linux/fs/xfs/libxfs/xfs_btree.c

4788 lines
126 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_buf_item.h"
#include "xfs_btree.h"
#include "xfs_error.h"
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-15 07:14:59 +08:00
#include "xfs_trace.h"
#include "xfs_cksum.h"
xfs: refine the allocation stack switch The allocation stack switch at xfs_bmapi_allocate() has served it's purpose, but is no longer a sufficient solution to the stack usage problem we have in the XFS allocation path. Whilst the kernel stack size is now 16k, that is not a valid reason for undoing all our "keep stack usage down" modifications. What it does allow us to do is have the freedom to refine and perfect the modifications knowing that if we get it wrong it won't blow up in our faces - we have a safety net now. This is important because we still have the issue of older kernels having smaller stacks and that they are still supported and are demonstrating a wide range of different stack overflows. Red Hat has several open bugs for allocation based stack overflows from directory modifications and direct IO block allocation and these problems still need to be solved. If we can solve them upstream, then distro's won't need to bake their own unique solutions. To that end, I've observed that every allocation based stack overflow report has had a specific characteristic - it has happened during or directly after a bmap btree block split. That event requires a new block to be allocated to the tree, and so we effectively stack one allocation stack on top of another, and that's when we get into trouble. A further observation is that bmap btree block splits are much rarer than writeback allocation - over a range of different workloads I've observed the ratio of bmap btree inserts to splits ranges from 100:1 (xfstests run) to 10000:1 (local VM image server with sparse files that range in the hundreds of thousands to millions of extents). Either way, bmap btree split events are much, much rarer than allocation events. Finally, we have to move the kswapd state to the allocation workqueue work when allocation is done on behalf of kswapd. This is proving to cause significant perturbation in performance under memory pressure and appears to be generating allocation deadlock warnings under some workloads, so avoiding the use of a workqueue for the majority of kswapd writeback allocation will minimise the impact of such behaviour. Hence it makes sense to move the stack switch to xfs_btree_split() and only do it for bmap btree splits. Stack switches during allocation will be much rarer, so there won't be significant performacne overhead caused by switching stacks. The worse case stack from all allocation paths will be split, not just writeback. And the majority of memory allocations will be done in the correct context (e.g. kswapd) without causing additional latency, and so we simplify the memory reclaim interactions between processes, workqueues and kswapd. The worst stack I've been able to generate with this patch in place is 5600 bytes deep. It's very revealing because we exit XFS at: 37) 1768 64 kmem_cache_alloc+0x13b/0x170 about 1800 bytes of stack consumed, and the remaining 3800 bytes (and 36 functions) is memory reclaim, swap and the IO stack. And this occurs in the inode allocation from an open(O_CREAT) syscall, not writeback. The amount of stack being used is much less than I've previously be able to generate - fs_mark testing has been able to generate stack usage of around 7k without too much trouble; with this patch it's only just getting to 5.5k. This is primarily because the metadata allocation paths (e.g. directory blocks) are no longer causing double splits on the same stack, and hence now stack tracing is showing swapping being the worst stack consumer rather than XFS. Performance of fs_mark inode create workloads is unchanged. Performance of fs_mark async fsync workloads is consistently good with context switches reduced by around 150,000/s (30%). Performance of dbench, streaming IO and postmark is unchanged. Allocation deadlock warnings have not been seen on the workloads that generated them since adding this patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-07-15 05:08:24 +08:00
#include "xfs_alloc.h"
xfs: validate metadata LSNs against log on v5 superblocks Since the onset of v5 superblocks, the LSN of the last modification has been included in a variety of on-disk data structures. This LSN is used to provide log recovery ordering guarantees (e.g., to ensure an older log recovery item is not replayed over a newer target data structure). While this works correctly from the point a filesystem is formatted and mounted, userspace tools have some problematic behaviors that defeat this mechanism. For example, xfs_repair historically zeroes out the log unconditionally (regardless of whether corruption is detected). If this occurs, the LSN of the filesystem is reset and the log is now in a problematic state with respect to on-disk metadata structures that might have a larger LSN. Until either the log catches up to the highest previously used metadata LSN or each affected data structure is modified and written out without incident (which resets the metadata LSN), log recovery is susceptible to filesystem corruption. This problem is ultimately addressed and repaired in the associated userspace tools. The kernel is still responsible to detect the problem and notify the user that something is wrong. Check the superblock LSN at mount time and fail the mount if it is invalid. From that point on, trigger verifier failure on any metadata I/O where an invalid LSN is detected. This results in a filesystem shutdown and guarantees that we do not log metadata changes with invalid LSNs on disk. Since this is a known issue with a known recovery path, present a warning to instruct the user how to recover. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12 12:59:25 +08:00
#include "xfs_log.h"
/*
* Cursor allocation zone.
*/
kmem_zone_t *xfs_btree_cur_zone;
/*
* Btree magic numbers.
*/
static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
XFS_FIBT_MAGIC },
{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC }
};
#define xfs_btree_magic(cur) \
xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
STATIC int /* error (0 or EFSCORRUPTED) */
xfs_btree_check_lblock(
struct xfs_btree_cur *cur, /* btree cursor */
struct xfs_btree_block *block, /* btree long form block pointer */
int level, /* level of the btree block */
struct xfs_buf *bp) /* buffer for block, if any */
{
int lblock_ok = 1; /* block passes checks */
struct xfs_mount *mp; /* file system mount point */
mp = cur->bc_mp;
if (xfs_sb_version_hascrc(&mp->m_sb)) {
lblock_ok = lblock_ok &&
uuid_equal(&block->bb_u.l.bb_uuid,
&mp->m_sb.sb_meta_uuid) &&
block->bb_u.l.bb_blkno == cpu_to_be64(
bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
}
lblock_ok = lblock_ok &&
be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
be16_to_cpu(block->bb_level) == level &&
be16_to_cpu(block->bb_numrecs) <=
cur->bc_ops->get_maxrecs(cur, level) &&
block->bb_u.l.bb_leftsib &&
(block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
XFS_FSB_SANITY_CHECK(mp,
be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
block->bb_u.l.bb_rightsib &&
(block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
XFS_FSB_SANITY_CHECK(mp,
be64_to_cpu(block->bb_u.l.bb_rightsib)));
if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
XFS_ERRTAG_BTREE_CHECK_LBLOCK,
XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
if (bp)
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-15 07:14:59 +08:00
trace_xfs_btree_corrupt(bp, _RET_IP_);
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
return -EFSCORRUPTED;
}
return 0;
}
STATIC int /* error (0 or EFSCORRUPTED) */
xfs_btree_check_sblock(
struct xfs_btree_cur *cur, /* btree cursor */
struct xfs_btree_block *block, /* btree short form block pointer */
int level, /* level of the btree block */
struct xfs_buf *bp) /* buffer containing block */
{
struct xfs_mount *mp; /* file system mount point */
struct xfs_buf *agbp; /* buffer for ag. freespace struct */
struct xfs_agf *agf; /* ag. freespace structure */
xfs_agblock_t agflen; /* native ag. freespace length */
int sblock_ok = 1; /* block passes checks */
mp = cur->bc_mp;
agbp = cur->bc_private.a.agbp;
agf = XFS_BUF_TO_AGF(agbp);
agflen = be32_to_cpu(agf->agf_length);
if (xfs_sb_version_hascrc(&mp->m_sb)) {
sblock_ok = sblock_ok &&
uuid_equal(&block->bb_u.s.bb_uuid,
&mp->m_sb.sb_meta_uuid) &&
block->bb_u.s.bb_blkno == cpu_to_be64(
bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
}
sblock_ok = sblock_ok &&
be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
be16_to_cpu(block->bb_level) == level &&
be16_to_cpu(block->bb_numrecs) <=
cur->bc_ops->get_maxrecs(cur, level) &&
(block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
block->bb_u.s.bb_leftsib &&
(block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
block->bb_u.s.bb_rightsib;
if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
XFS_ERRTAG_BTREE_CHECK_SBLOCK,
XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
if (bp)
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-15 07:14:59 +08:00
trace_xfs_btree_corrupt(bp, _RET_IP_);
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
return -EFSCORRUPTED;
}
return 0;
}
/*
* Debug routine: check that block header is ok.
