) {
atomic_dec(&q->u.out.busy_siga_counter);
qdio_kick_outbound_q(q);
}
BUG_ON(atomic_read(&q->nr_buf_used) < 0);
if (qdio_outbound_q_moved(q))
qdio_kick_outbound_handler(q);
if (queue_type(q) == QDIO_ZFCP_QFMT) {
if (!pci_out_supported(q) && !qdio_outbound_q_done(q))
tasklet_schedule(&q->tasklet);
return;
}
/* bail out for HiperSockets unicast queues */
if (queue_type(q) == QDIO_IQDIO_QFMT && !multicast_outbound(q))
return;
if ((queue_type(q) == QDIO_IQDIO_QFMT) &&
(atomic_read(&q->nr_buf_used)) > QDIO_IQDIO_POLL_LVL) {
tasklet_schedule(&q->tasklet);
return;
}
if (q->u.out.pci_out_enabled)
return;
/*
* Now we know that queue type is either qeth without pci enabled
* or HiperSockets multicast. Make sure buffer switch from PRIMED to
* EMPTY is noticed and outbound_handler is called after some time.
*/
if (qdio_outbound_q_done(q))
del_timer(&q->u.out.timer);
else {
if (!timer_pending(&q->u.out.timer)) {
mod_timer(&q->u.out.timer, jiffies + 10 * HZ);
qdio_perf_stat_inc(&perf_stats.debug_tl_out_timer);
}
}
}
/* outbound tasklet */
void qdio_outbound_processing(unsigned long data)
{
struct qdio_q *q = (struct qdio_q *)data;
__qdio_outbound_processing(q);
}
void qdio_outbound_timer(unsigned long data)
{
struct qdio_q *q = (struct qdio_q *)data;
tasklet_schedule(&q->tasklet);
}
/* called from thinint inbound tasklet */
void qdio_check_outbound_after_thinint(struct qdio_q *q)
{
struct qdio_q *out;
int i;
if (!pci_out_supported(q))
return;
for_each_output_queue(q->irq_ptr, out, i)
if (!qdio_outbound_q_done(out))
tasklet_schedule(&out->tasklet);
}
static inline void qdio_set_state(struct qdio_irq *irq_ptr,
enum qdio_irq_states state)
{
#ifdef CONFIG_QDIO_DEBUG
char dbf_text[15];
QDIO_DBF_TEXT5(0, trace, "newstate");
sprintf(dbf_text, "%4x%4x", irq_ptr->schid.sch_no, state);
QDIO_DBF_TEXT5(0, trace, dbf_text);
#endif /* CONFIG_QDIO_DEBUG */
irq_ptr->state = state;
mb();
}
static void qdio_irq_check_sense(struct subchannel_id schid, struct irb *irb)
{
char dbf_text[15];
if (irb->esw.esw0.erw.cons) {
sprintf(dbf_text, "sens%4x", schid.sch_no);
QDIO_DBF_TEXT2(1, trace, dbf_text);
QDIO_DBF_HEX0(0, trace, irb, 64);
QDIO_DBF_HEX0(0, trace, irb->ecw, 64);
}
}
/* PCI interrupt handler */
static void qdio_int_handler_pci(struct qdio_irq *irq_ptr)
{
int i;
struct qdio_q *q;
qdio_perf_stat_inc(&perf_stats.pci_int);
for_each_input_queue(irq_ptr, q, i)
tasklet_schedule(&q->tasklet);
if (!(irq_ptr->qib.ac & QIB_AC_OUTBOUND_PCI_SUPPORTED))
return;
for_each_output_queue(irq_ptr, q, i) {
if (qdio_outbound_q_done(q))
continue;
if (!siga_syncs_out_pci(q))
qdio_siga_sync_q(q);
tasklet_schedule(&q->tasklet);
}
}
static void qdio_handle_activate_check(struct ccw_device *cdev,
unsigned long intparm, int cstat, int dstat)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct qdio_q *q;
char dbf_text[15];
QDIO_DBF_TEXT2(1, trace, "ick2");
sprintf(dbf_text, "%s", dev_name(&cdev->dev));
QDIO_DBF_TEXT2(1, trace, dbf_text);
QDIO_DBF_HEX2(0, trace, &intparm, sizeof(int));
QDIO_DBF_HEX2(0, trace, &dstat, sizeof(int));
QDIO_DBF_HEX2(0, trace, &cstat, sizeof(int));
if (irq_ptr->nr_input_qs) {
q = irq_ptr->input_qs[0];
} else if (irq_ptr->nr_output_qs) {
q = irq_ptr->output_qs[0];
} else {
dump_stack();
goto no_handler;
}
q->handler(q->irq_ptr->cdev, QDIO_ERROR_ACTIVATE_CHECK_CONDITION,
0, -1, -1, irq_ptr->int_parm);
no_handler:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED);
}
static void qdio_call_shutdown(struct work_struct *work)