*/
int
xfs_btree_check_block(
struct xfs_btree_cur *cur, /* btree cursor */
struct xfs_btree_block *block, /* generic btree block pointer */
int level, /* level of the btree block */
struct xfs_buf *bp) /* buffer containing block, if any */
{
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
return xfs_btree_check_lblock(cur, block, level, bp);
else
return xfs_btree_check_sblock(cur, block, level, bp);
}
/*
* Check that (long) pointer is ok.
*/
int /* error (0 or EFSCORRUPTED) */
xfs_btree_check_lptr(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_fsblock_t bno, /* btree block disk address */
int level) /* btree block level */
{
XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
level > 0 &&
bno != NULLFSBLOCK &&
XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
return 0;
}
#ifdef DEBUG
/*
* Check that (short) pointer is ok.
*/
STATIC int /* error (0 or EFSCORRUPTED) */
xfs_btree_check_sptr(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_agblock_t bno, /* btree block disk address */
int level) /* btree block level */
{
xfs_agblock_t agblocks = cur->bc_mp->m_sb.sb_agblocks;
XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
level > 0 &&
bno != NULLAGBLOCK &&
bno != 0 &&
bno < agblocks);
return 0;
}
/*
* Check that block ptr is ok.
*/
STATIC int /* error (0 or EFSCORRUPTED) */
xfs_btree_check_ptr(
struct xfs_btree_cur *cur, /* btree cursor */
union xfs_btree_ptr *ptr, /* btree block disk address */
int index, /* offset from ptr to check */
int level) /* btree block level */
{
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
return xfs_btree_check_lptr(cur,
be64_to_cpu((&ptr->l)[index]), level);
} else {
return xfs_btree_check_sptr(cur,
be32_to_cpu((&ptr->s)[index]), level);
}
}
#endif
/*
* Calculate CRC on the whole btree block and stuff it into the
* long-form btree header.
*
* Prior to calculting the CRC, pull the LSN out of the buffer log item and put
* it into the buffer so recovery knows what the last modification was that made
* it to disk.
*/
void
xfs_btree_lblock_calc_crc(
struct xfs_buf *bp)
{
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
struct xfs_buf_log_item *bip = bp->b_fspriv;
if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
return;
if (bip)
block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
}
bool
xfs_btree_lblock_verify_crc(
struct xfs_buf *bp)
{
xfs: validate metadata LSNs against log on v5 superblocks Since the onset of v5 superblocks, the LSN of the last modification has been included in a variety of on-disk data structures. This LSN is used to provide log recovery ordering guarantees (e.g., to ensure an older log recovery item is not replayed over a newer target data structure). While this works correctly from the point a filesystem is formatted and mounted, userspace tools have some problematic behaviors that defeat this mechanism. For example, xfs_repair historically zeroes out the log unconditionally (regardless of whether corruption is detected). If this occurs, the LSN of the filesystem is reset and the log is now in a problematic state with respect to on-disk metadata structures that might have a larger LSN. Until either the log catches up to the highest previously used metadata LSN or each affected data structure is modified and written out without incident (which resets the metadata LSN), log recovery is susceptible to filesystem corruption. This problem is ultimately addressed and repaired in the associated userspace tools. The kernel is still responsible to detect the problem and notify the user that something is wrong. Check the superblock LSN at mount time and fail the mount if it is invalid. From that point on, trigger verifier failure on any metadata I/O where an invalid LSN is detected. This results in a filesystem shutdown and guarantees that we do not log metadata changes with invalid LSNs on disk. Since this is a known issue with a known recovery path, present a warning to instruct the user how to recover. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12 12:59:25 +08:00
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
struct xfs_mount *mp = bp->b_target->bt_mount;
if (xfs_sb_version_hascrc(&mp->m_sb)) {
if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
return false;
return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
xfs: validate metadata LSNs against log on v5 superblocks Since the onset of v5 superblocks, the LSN of the last modification has been included in a variety of on-disk data structures. This LSN is used to provide log recovery ordering guarantees (e.g., to ensure an older log recovery item is not replayed over a newer target data structure). While this works correctly from the point a filesystem is formatted and mounted, userspace tools have some problematic behaviors that defeat this mechanism. For example, xfs_repair historically zeroes out the log unconditionally (regardless of whether corruption is detected). If this occurs, the LSN of the filesystem is reset and the log is now in a problematic state with respect to on-disk metadata structures that might have a larger LSN. Until either the log catches up to the highest previously used metadata LSN or each affected data structure is modified and written out without incident (which resets the metadata LSN), log recovery is susceptible to filesystem corruption. This problem is ultimately addressed and repaired in the associated userspace tools. The kernel is still responsible to detect the problem and notify the user that something is wrong. Check the superblock LSN at mount time and fail the mount if it is invalid. From that point on, trigger verifier failure on any metadata I/O where an invalid LSN is detected. This results in a filesystem shutdown and guarantees that we do not log metadata changes with invalid LSNs on disk. Since this is a known issue with a known recovery path, present a warning to instruct the user how to recover. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12 12:59:25 +08:00
}
return true;
}
/*
* Calculate CRC on the whole btree block and stuff it into the
* short-form btree header.
*
* Prior to calculting the CRC, pull the LSN out of the buffer log item and put
* it into the buffer so recovery knows what the last modification was that made
* it to disk.
*/
void
xfs_btree_sblock_calc_crc(
struct xfs_buf *bp)
{
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
struct xfs_buf_log_item *bip = bp->b_fspriv;
if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
return;
if (bip)
block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
}
bool
xfs_btree_sblock_verify_crc(
struct xfs_buf *bp)
{
xfs: validate metadata LSNs against log on v5 superblocks Since the onset of v5 superblocks, the LSN of the last modification has been included in a variety of on-disk data structures. This LSN is used to provide log recovery ordering guarantees (e.g., to ensure an older log recovery item is not replayed over a newer target data structure). While this works correctly from the point a filesystem is formatted and mounted, userspace tools have some problematic behaviors that defeat this mechanism. For example, xfs_repair historically zeroes out the log unconditionally (regardless of whether corruption is detected). If this occurs, the LSN of the filesystem is reset and the log is now in a problematic state with respect to on-disk metadata structures that might have a larger LSN. Until either the log catches up to the highest previously used metadata LSN or each affected data structure is modified and written out without incident (which resets the metadata LSN), log recovery is susceptible to filesystem corruption. This problem is ultimately addressed and repaired in the associated userspace tools. The kernel is still responsible to detect the problem and notify the user that something is wrong. Check the superblock LSN at mount time and fail the mount if it is invalid. From that point on, trigger verifier failure on any metadata I/O where an invalid LSN is detected. This results in a filesystem shutdown and guarantees that we do not log metadata changes with invalid LSNs on disk. Since this is a known issue with a known recovery path, present a warning to instruct the user how to recover. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12 12:59:25 +08:00
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
struct xfs_mount *mp = bp->b_target->bt_mount;
if (xfs_sb_version_hascrc(&mp->m_sb)) {
if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
return false;
return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
xfs: validate metadata LSNs against log on v5 superblocks Since the onset of v5 superblocks, the LSN of the last modification has been included in a variety of on-disk data structures. This LSN is used to provide log recovery ordering guarantees (e.g., to ensure an older log recovery item is not replayed over a newer target data structure). While this works correctly from the point a filesystem is formatted and mounted, userspace tools have some problematic behaviors that defeat this mechanism. For example, xfs_repair historically zeroes out the log unconditionally (regardless of whether corruption is detected). If this occurs, the LSN of the filesystem is reset and the log is now in a problematic state with respect to on-disk metadata structures that might have a larger LSN. Until either the log catches up to the highest previously used metadata LSN or each affected data structure is modified and written out without incident (which resets the metadata LSN), log recovery is susceptible to filesystem corruption. This problem is ultimately addressed and repaired in the associated userspace tools. The kernel is still responsible to detect the problem and notify the user that something is wrong. Check the superblock LSN at mount time and fail the mount if it is invalid. From that point on, trigger verifier failure on any metadata I/O where an invalid LSN is detected. This results in a filesystem shutdown and guarantees that we do not log metadata changes with invalid LSNs on disk. Since this is a known issue with a known recovery path, present a warning to instruct the user how to recover. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12 12:59:25 +08:00
}
return true;
}
static int
xfs_btree_free_block(
struct xfs_btree_cur *cur,
struct xfs_buf *bp)
{
int error;
error = cur->bc_ops->free_block(cur, bp);
if (!error) {
xfs_trans_binval(cur->bc_tp, bp);
XFS_BTREE_STATS_INC(cur, free);
}
return error;
}
/*
* Delete the btree cursor.
*/
void
xfs_btree_del_cursor(
xfs_btree_cur_t *cur, /* btree cursor */
int error) /* del because of error */
{
int i; /* btree level */
/*
* Clear the buffer pointers, and release the buffers.
* If we're doing this in the face of an error, we
* need to make sure to inspect all of the entries
* in the bc_bufs array for buffers to be unlocked.
* This is because some of the btree code works from
* level n down to 0, and if we get an error along
* the way we won't have initialized all the entries
* down to 0.
*/
for (i = 0; i < cur->bc_nlevels; i++) {
if (cur->bc_bufs[i])
xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
else if (!error)
break;
}
/*
* Can't free a bmap cursor without having dealt with the
* allocated indirect blocks' accounting.
*/
ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
cur->bc_private.b.allocated == 0);
/*
* Free the cursor.
*/
kmem_zone_free(xfs_btree_cur_zone, cur);
}
/*
* Duplicate the btree cursor.
* Allocate a new one, copy the record, re-get the buffers.
*/
int /* error */
xfs_btree_dup_cursor(
xfs_btree_cur_t *cur, /* input cursor */
xfs_btree_cur_t **ncur) /* output cursor */
{
xfs_buf_t *bp; /* btree block's buffer pointer */
int error; /* error return value */
int i; /* level number of btree block */
xfs_mount_t *mp; /* mount structure for filesystem */
xfs_btree_cur_t *new; /* new cursor value */
xfs_trans_t *tp; /* transaction pointer, can be NULL */
tp = cur->bc_tp;
mp = cur->bc_mp;
/*
* Allocate a new cursor like the old one.
*/
new = cur->bc_ops->dup_cursor(cur);
/*
* Copy the record currently in the cursor.
*/
new->bc_rec = cur->bc_rec;
/*
* For each level current, re-get the buffer and copy the ptr value.
*/
for (i = 0; i < new->bc_nlevels; i++) {
new->bc_ptrs[i] = cur->bc_ptrs[i];
new->bc_ra[i] = cur->bc_ra[i];
bp = cur->bc_bufs[i];
if (bp) {
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
XFS_BUF_ADDR(bp), mp->m_bsize,
0, &bp,
cur->bc_ops->buf_ops);
if (error) {
xfs_btree_del_cursor(new, error);
*ncur = NULL;
return error;
}
}
new->bc_bufs[i] = bp;
}
*ncur = new;
return 0;
}
/*
* XFS btree block layout and addressing:
*
* There are two types of blocks in the btree: leaf and non-leaf blocks.
*
* The leaf record start with a header then followed by records containing
* the values. A non-leaf block also starts with the same header, and
* then first contains lookup keys followed by an equal number of pointers
* to the btree blocks at the previous level.
*
* +--------+-------+-------+-------+-------+-------+-------+
* Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
* +--------+-------+-------+-------+-------+-------+-------+
*
* +--------+-------+-------+-------+-------+-------+-------+
* Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
* +--------+-------+-------+-------+-------+-------+-------+
*
* The header is called struct xfs_btree_block for reasons better left unknown
* and comes in different versions for short (32bit) and long (64bit) block
* pointers. The record and key structures are defined by the btree instances
* and opaque to the btree core. The block pointers are simple disk endian
* integers, available in a short (32bit) and long (64bit) variant.
*
* The helpers below calculate the offset of a given record, key or pointer
* into a btree block (xfs_btree_*_offset) or return a pointer to the given
* record, key or pointer (xfs_btree_*_addr). Note that all addressing
* inside the btree block is done using indices starting at one, not zero!
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
*
* If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
* overlapping intervals. In such a tree, records are still sorted lowest to
* highest and indexed by the smallest key value that refers to the record.
* However, nodes are different: each pointer has two associated keys -- one
* indexing the lowest key available in the block(s) below (the same behavior
* as the key in a regular btree) and another indexing the highest key
* available in the block(s) below. Because records are /not/ sorted by the
* highest key, all leaf block updates require us to compute the highest key
* that matches any record in the leaf and to recursively update the high keys
* in the nodes going further up in the tree, if necessary. Nodes look like
* this:
*
* +--------+-----+-----+-----+-----+-----+-------+-------+-----+
* Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
* +--------+-----+-----+-----+-----+-----+-------+-------+-----+
*
* To perform an interval query on an overlapped tree, perform the usual
* depth-first search and use the low and high keys to decide if we can skip
* that particular node. If a leaf node is reached, return the records that
* intersect the interval. Note that an interval query may return numerous
* entries. For a non-overlapped tree, simply search for the record associated
* with the lowest key and iterate forward until a non-matching record is
* found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
* Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
* more detail.
*
* Why do we care about overlapping intervals? Let's say you have a bunch of
* reverse mapping records on a reflink filesystem:
*
* 1: +- file A startblock B offset C length D -----------+
* 2: +- file E startblock F offset G length H --------------+
* 3: +- file I startblock F offset J length K --+
* 4: +- file L... --+
*
* Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
* we'd simply increment the length of record 1. But how do we find the record
* that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
* record 3 because the keys are ordered first by startblock. An interval
* query would return records 1 and 2 because they both overlap (B+D-1), and
* from that we can pick out record 1 as the appropriate left neighbor.