{
struct ccw_device_private *priv;
struct ccw_device *cdev;
priv = container_of(work, struct ccw_device_private, kick_work);
cdev = priv->cdev;
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
put_device(&cdev->dev);
}
static void qdio_int_error(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
switch (irq_ptr->state) {
case QDIO_IRQ_STATE_INACTIVE:
case QDIO_IRQ_STATE_CLEANUP:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR);
break;
case QDIO_IRQ_STATE_ESTABLISHED:
case QDIO_IRQ_STATE_ACTIVE:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED);
if (get_device(&cdev->dev)) {
/* Can't call shutdown from interrupt context. */
PREPARE_WORK(&cdev->private->kick_work,
qdio_call_shutdown);
queue_work(ccw_device_work, &cdev->private->kick_work);
}
break;
default:
WARN_ON(1);
}
wake_up(&cdev->private->wait_q);
}
static int qdio_establish_check_errors(struct ccw_device *cdev, int cstat,
int dstat)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
if (cstat || (dstat & ~(DEV_STAT_CHN_END | DEV_STAT_DEV_END))) {
QDIO_DBF_TEXT2(1, setup, "eq:ckcon");
goto error;
}
if (!(dstat & DEV_STAT_DEV_END)) {
QDIO_DBF_TEXT2(1, setup, "eq:no de");
goto error;
}
if (dstat & ~(DEV_STAT_CHN_END | DEV_STAT_DEV_END)) {
QDIO_DBF_TEXT2(1, setup, "eq:badio");
goto error;
}
return 0;
error:
QDIO_DBF_HEX2(0, trace, &cstat, sizeof(int));
QDIO_DBF_HEX2(0, trace, &dstat, sizeof(int));
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR);
return 1;
}
static void qdio_establish_handle_irq(struct ccw_device *cdev, int cstat,
int dstat)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
char dbf_text[15];
sprintf(dbf_text, "qehi%4x", cdev->private->schid.sch_no);
QDIO_DBF_TEXT0(0, setup, dbf_text);
QDIO_DBF_TEXT0(0, trace, dbf_text);
if (!qdio_establish_check_errors(cdev, cstat, dstat))
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ESTABLISHED);
}
/* qdio interrupt handler */
void qdio_int_handler(struct ccw_device *cdev, unsigned long intparm,
struct irb *irb)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
int cstat, dstat;
char dbf_text[15];
qdio_perf_stat_inc(&perf_stats.qdio_int);
if (!intparm || !irq_ptr) {
sprintf(dbf_text, "qihd%4x", cdev->private->schid.sch_no);
QDIO_DBF_TEXT2(1, setup, dbf_text);
return;
}
if (IS_ERR(irb)) {
switch (PTR_ERR(irb)) {
case -EIO:
sprintf(dbf_text, "ierr%4x", irq_ptr->schid.sch_no);
QDIO_DBF_TEXT2(1, setup, dbf_text);
qdio_int_error(cdev);
return;
case -ETIMEDOUT:
sprintf(dbf_text, "qtoh%4x", irq_ptr->schid.sch_no);
QDIO_DBF_TEXT2(1, setup, dbf_text);
qdio_int_error(cdev);
return;
default:
WARN_ON(1);
return;
}
}
qdio_irq_check_sense(irq_ptr->schid, irb);
cstat = irb->scsw.cmd.cstat;
dstat = irb->scsw.cmd.dstat;
switch (irq_ptr->state) {
case QDIO_IRQ_STATE_INACTIVE:
qdio_establish_handle_irq(cdev, cstat, dstat);
break;
case QDIO_IRQ_STATE_CLEANUP:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE);
break;
case QDIO_IRQ_STATE_ESTABLISHED:
case QDIO_IRQ_STATE_ACTIVE:
if (cstat & SCHN_STAT_PCI) {
qdio_int_handler_pci(irq_ptr);
/* no state change so no need to wake up wait_q */
return;
}
if ((cstat & ~SCHN_STAT_PCI) || dstat) {
qdio_handle_activate_check(cdev, intparm, cstat,
dstat);
break;
}
default:
WARN_ON(1);
}
wake_up(&cdev->private->wait_q);
}
/**
* qdio_get_ssqd_desc - get qdio subchannel description
* @cdev: ccw device to get description for
*
* Returns a pointer to the saved qdio subchannel description,
* or NULL for not setup qdio devices.