*
* In the non-overlapped case you can do a LE lookup and decrement the cursor
* because a record's interval must end before the next record.
*/
/*
* Return size of the btree block header for this btree instance.
*/
static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
{
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
return XFS_BTREE_LBLOCK_CRC_LEN;
return XFS_BTREE_LBLOCK_LEN;
}
if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
return XFS_BTREE_SBLOCK_CRC_LEN;
return XFS_BTREE_SBLOCK_LEN;
}
/*
* Return size of btree block pointers for this btree instance.
*/
static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
{
return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
sizeof(__be64) : sizeof(__be32);
}
/*
* Calculate offset of the n-th record in a btree block.
*/
STATIC size_t
xfs_btree_rec_offset(
struct xfs_btree_cur *cur,
int n)
{
return xfs_btree_block_len(cur) +
(n - 1) * cur->bc_ops->rec_len;
}
/*
* Calculate offset of the n-th key in a btree block.
*/
STATIC size_t
xfs_btree_key_offset(
struct xfs_btree_cur *cur,
int n)
{
return xfs_btree_block_len(cur) +
(n - 1) * cur->bc_ops->key_len;
}
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
/*
* Calculate offset of the n-th high key in a btree block.
*/
STATIC size_t
xfs_btree_high_key_offset(
struct xfs_btree_cur *cur,
int n)
{
return xfs_btree_block_len(cur) +
(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
}
/*
* Calculate offset of the n-th block pointer in a btree block.
*/
STATIC size_t
xfs_btree_ptr_offset(
struct xfs_btree_cur *cur,
int n,
int level)
{
return xfs_btree_block_len(cur) +
cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
(n - 1) * xfs_btree_ptr_len(cur);
}
/*
* Return a pointer to the n-th record in the btree block.
*/
STATIC union xfs_btree_rec *
xfs_btree_rec_addr(
struct xfs_btree_cur *cur,
int n,
struct xfs_btree_block *block)
{
return (union xfs_btree_rec *)
((char *)block + xfs_btree_rec_offset(cur, n));
}
/*
* Return a pointer to the n-th key in the btree block.
*/
STATIC union xfs_btree_key *
xfs_btree_key_addr(
struct xfs_btree_cur *cur,
int n,
struct xfs_btree_block *block)
{
return (union xfs_btree_key *)
((char *)block + xfs_btree_key_offset(cur, n));
}
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
/*
* Return a pointer to the n-th high key in the btree block.
*/
STATIC union xfs_btree_key *
xfs_btree_high_key_addr(
struct xfs_btree_cur *cur,
int n,
struct xfs_btree_block *block)
{
return (union xfs_btree_key *)
((char *)block + xfs_btree_high_key_offset(cur, n));
}
/*
* Return a pointer to the n-th block pointer in the btree block.
*/
STATIC union xfs_btree_ptr *
xfs_btree_ptr_addr(
struct xfs_btree_cur *cur,
int n,
struct xfs_btree_block *block)
{
int level = xfs_btree_get_level(block);
ASSERT(block->bb_level != 0);
return (union xfs_btree_ptr *)
((char *)block + xfs_btree_ptr_offset(cur, n, level));
}
/*
* Get the root block which is stored in the inode.
*
* For now this btree implementation assumes the btree root is always
* stored in the if_broot field of an inode fork.
*/
STATIC struct xfs_btree_block *
xfs_btree_get_iroot(
struct xfs_btree_cur *cur)
{
struct xfs_ifork *ifp;
ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
return (struct xfs_btree_block *)ifp->if_broot;
}
/*
* Retrieve the block pointer from the cursor at the given level.
* This may be an inode btree root or from a buffer.
*/
STATIC struct xfs_btree_block * /* generic btree block pointer */
xfs_btree_get_block(
struct xfs_btree_cur *cur, /* btree cursor */
int level, /* level in btree */
struct xfs_buf **bpp) /* buffer containing the block */
{
if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
(level == cur->bc_nlevels - 1)) {
*bpp = NULL;
return xfs_btree_get_iroot(cur);
}
*bpp = cur->bc_bufs[level];
return XFS_BUF_TO_BLOCK(*bpp);
}
/*
* Get a buffer for the block, return it with no data read.
* Long-form addressing.
*/
xfs_buf_t * /* buffer for fsbno */
xfs_btree_get_bufl(
xfs_mount_t *mp, /* file system mount point */
xfs_trans_t *tp, /* transaction pointer */
xfs_fsblock_t fsbno, /* file system block number */
uint lock) /* lock flags for get_buf */
{
xfs_daddr_t d; /* real disk block address */
ASSERT(fsbno != NULLFSBLOCK);
d = XFS_FSB_TO_DADDR(mp, fsbno);
return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
}
/*
* Get a buffer for the block, return it with no data read.
* Short-form addressing.
*/
xfs_buf_t * /* buffer for agno/agbno */
xfs_btree_get_bufs(
xfs_mount_t *mp, /* file system mount point */
xfs_trans_t *tp, /* transaction pointer */
xfs_agnumber_t agno, /* allocation group number */
xfs_agblock_t agbno, /* allocation group block number */
uint lock) /* lock flags for get_buf */
{
xfs_daddr_t d; /* real disk block address */
ASSERT(agno != NULLAGNUMBER);
ASSERT(agbno != NULLAGBLOCK);
d = XFS_AGB_TO_DADDR(mp, agno, agbno);
return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
}
/*
* Check for the cursor referring to the last block at the given level.
*/
int /* 1=is last block, 0=not last block */
xfs_btree_islastblock(
xfs_btree_cur_t *cur, /* btree cursor */
int level) /* level to check */
{
struct xfs_btree_block *block; /* generic btree block pointer */
xfs_buf_t *bp; /* buffer containing block */
block = xfs_btree_get_block(cur, level, &bp);
xfs_btree_check_block(cur, block, level, bp);
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
else
return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
}
/*
* Change the cursor to point to the first record at the given level.
* Other levels are unaffected.
*/
STATIC int /* success=1, failure=0 */
xfs_btree_firstrec(
xfs_btree_cur_t *cur, /* btree cursor */
int level) /* level to change */
{
struct xfs_btree_block *block; /* generic btree block pointer */
xfs_buf_t *bp; /* buffer containing block */
/*
* Get the block pointer for this level.
*/
block = xfs_btree_get_block(cur, level, &bp);
xfs_btree_check_block(cur, block, level, bp);
/*
* It's empty, there is no such record.
*/
if (!block->bb_numrecs)
return 0;
/*
* Set the ptr value to 1, that's the first record/key.
*/
cur->bc_ptrs[level] = 1;
return 1;
}
/*
* Change the cursor to point to the last record in the current block
* at the given level. Other levels are unaffected.
*/
STATIC int /* success=1, failure=0 */
xfs_btree_lastrec(
xfs_btree_cur_t *cur, /* btree cursor */
int level) /* level to change */
{
struct xfs_btree_block *block; /* generic btree block pointer */
xfs_buf_t *bp; /* buffer containing block */
/*
* Get the block pointer for this level.
*/
block = xfs_btree_get_block(cur, level, &bp);
xfs_btree_check_block(cur, block, level, bp);
/*
* It's empty, there is no such record.
*/
if (!block->bb_numrecs)
return 0;
/*
* Set the ptr value to numrecs, that's the last record/key.
*/
cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
return 1;
}
/*
* Compute first and last byte offsets for the fields given.
* Interprets the offsets table, which contains struct field offsets.
*/
void
xfs_btree_offsets(
__int64_t fields, /* bitmask of fields */
const short *offsets, /* table of field offsets */
int nbits, /* number of bits to inspect */
int *first, /* output: first byte offset */
int *last) /* output: last byte offset */
{
int i; /* current bit number */
__int64_t imask; /* mask for current bit number */
ASSERT(fields != 0);
/*
* Find the lowest bit, so the first byte offset.
*/
for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
if (imask & fields) {
*first = offsets[i];
break;
}
}
/*
* Find the highest bit, so the last byte offset.
*/
for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
if (imask & fields) {
*last = offsets[i + 1] - 1;
break;
}
}
}
/*
* Get a buffer for the block, return it read in.
* Long-form addressing.
*/
int
xfs_btree_read_bufl(
struct xfs_mount *mp, /* file system mount point */
struct xfs_trans *tp, /* transaction pointer */
xfs_fsblock_t fsbno, /* file system block number */
uint lock, /* lock flags for read_buf */
struct xfs_buf **bpp, /* buffer for fsbno */
int refval, /* ref count value for buffer */
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp; /* return value */
xfs_daddr_t d; /* real disk block address */
int error;
ASSERT(fsbno != NULLFSBLOCK);
d = XFS_FSB_TO_DADDR(mp, fsbno);
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
mp->m_bsize, lock, &bp, ops);
if (error)
return error;
if (bp)
xfs_buf_set_ref(bp, refval);
*bpp = bp;
return 0;
}
/*
* Read-ahead the block, don't wait for it, don't return a buffer.
* Long-form addressing.
*/
/* ARGSUSED */
void
xfs_btree_reada_bufl(
struct xfs_mount *mp, /* file system mount point */
xfs_fsblock_t fsbno, /* file system block number */
xfs_extlen_t count, /* count of filesystem blocks */
const struct xfs_buf_ops *ops)
{
xfs_daddr_t d;
ASSERT(fsbno != NULLFSBLOCK);
d = XFS_FSB_TO_DADDR(mp, fsbno);
xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
}
/*
* Read-ahead the block, don't wait for it, don't return a buffer.
* Short-form addressing.
*/
/* ARGSUSED */
void
xfs_btree_reada_bufs(
struct xfs_mount *mp, /* file system mount point */
xfs_agnumber_t agno, /* allocation group number */
xfs_agblock_t agbno, /* allocation group block number */
xfs_extlen_t count, /* count of filesystem blocks */
const struct xfs_buf_ops *ops)
{
xfs_daddr_t d;
ASSERT(agno != NULLAGNUMBER);
ASSERT(agbno != NULLAGBLOCK);
d = XFS_AGB_TO_DADDR(mp, agno, agbno);
xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
}
STATIC int
xfs_btree_readahead_lblock(
struct xfs_btree_cur *cur,
int lr,
struct xfs_btree_block *block)
{
int rval = 0;
xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
xfs_btree_reada_bufl(cur->bc_mp, left, 1,
cur->bc_ops->buf_ops);
rval++;
}
if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
xfs_btree_reada_bufl(cur->bc_mp, right, 1,
cur->bc_ops->buf_ops);
rval++;
}
return rval;
}
STATIC int
xfs_btree_readahead_sblock(
struct xfs_btree_cur *cur,
int lr,
struct xfs_btree_block *block)
{
int rval = 0;
xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
left, 1, cur->bc_ops->buf_ops);
rval++;
}
if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
right, 1, cur->bc_ops->buf_ops);
rval++;
}
return rval;
}
/*
* Read-ahead btree blocks, at the given level.
* Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
*/
STATIC int
xfs_btree_readahead(
struct xfs_btree_cur *cur, /* btree cursor */
int lev, /* level in btree */
int lr) /* left/right bits */
{
struct xfs_btree_block *block;
/*
* No readahead needed if we are at the root level and the
* btree root is stored in the inode.
*/
if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
(lev == cur->bc_nlevels - 1))
return 0;
if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
return 0;
cur->bc_ra[lev] |= lr;
block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
return xfs_btree_readahead_lblock(cur, lr, block);
return xfs_btree_readahead_sblock(cur, lr, block);
}
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
STATIC xfs_daddr_t
xfs_btree_ptr_to_daddr(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
} else {
ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
be32_to_cpu(ptr->s));
}
}
/*
* Readahead @count btree blocks at the given @ptr location.
*
* We don't need to care about long or short form btrees here as we have a
* method of converting the ptr directly to a daddr available to us.
*/
STATIC void
xfs_btree_readahead_ptr(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
xfs_extlen_t count)
{
xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
xfs_btree_ptr_to_daddr(cur, ptr),
cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
}
/*
* Set the buffer for level "lev" in the cursor to bp, releasing
* any previous buffer.
*/
STATIC void
xfs_btree_setbuf(
xfs_btree_cur_t *cur, /* btree cursor */
int lev, /* level in btree */
xfs_buf_t *bp) /* new buffer to set */
{
struct xfs_btree_block *b; /* btree block */
if (cur->bc_bufs[lev])
xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
cur->bc_bufs[lev] = bp;
cur->bc_ra[lev] = 0;
b = XFS_BUF_TO_BLOCK(bp);
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
} else {
if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
}
}
STATIC int
xfs_btree_ptr_is_null(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
return ptr->l == cpu_to_be64(NULLFSBLOCK);
else
return ptr->s == cpu_to_be32(NULLAGBLOCK);
}
STATIC void
xfs_btree_set_ptr_null(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
ptr->l = cpu_to_be64(NULLFSBLOCK);
else
ptr->s = cpu_to_be32(NULLAGBLOCK);
}
/*
* Get/set/init sibling pointers
*/
STATIC void
xfs_btree_get_sibling(
struct xfs_btree_cur *cur,
struct xfs_btree_block *block,
union xfs_btree_ptr *ptr,
int lr)
{
ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
if (lr == XFS_BB_RIGHTSIB)
ptr->l = block->bb_u.l.bb_rightsib;
else
ptr->l = block->bb_u.l.bb_leftsib;
} else {
if (lr == XFS_BB_RIGHTSIB)
ptr->s = block->bb_u.s.bb_rightsib;
else
ptr->s = block->bb_u.s.bb_leftsib;
}
}
STATIC void
xfs_btree_set_sibling(
struct xfs_btree_cur *cur,
struct xfs_btree_block *block,
union xfs_btree_ptr *ptr,
int lr)
{
ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
if (lr == XFS_BB_RIGHTSIB)
block->bb_u.l.bb_rightsib = ptr->l;
else
block->bb_u.l.bb_leftsib = ptr->l;
} else {
if (lr == XFS_BB_RIGHTSIB)
block->bb_u.s.bb_rightsib = ptr->s;
else
block->bb_u.s.bb_leftsib = ptr->s;
}
}
void
xfs_btree_init_block_int(
struct xfs_mount *mp,
struct xfs_btree_block *buf,
xfs_daddr_t blkno,
__u32 magic,
__u16 level,
__u16 numrecs,
__u64 owner,
unsigned int flags)
{
buf->bb_magic = cpu_to_be32(magic);
buf->bb_level = cpu_to_be16(level);
buf->bb_numrecs = cpu_to_be16(numrecs);
if (flags & XFS_BTREE_LONG_PTRS) {
buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
if (flags & XFS_BTREE_CRC_BLOCKS) {
buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
buf->bb_u.l.bb_owner = cpu_to_be64(owner);
uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
buf->bb_u.l.bb_pad = 0;
buf->bb_u.l.bb_lsn = 0;
}
} else {
/* owner is a 32 bit value on short blocks */
__u32 __owner = (__u32)owner;
buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
if (flags & XFS_BTREE_CRC_BLOCKS) {
buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
buf->bb_u.s.bb_lsn = 0;
}
}
}
void
xfs_btree_init_block(
struct xfs_mount *mp,
struct xfs_buf *bp,
__u32 magic,
__u16 level,
__u16 numrecs,
__u64 owner,
unsigned int flags)
{
xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
magic, level, numrecs, owner, flags);
}
STATIC void
xfs_btree_init_block_cur(
struct xfs_btree_cur *cur,
struct xfs_buf *bp,
int level,
int numrecs)
{
__u64 owner;
/*
* we can pull the owner from the cursor right now as the different
* owners align directly with the pointer size of the btree. This may
* change in future, but is safe for current users of the generic btree
* code.