*/
struct qdio_ssqd_desc *qdio_get_ssqd_desc(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr;
char dbf_text[15];
sprintf(dbf_text, "qssq%4x", cdev->private->schid.sch_no);
QDIO_DBF_TEXT0(0, setup, dbf_text);
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return NULL;
return &irq_ptr->ssqd_desc;
}
EXPORT_SYMBOL_GPL(qdio_get_ssqd_desc);
/**
* qdio_cleanup - shutdown queues and free data structures
* @cdev: associated ccw device
* @how: use halt or clear to shutdown
*
* This function calls qdio_shutdown() for @cdev with method @how
* and on success qdio_free() for @cdev.
*/
int qdio_cleanup(struct ccw_device *cdev, int how)
{
struct qdio_irq *irq_ptr;
char dbf_text[15];
int rc;
sprintf(dbf_text, "qcln%4x", cdev->private->schid.sch_no);
QDIO_DBF_TEXT0(0, setup, dbf_text);
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
rc = qdio_shutdown(cdev, how);
if (rc == 0)
rc = qdio_free(cdev);
return rc;
}
EXPORT_SYMBOL_GPL(qdio_cleanup);
static void qdio_shutdown_queues(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr = cdev->private->qdio_data;
struct qdio_q *q;
int i;
for_each_input_queue(irq_ptr, q, i)
tasklet_disable(&q->tasklet);
for_each_output_queue(irq_ptr, q, i) {
tasklet_disable(&q->tasklet);
del_timer(&q->u.out.timer);
}
}
/**
* qdio_shutdown - shut down a qdio subchannel
* @cdev: associated ccw device
* @how: use halt or clear to shutdown
*/
int qdio_shutdown(struct ccw_device *cdev, int how)
{
struct qdio_irq *irq_ptr;
int rc;
unsigned long flags;
char dbf_text[15];
sprintf(dbf_text, "qshu%4x", cdev->private->schid.sch_no);
QDIO_DBF_TEXT0(0, setup, dbf_text);
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
mutex_lock(&irq_ptr->setup_mutex);
/*
* Subchannel was already shot down. We cannot prevent being called
* twice since cio may trigger a shutdown asynchronously.