*/
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
owner = cur->bc_private.b.ip->i_ino;
else
owner = cur->bc_private.a.agno;
xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
xfs_btree_magic(cur), level, numrecs,
owner, cur->bc_flags);
}
/*
* Return true if ptr is the last record in the btree and
* we need to track updates to this record. The decision
* will be further refined in the update_lastrec method.
*/
STATIC int
xfs_btree_is_lastrec(
struct xfs_btree_cur *cur,
struct xfs_btree_block *block,
int level)
{
union xfs_btree_ptr ptr;
if (level > 0)
return 0;
if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
return 0;
xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
if (!xfs_btree_ptr_is_null(cur, &ptr))
return 0;
return 1;
}
STATIC void
xfs_btree_buf_to_ptr(
struct xfs_btree_cur *cur,
struct xfs_buf *bp,
union xfs_btree_ptr *ptr)
{
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
XFS_BUF_ADDR(bp)));
else {
ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
XFS_BUF_ADDR(bp)));
}
}
STATIC void
xfs_btree_set_refs(
struct xfs_btree_cur *cur,
struct xfs_buf *bp)
{
switch (cur->bc_btnum) {
case XFS_BTNUM_BNO:
case XFS_BTNUM_CNT:
xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
break;
case XFS_BTNUM_INO:
case XFS_BTNUM_FINO:
xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
break;
case XFS_BTNUM_BMAP:
xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
break;
case XFS_BTNUM_RMAP:
xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
break;
default:
ASSERT(0);
}
}
STATIC int
xfs_btree_get_buf_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
int flags,
struct xfs_btree_block **block,
struct xfs_buf **bpp)
{
struct xfs_mount *mp = cur->bc_mp;
xfs_daddr_t d;
/* need to sort out how callers deal with failures first */
ASSERT(!(flags & XBF_TRYLOCK));
d = xfs_btree_ptr_to_daddr(cur, ptr);
*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
mp->m_bsize, flags);
if (!*bpp)
return -ENOMEM;
(*bpp)->b_ops = cur->bc_ops->buf_ops;
*block = XFS_BUF_TO_BLOCK(*bpp);
return 0;
}
/*
* Read in the buffer at the given ptr and return the buffer and
* the block pointer within the buffer.
*/
STATIC int
xfs_btree_read_buf_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
int flags,
struct xfs_btree_block **block,
struct xfs_buf **bpp)
{
struct xfs_mount *mp = cur->bc_mp;
xfs_daddr_t d;
int error;
/* need to sort out how callers deal with failures first */
ASSERT(!(flags & XBF_TRYLOCK));
d = xfs_btree_ptr_to_daddr(cur, ptr);
error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
mp->m_bsize, flags, bpp,
cur->bc_ops->buf_ops);
if (error)
return error;
xfs_btree_set_refs(cur, *bpp);
*block = XFS_BUF_TO_BLOCK(*bpp);
return 0;
}
/*
* Copy keys from one btree block to another.
*/
STATIC void
xfs_btree_copy_keys(
struct xfs_btree_cur *cur,
union xfs_btree_key *dst_key,
union xfs_btree_key *src_key,
int numkeys)
{
ASSERT(numkeys >= 0);
memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
}
/*
* Copy records from one btree block to another.
*/
STATIC void
xfs_btree_copy_recs(
struct xfs_btree_cur *cur,
union xfs_btree_rec *dst_rec,
union xfs_btree_rec *src_rec,
int numrecs)
{
ASSERT(numrecs >= 0);
memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
}
/*
* Copy block pointers from one btree block to another.
*/
STATIC void
xfs_btree_copy_ptrs(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *dst_ptr,
union xfs_btree_ptr *src_ptr,
int numptrs)
{
ASSERT(numptrs >= 0);
memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
}
/*
* Shift keys one index left/right inside a single btree block.
*/
STATIC void
xfs_btree_shift_keys(
struct xfs_btree_cur *cur,
union xfs_btree_key *key,
int dir,
int numkeys)
{
char *dst_key;
ASSERT(numkeys >= 0);
ASSERT(dir == 1 || dir == -1);
dst_key = (char *)key + (dir * cur->bc_ops->key_len);
memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
}
/*
* Shift records one index left/right inside a single btree block.
*/
STATIC void
xfs_btree_shift_recs(
struct xfs_btree_cur *cur,
union xfs_btree_rec *rec,
int dir,
int numrecs)
{
char *dst_rec;
ASSERT(numrecs >= 0);
ASSERT(dir == 1 || dir == -1);
dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
}
/*
* Shift block pointers one index left/right inside a single btree block.
*/
STATIC void
xfs_btree_shift_ptrs(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
int dir,
int numptrs)
{
char *dst_ptr;
ASSERT(numptrs >= 0);
ASSERT(dir == 1 || dir == -1);
dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
}
/*
* Log key values from the btree block.
*/
STATIC void
xfs_btree_log_keys(
struct xfs_btree_cur *cur,
struct xfs_buf *bp,
int first,
int last)
{
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
if (bp) {
xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
xfs_trans_log_buf(cur->bc_tp, bp,
xfs_btree_key_offset(cur, first),
xfs_btree_key_offset(cur, last + 1) - 1);
} else {
xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
xfs_ilog_fbroot(cur->bc_private.b.whichfork));
}
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
}
/*
* Log record values from the btree block.
*/
void
xfs_btree_log_recs(
struct xfs_btree_cur *cur,
struct xfs_buf *bp,
int first,
int last)
{
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
xfs_trans_log_buf(cur->bc_tp, bp,
xfs_btree_rec_offset(cur, first),
xfs_btree_rec_offset(cur, last + 1) - 1);
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
}
/*
* Log block pointer fields from a btree block (nonleaf).
*/
STATIC void
xfs_btree_log_ptrs(
struct xfs_btree_cur *cur, /* btree cursor */
struct xfs_buf *bp, /* buffer containing btree block */
int first, /* index of first pointer to log */
int last) /* index of last pointer to log */
{
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
if (bp) {
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
int level = xfs_btree_get_level(block);
xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
xfs_trans_log_buf(cur->bc_tp, bp,
xfs_btree_ptr_offset(cur, first, level),
xfs_btree_ptr_offset(cur, last + 1, level) - 1);
} else {
xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
xfs_ilog_fbroot(cur->bc_private.b.whichfork));
}
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
}
/*
* Log fields from a btree block header.