*/
if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) {
mutex_unlock(&irq_ptr->setup_mutex);
return 0;
}
tiqdio_remove_input_queues(irq_ptr);
qdio_shutdown_queues(cdev);
qdio_shutdown_debug_entries(irq_ptr, cdev);
/* cleanup subchannel */
spin_lock_irqsave(get_ccwdev_lock(cdev), flags);
if (how & QDIO_FLAG_CLEANUP_USING_CLEAR)
rc = ccw_device_clear(cdev, QDIO_DOING_CLEANUP);
else
/* default behaviour is halt */
rc = ccw_device_halt(cdev, QDIO_DOING_CLEANUP);
if (rc) {
sprintf(dbf_text, "sher%4x", irq_ptr->schid.sch_no);
QDIO_DBF_TEXT0(0, setup, dbf_text);
sprintf(dbf_text, "rc=%d", rc);
QDIO_DBF_TEXT0(0, setup, dbf_text);
goto no_cleanup;
}
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_CLEANUP);
spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags);
wait_event_interruptible_timeout(cdev->private->wait_q,
irq_ptr->state == QDIO_IRQ_STATE_INACTIVE ||
irq_ptr->state == QDIO_IRQ_STATE_ERR,
10 * HZ);
spin_lock_irqsave(get_ccwdev_lock(cdev), flags);
no_cleanup:
qdio_shutdown_thinint(irq_ptr);
/* restore interrupt handler */
if ((void *)cdev->handler == (void *)qdio_int_handler)
cdev->handler = irq_ptr->orig_handler;
spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags);
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE);
mutex_unlock(&irq_ptr->setup_mutex);
if (rc)
return rc;
return 0;
}
EXPORT_SYMBOL_GPL(qdio_shutdown);
/**
* qdio_free - free data structures for a qdio subchannel
* @cdev: associated ccw device
*/
int qdio_free(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr;
char dbf_text[15];
sprintf(dbf_text, "qfre%4x", cdev->private->schid.sch_no);
QDIO_DBF_TEXT0(0, setup, dbf_text);
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
mutex_lock(&irq_ptr->setup_mutex);
cdev->private->qdio_data = NULL;
mutex_unlock(&irq_ptr->setup_mutex);
qdio_release_memory(irq_ptr);
return 0;
}
EXPORT_SYMBOL_GPL(qdio_free);
/**
* qdio_initialize - allocate and establish queues for a qdio subchannel
* @init_data: initialization data
*
* This function first allocates queues via qdio_allocate() and on success
* establishes them via qdio_establish().
*/
int qdio_initialize(struct qdio_initialize *init_data)
{
int rc;
char dbf_text[15];
sprintf(dbf_text, "qini%4x", init_data->cdev->private->schid.sch_no);
QDIO_DBF_TEXT0(0, setup, dbf_text);
rc = qdio_allocate(init_data);
if (rc)
return rc;
rc = qdio_establish(init_data);
if (rc)
qdio_free(init_data->cdev);
return rc;
}
EXPORT_SYMBOL_GPL(qdio_initialize);
/**
* qdio_allocate - allocate qdio queues and associated data
* @init_data: initialization data
*/
int qdio_allocate(struct qdio_initialize *init_data)
{
struct qdio_irq *irq_ptr;
char dbf_text[15];
sprintf(dbf_text, "qalc%4x", init_data->cdev->private->schid.sch_no);
QDIO_DBF_TEXT0(0, setup, dbf_text);
if ((init_data->no_input_qs && !init_data->input_handler) ||
(init_data->no_output_qs && !init_data->output_handler))
return -EINVAL;
if ((init_data->no_input_qs > QDIO_MAX_QUEUES_PER_IRQ) ||
(init_data->no_output_qs > QDIO_MAX_QUEUES_PER_IRQ))
return -EINVAL;
if ((!init_data->input_sbal_addr_array) ||
(!init_data->output_sbal_addr_array))
return -EINVAL;
qdio_allocate_do_dbf(init_data);
/* irq_ptr must be in GFP_DMA since it contains ccw1.cda */
irq_ptr = (void *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
if (!irq_ptr)
goto out_err;
QDIO_DBF_TEXT0(0, setup, "irq_ptr:");
QDIO_DBF_HEX0(0, setup, &irq_ptr, sizeof(void *));
mutex_init(&irq_ptr->setup_mutex);
/*
* Allocate a page for the chsc calls in qdio_establish.
* Must be pre-allocated since a zfcp recovery will call
* qdio_establish. In case of low memory and swap on a zfcp disk
* we may not be able to allocate memory otherwise.
*/
irq_ptr->chsc_page = get_zeroed_page(GFP_KERNEL);
if (!irq_ptr->chsc_page)
goto out_rel;
/* qdr is used in ccw1.cda which is u32 */
irq_ptr->qdr = (struct qdr *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
if (!irq_ptr->qdr)
goto out_rel;
WARN_ON((unsigned long)irq_ptr->qdr & 0xfff);
QDIO_DBF_TEXT0(0, setup, "qdr:");
QDIO_DBF_HEX0(0, setup, &irq_ptr->qdr, sizeof(void *));
if (qdio_allocate_qs(irq_ptr, init_data->no_input_qs,
init_data->no_output_qs))
goto out_rel;
init_data->cdev->private->qdio_data = irq_ptr;
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE);
return 0;
out_rel:
qdio_release_memory(irq_ptr);
out_err:
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(qdio_allocate);
/**
* qdio_establish - establish queues on a qdio subchannel
* @init_data: initialization data
*/
int qdio_establish(struct qdio_initialize *init_data)
{
char dbf_text[20];
struct qdio_irq *irq_ptr;
struct ccw_device *cdev = init_data->cdev;
unsigned long saveflags;
int rc;
sprintf(dbf_text, "qest%4x", cdev->private->schid.sch_no);
QDIO_DBF_TEXT0(0, setup, dbf_text);
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
if (cdev->private->state != DEV_STATE_ONLINE)
return -EINVAL;
mutex_lock(&irq_ptr->setup_mutex);
qdio_setup_irq(init_data);
rc = qdio_establish_thinint(irq_ptr);
if (rc) {
mutex_unlock(&irq_ptr->setup_mutex);
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
return rc;
}
/* establish q */
irq_ptr->ccw.cmd_code = irq_ptr->equeue.cmd;
irq_ptr->ccw.flags = CCW_FLAG_SLI;
irq_ptr->ccw.count = irq_ptr->equeue.count;
irq_ptr->ccw.cda = (u32)((addr_t)irq_ptr->qdr);
spin_lock_irqsave(get_ccwdev_lock(cdev), saveflags);
ccw_device_set_options_mask(cdev, 0);
rc = ccw_device_start(cdev, &irq_ptr->ccw, QDIO_DOING_ESTABLISH, 0, 0);
if (rc) {
sprintf(dbf_text, "eq:io%4x", irq_ptr->schid.sch_no);
QDIO_DBF_TEXT2(1, setup, dbf_text);
sprintf(dbf_text, "eq:rc%4x", rc);
QDIO_DBF_TEXT2(1, setup, dbf_text);
}
spin_unlock_irqrestore(get_ccwdev_lock(cdev), saveflags);
if (rc) {
mutex_unlock(&irq_ptr->setup_mutex);
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
return rc;
}
wait_event_interruptible_timeout(cdev->private->wait_q,
irq_ptr->state == QDIO_IRQ_STATE_ESTABLISHED ||
irq_ptr->state == QDIO_IRQ_STATE_ERR, HZ);
if (irq_ptr->state != QDIO_IRQ_STATE_ESTABLISHED) {
mutex_unlock(&irq_ptr->setup_mutex);
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
return -EIO;
}
qdio_setup_ssqd_info(irq_ptr);
sprintf(dbf_text, "qDmmwc%2x", irq_ptr->ssqd_desc.mmwc);
QDIO_DBF_TEXT2(0, setup, dbf_text);
sprintf(dbf_text, "qib ac%2x", irq_ptr->qib.ac);
QDIO_DBF_TEXT2(0, setup, dbf_text);
/* qebsm is now setup if available, initialize buffer states */
qdio_init_buf_states(irq_ptr);
mutex_unlock(&irq_ptr->setup_mutex);
qdio_print_subchannel_info(irq_ptr, cdev);
qdio_setup_debug_entries(irq_ptr, cdev);
return 0;
}
EXPORT_SYMBOL_GPL(qdio_establish);
/**
* qdio_activate - activate queues on a qdio subchannel
* @cdev: associated cdev
*/
int qdio_activate(struct ccw_device *cdev)
{
struct qdio_irq *irq_ptr;
int rc;
unsigned long saveflags;
char dbf_text[20];
sprintf(dbf_text, "qact%4x", cdev->private->schid.sch_no);
QDIO_DBF_TEXT0(0, setup, dbf_text);
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
if (cdev->private->state != DEV_STATE_ONLINE)
return -EINVAL;
mutex_lock(&irq_ptr->setup_mutex);
if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) {
rc = -EBUSY;
goto out;
}