*/
void
xfs_btree_log_block(
struct xfs_btree_cur *cur, /* btree cursor */
struct xfs_buf *bp, /* buffer containing btree block */
int fields) /* mask of fields: XFS_BB_... */
{
int first; /* first byte offset logged */
int last; /* last byte offset logged */
static const short soffsets[] = { /* table of offsets (short) */
offsetof(struct xfs_btree_block, bb_magic),
offsetof(struct xfs_btree_block, bb_level),
offsetof(struct xfs_btree_block, bb_numrecs),
offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
XFS_BTREE_SBLOCK_CRC_LEN
};
static const short loffsets[] = { /* table of offsets (long) */
offsetof(struct xfs_btree_block, bb_magic),
offsetof(struct xfs_btree_block, bb_level),
offsetof(struct xfs_btree_block, bb_numrecs),
offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
XFS_BTREE_LBLOCK_CRC_LEN
};
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
if (bp) {
int nbits;
if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
/*
* We don't log the CRC when updating a btree
* block but instead recreate it during log
* recovery. As the log buffers have checksums
* of their own this is safe and avoids logging a crc
* update in a lot of places.
*/
if (fields == XFS_BB_ALL_BITS)
fields = XFS_BB_ALL_BITS_CRC;
nbits = XFS_BB_NUM_BITS_CRC;
} else {
nbits = XFS_BB_NUM_BITS;
}
xfs_btree_offsets(fields,
(cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
loffsets : soffsets,
nbits, &first, &last);
xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
xfs_trans_log_buf(cur->bc_tp, bp, first, last);
} else {
xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
xfs_ilog_fbroot(cur->bc_private.b.whichfork));
}
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
}
/*
* Increment cursor by one record at the level.
* For nonzero levels the leaf-ward information is untouched.
*/
int /* error */
xfs_btree_increment(
struct xfs_btree_cur *cur,
int level,
int *stat) /* success/failure */
{
struct xfs_btree_block *block;
union xfs_btree_ptr ptr;
struct xfs_buf *bp;
int error; /* error return value */
int lev;
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGI(cur, level);
ASSERT(level < cur->bc_nlevels);
/* Read-ahead to the right at this level. */
xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
/* Get a pointer to the btree block. */
block = xfs_btree_get_block(cur, level, &bp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, level, bp);
if (error)
goto error0;
#endif
/* We're done if we remain in the block after the increment. */
if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
goto out1;
/* Fail if we just went off the right edge of the tree. */
xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
if (xfs_btree_ptr_is_null(cur, &ptr))
goto out0;
XFS_BTREE_STATS_INC(cur, increment);
/*
* March up the tree incrementing pointers.
* Stop when we don't go off the right edge of a block.
*/
for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
block = xfs_btree_get_block(cur, lev, &bp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, lev, bp);
if (error)
goto error0;
#endif
if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
break;
/* Read-ahead the right block for the next loop. */
xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
}
/*
* If we went off the root then we are either seriously
* confused or have the tree root in an inode.
*/
if (lev == cur->bc_nlevels) {
if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
goto out0;
ASSERT(0);
error = -EFSCORRUPTED;
goto error0;
}
ASSERT(lev < cur->bc_nlevels);
/*
* Now walk back down the tree, fixing up the cursor's buffer
* pointers and key numbers.
*/
for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
union xfs_btree_ptr *ptrp;
ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
--lev;
error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
if (error)
goto error0;
xfs_btree_setbuf(cur, lev, bp);
cur->bc_ptrs[lev] = 1;
}
out1:
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 1;
return 0;
out0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 0;
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
/*
* Decrement cursor by one record at the level.
* For nonzero levels the leaf-ward information is untouched.
*/
int /* error */
xfs_btree_decrement(
struct xfs_btree_cur *cur,
int level,
int *stat) /* success/failure */
{
struct xfs_btree_block *block;
xfs_buf_t *bp;
int error; /* error return value */
int lev;
union xfs_btree_ptr ptr;
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGI(cur, level);
ASSERT(level < cur->bc_nlevels);
/* Read-ahead to the left at this level. */
xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
/* We're done if we remain in the block after the decrement. */
if (--cur->bc_ptrs[level] > 0)
goto out1;
/* Get a pointer to the btree block. */
block = xfs_btree_get_block(cur, level, &bp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, level, bp);
if (error)
goto error0;
#endif
/* Fail if we just went off the left edge of the tree. */
xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
if (xfs_btree_ptr_is_null(cur, &ptr))
goto out0;
XFS_BTREE_STATS_INC(cur, decrement);
/*
* March up the tree decrementing pointers.
* Stop when we don't go off the left edge of a block.
*/
for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
if (--cur->bc_ptrs[lev] > 0)
break;
/* Read-ahead the left block for the next loop. */
xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
}
/*
* If we went off the root then we are seriously confused.
* or the root of the tree is in an inode.
*/
if (lev == cur->bc_nlevels) {
if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
goto out0;
ASSERT(0);
error = -EFSCORRUPTED;
goto error0;
}
ASSERT(lev < cur->bc_nlevels);
/*
* Now walk back down the tree, fixing up the cursor's buffer
* pointers and key numbers.
*/
for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
union xfs_btree_ptr *ptrp;
ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
--lev;
error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
if (error)
goto error0;
xfs_btree_setbuf(cur, lev, bp);
cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
}
out1:
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 1;
return 0;
out0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 0;
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
STATIC int
xfs_btree_lookup_get_block(
struct xfs_btree_cur *cur, /* btree cursor */
int level, /* level in the btree */
union xfs_btree_ptr *pp, /* ptr to btree block */
struct xfs_btree_block **blkp) /* return btree block */
{
struct xfs_buf *bp; /* buffer pointer for btree block */
int error = 0;
/* special case the root block if in an inode */
if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
(level == cur->bc_nlevels - 1)) {
*blkp = xfs_btree_get_iroot(cur);
return 0;
}
/*
* If the old buffer at this level for the disk address we are
* looking for re-use it.
*
* Otherwise throw it away and get a new one.
*/
bp = cur->bc_bufs[level];
if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
*blkp = XFS_BUF_TO_BLOCK(bp);
return 0;
}
error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
if (error)
return error;
xfs_btree_setbuf(cur, level, bp);
return 0;
}
/*
* Get current search key. For level 0 we don't actually have a key
* structure so we make one up from the record. For all other levels
* we just return the right key.
*/
STATIC union xfs_btree_key *
xfs_lookup_get_search_key(
struct xfs_btree_cur *cur,
int level,
int keyno,
struct xfs_btree_block *block,
union xfs_btree_key *kp)
{
if (level == 0) {
cur->bc_ops->init_key_from_rec(kp,
xfs_btree_rec_addr(cur, keyno, block));
return kp;
}
return xfs_btree_key_addr(cur, keyno, block);
}
/*
* Lookup the record. The cursor is made to point to it, based on dir.
* stat is set to 0 if can't find any such record, 1 for success.