irq_ptr->ccw.cmd_code = irq_ptr->aqueue.cmd;
irq_ptr->ccw.flags = CCW_FLAG_SLI;
irq_ptr->ccw.count = irq_ptr->aqueue.count;
irq_ptr->ccw.cda = 0;
spin_lock_irqsave(get_ccwdev_lock(cdev), saveflags);
ccw_device_set_options(cdev, CCWDEV_REPORT_ALL);
rc = ccw_device_start(cdev, &irq_ptr->ccw, QDIO_DOING_ACTIVATE,
0, DOIO_DENY_PREFETCH);
if (rc) {
sprintf(dbf_text, "aq:io%4x", irq_ptr->schid.sch_no);
QDIO_DBF_TEXT2(1, setup, dbf_text);
sprintf(dbf_text, "aq:rc%4x", rc);
QDIO_DBF_TEXT2(1, setup, dbf_text);
}
spin_unlock_irqrestore(get_ccwdev_lock(cdev), saveflags);
if (rc)
goto out;
if (is_thinint_irq(irq_ptr))
tiqdio_add_input_queues(irq_ptr);
/* wait for subchannel to become active */
msleep(5);
switch (irq_ptr->state) {
case QDIO_IRQ_STATE_STOPPED:
case QDIO_IRQ_STATE_ERR:
mutex_unlock(&irq_ptr->setup_mutex);
qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
return -EIO;
default:
qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ACTIVE);
rc = 0;
}
out:
mutex_unlock(&irq_ptr->setup_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(qdio_activate);
static inline int buf_in_between(int bufnr, int start, int count)
{
int end = add_buf(start, count);
if (end > start) {
if (bufnr >= start && bufnr < end)
return 1;
else
return 0;
}
/* wrap-around case */
if ((bufnr >= start && bufnr <= QDIO_MAX_BUFFERS_PER_Q) ||
(bufnr < end))
return 1;
else
return 0;
}
/**
* handle_inbound - reset processed input buffers
* @q: queue containing the buffers
* @callflags: flags
* @bufnr: first buffer to process
* @count: how many buffers are emptied
*/
static void handle_inbound(struct qdio_q *q, unsigned int callflags,
int bufnr, int count)
{
unsigned long flags;
int used, rc;
/*
* do_QDIO could run in parallel with the queue tasklet so the
* upper-layer programm could empty the ACK'ed buffer here.
* If that happens we must clear the polling flag, otherwise
* qdio_stop_polling() could set the buffer to NOT_INIT after
* it was set to EMPTY which would kill us.
*/
spin_lock_irqsave(&q->u.in.lock, flags);
if (q->u.in.polling)
if (buf_in_between(q->last_move_ftc, bufnr, count))
q->u.in.polling = 0;
count = set_buf_states(q, bufnr, SLSB_CU_INPUT_EMPTY, count);
spin_unlock_irqrestore(&q->u.in.lock, flags);
used = atomic_add_return(count, &q->nr_buf_used) - count;
BUG_ON(used + count > QDIO_MAX_BUFFERS_PER_Q);
/* no need to signal as long as the adapter had free buffers */
if (used)
return;
if (need_siga_in(q)) {
rc = qdio_siga_input(q);
if (rc)
q->qdio_error = rc;
}
}
/**
* handle_outbound - process filled outbound buffers
* @q: queue containing the buffers
* @callflags: flags
* @bufnr: first buffer to process
* @count: how many buffers are filled
*/
static void handle_outbound(struct qdio_q *q, unsigned int callflags,
int bufnr, int count)
{
unsigned char state;
int used;
qdio_perf_stat_inc(&perf_stats.outbound_handler);
count = set_buf_states(q, bufnr, SLSB_CU_OUTPUT_PRIMED, count);
used = atomic_add_return(count, &q->nr_buf_used);
BUG_ON(used > QDIO_MAX_BUFFERS_PER_Q);
if (callflags & QDIO_FLAG_PCI_OUT)
q->u.out.pci_out_enabled = 1;
else
q->u.out.pci_out_enabled = 0;
if (queue_type(q) == QDIO_IQDIO_QFMT) {
if (multicast_outbound(q))
qdio_kick_outbound_q(q);
else
if ((q->irq_ptr->ssqd_desc.mmwc > 1) &&
(count > 1) &&
(count <= q->irq_ptr->ssqd_desc.mmwc)) {
/* exploit enhanced SIGA */
q->u.out.use_enh_siga = 1;
qdio_kick_outbound_q(q);
} else {
/*
* One siga-w per buffer required for unicast
* HiperSockets.
*/
q->u.out.use_enh_siga = 0;
while (count--)
qdio_kick_outbound_q(q);
}
goto out;
}
if (need_siga_sync(q)) {
qdio_siga_sync_q(q);
goto out;
}
/* try to fast requeue buffers */
get_buf_state(q, prev_buf(bufnr), &state);
if (state != SLSB_CU_OUTPUT_PRIMED)
qdio_kick_outbound_q(q);
else {
QDIO_DBF_TEXT5(0, trace, "fast-req");
qdio_perf_stat_inc(&perf_stats.fast_requeue);
}
out:
/* Fixme: could wait forever if called from process context */
tasklet_schedule(&q->tasklet);
}
/**
* do_QDIO - process input or output buffers
* @cdev: associated ccw_device for the qdio subchannel
* @callflags: input or output and special flags from the program
* @q_nr: queue number
* @bufnr: buffer number
* @count: how many buffers to process
*/
int do_QDIO(struct ccw_device *cdev, unsigned int callflags,
int q_nr, int bufnr, int count)
{
struct qdio_irq *irq_ptr;
#ifdef CONFIG_QDIO_DEBUG
char dbf_text[20];
sprintf(dbf_text, "doQD%4x", cdev->private->schid.sch_no);
QDIO_DBF_TEXT3(0, trace, dbf_text);
#endif /* CONFIG_QDIO_DEBUG */
if ((bufnr > QDIO_MAX_BUFFERS_PER_Q) ||
(count > QDIO_MAX_BUFFERS_PER_Q) ||
(q_nr > QDIO_MAX_QUEUES_PER_IRQ))
return -EINVAL;
if (!count)
return 0;
irq_ptr = cdev->private->qdio_data;
if (!irq_ptr)
return -ENODEV;
#ifdef CONFIG_QDIO_DEBUG
if (callflags & QDIO_FLAG_SYNC_INPUT)
QDIO_DBF_HEX3(0, trace, &irq_ptr->input_qs[q_nr],
sizeof(void *));
else
QDIO_DBF_HEX3(0, trace, &irq_ptr->output_qs[q_nr],
sizeof(void *));
sprintf(dbf_text, "flag%04x", callflags);
QDIO_DBF_TEXT3(0, trace, dbf_text);
sprintf(dbf_text, "qi%02xct%02x", bufnr, count);
QDIO_DBF_TEXT3(0, trace, dbf_text);
#endif /* CONFIG_QDIO_DEBUG */
if (irq_ptr->state != QDIO_IRQ_STATE_ACTIVE)
return -EBUSY;
if (callflags & QDIO_FLAG_SYNC_INPUT)
handle_inbound(irq_ptr->input_qs[q_nr],
callflags, bufnr, count);
else if (callflags & QDIO_FLAG_SYNC_OUTPUT)
handle_outbound(irq_ptr->output_qs[q_nr],
callflags, bufnr, count);
else {
QDIO_DBF_TEXT3(1, trace, "doQD:inv");
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL_GPL(do_QDIO);
static int __init init_QDIO(void)
{
int rc;
rc = qdio_setup_init();
if (rc)
return rc;
rc = tiqdio_allocate_memory();
if (rc)
goto out_cache;
rc = qdio_debug_init();
if (rc)
goto out_ti;
rc = qdio_setup_perf_stats();
if (rc)
goto out_debug;
rc = tiqdio_register_thinints();
if (rc)
goto out_perf;
return 0;
out_perf:
qdio_remove_perf_stats();
out_debug:
qdio_debug_exit();
out_ti:
tiqdio_free_memory();
out_cache:
qdio_setup_exit();
return rc;
}
static void __exit exit_QDIO(void)
{
tiqdio_unregister_thinints();
tiqdio_free_memory();
qdio_remove_perf_stats();
qdio_debug_exit();
qdio_setup_exit();
}
module_init(init_QDIO);
module_exit(exit_QDIO);