*/
int /* error */
xfs_btree_lookup(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_lookup_t dir, /* <=, ==, or >= */
int *stat) /* success/failure */
{
struct xfs_btree_block *block; /* current btree block */
__int64_t diff; /* difference for the current key */
int error; /* error return value */
int keyno; /* current key number */
int level; /* level in the btree */
union xfs_btree_ptr *pp; /* ptr to btree block */
union xfs_btree_ptr ptr; /* ptr to btree block */
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGI(cur, dir);
XFS_BTREE_STATS_INC(cur, lookup);
block = NULL;
keyno = 0;
/* initialise start pointer from cursor */
cur->bc_ops->init_ptr_from_cur(cur, &ptr);
pp = &ptr;
/*
* Iterate over each level in the btree, starting at the root.
* For each level above the leaves, find the key we need, based
* on the lookup record, then follow the corresponding block
* pointer down to the next level.
*/
for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
/* Get the block we need to do the lookup on. */
error = xfs_btree_lookup_get_block(cur, level, pp, &block);
if (error)
goto error0;
if (diff == 0) {
/*
* If we already had a key match at a higher level, we
* know we need to use the first entry in this block.
*/
keyno = 1;
} else {
/* Otherwise search this block. Do a binary search. */
int high; /* high entry number */
int low; /* low entry number */
/* Set low and high entry numbers, 1-based. */
low = 1;
high = xfs_btree_get_numrecs(block);
if (!high) {
/* Block is empty, must be an empty leaf. */
ASSERT(level == 0 && cur->bc_nlevels == 1);
cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 0;
return 0;
}
/* Binary search the block. */
while (low <= high) {
union xfs_btree_key key;
union xfs_btree_key *kp;
XFS_BTREE_STATS_INC(cur, compare);
/* keyno is average of low and high. */
keyno = (low + high) >> 1;
/* Get current search key */
kp = xfs_lookup_get_search_key(cur, level,
keyno, block, &key);
/*
* Compute difference to get next direction:
* - less than, move right
* - greater than, move left
* - equal, we're done
*/
diff = cur->bc_ops->key_diff(cur, kp);
if (diff < 0)
low = keyno + 1;
else if (diff > 0)
high = keyno - 1;
else
break;
}
}
/*
* If there are more levels, set up for the next level
* by getting the block number and filling in the cursor.
*/
if (level > 0) {
/*
* If we moved left, need the previous key number,
* unless there isn't one.
*/
if (diff > 0 && --keyno < 1)
keyno = 1;
pp = xfs_btree_ptr_addr(cur, keyno, block);
#ifdef DEBUG
error = xfs_btree_check_ptr(cur, pp, 0, level);
if (error)
goto error0;
#endif
cur->bc_ptrs[level] = keyno;
}
}
/* Done with the search. See if we need to adjust the results. */
if (dir != XFS_LOOKUP_LE && diff < 0) {
keyno++;
/*
* If ge search and we went off the end of the block, but it's
* not the last block, we're in the wrong block.
*/
xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
if (dir == XFS_LOOKUP_GE &&
keyno > xfs_btree_get_numrecs(block) &&
!xfs_btree_ptr_is_null(cur, &ptr)) {
int i;
cur->bc_ptrs[0] = keyno;
error = xfs_btree_increment(cur, 0, &i);
if (error)
goto error0;
XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 1;
return 0;
}
} else if (dir == XFS_LOOKUP_LE && diff > 0)
keyno--;
cur->bc_ptrs[0] = keyno;
/* Return if we succeeded or not. */
if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
*stat = 0;
else if (dir != XFS_LOOKUP_EQ || diff == 0)
*stat = 1;
else
*stat = 0;
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
/* Find the high key storage area from a regular key. */
STATIC union xfs_btree_key *
xfs_btree_high_key_from_key(
struct xfs_btree_cur *cur,
union xfs_btree_key *key)
{
ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
return (union xfs_btree_key *)((char *)key +
(cur->bc_ops->key_len / 2));
}
/* Determine the low (and high if overlapped) keys of a leaf block */
STATIC void
xfs_btree_get_leaf_keys(
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
struct xfs_btree_cur *cur,
struct xfs_btree_block *block,
union xfs_btree_key *key)
{
union xfs_btree_key max_hkey;
union xfs_btree_key hkey;
union xfs_btree_rec *rec;
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
union xfs_btree_key *high;
int n;
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
rec = xfs_btree_rec_addr(cur, 1, block);
cur->bc_ops->init_key_from_rec(key, rec);
if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
rec = xfs_btree_rec_addr(cur, n, block);
cur->bc_ops->init_high_key_from_rec(&hkey, rec);
if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
> 0)
max_hkey = hkey;
}
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
high = xfs_btree_high_key_from_key(cur, key);
memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
}
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
}
/* Determine the low (and high if overlapped) keys of a node block */
STATIC void
xfs_btree_get_node_keys(
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
struct xfs_btree_cur *cur,
struct xfs_btree_block *block,
union xfs_btree_key *key)
{
union xfs_btree_key *hkey;
union xfs_btree_key *max_hkey;
union xfs_btree_key *high;
int n;
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
memcpy(key, xfs_btree_key_addr(cur, 1, block),
cur->bc_ops->key_len / 2);
max_hkey = xfs_btree_high_key_addr(cur, 1, block);
for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
hkey = xfs_btree_high_key_addr(cur, n, block);
if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
max_hkey = hkey;
}
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
high = xfs_btree_high_key_from_key(cur, key);
memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
} else {
memcpy(key, xfs_btree_key_addr(cur, 1, block),
cur->bc_ops->key_len);
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
}
}
/* Derive the keys for any btree block. */
STATIC void
xfs_btree_get_keys(
struct xfs_btree_cur *cur,
struct xfs_btree_block *block,
union xfs_btree_key *key)
{
if (be16_to_cpu(block->bb_level) == 0)
xfs_btree_get_leaf_keys(cur, block, key);
else
xfs_btree_get_node_keys(cur, block, key);
}
/*
* Decide if we need to update the parent keys of a btree block. For
* a standard btree this is only necessary if we're updating the first
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
* record/key. For an overlapping btree, we must always update the
* keys because the highest key can be in any of the records or keys
* in the block.
*/
static inline bool
xfs_btree_needs_key_update(
struct xfs_btree_cur *cur,
int ptr)
{
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
}
/*
* Update the low and high parent keys of the given level, progressing
* towards the root. If force_all is false, stop if the keys for a given
* level do not need updating.
*/
STATIC int
__xfs_btree_updkeys(
struct xfs_btree_cur *cur,
int level,
struct xfs_btree_block *block,
struct xfs_buf *bp0,
bool force_all)
{
union xfs_btree_bigkey key; /* keys from current level */
union xfs_btree_key *lkey; /* keys from the next level up */
union xfs_btree_key *hkey;
union xfs_btree_key *nlkey; /* keys from the next level up */
union xfs_btree_key *nhkey;
struct xfs_buf *bp;
int ptr;
ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
/* Exit if there aren't any parent levels to update. */
if (level + 1 >= cur->bc_nlevels)
return 0;
trace_xfs_btree_updkeys(cur, level, bp0);
lkey = (union xfs_btree_key *)&key;
hkey = xfs_btree_high_key_from_key(cur, lkey);
xfs_btree_get_keys(cur, block, lkey);
for (level++; level < cur->bc_nlevels; level++) {
#ifdef DEBUG
int error;
#endif
block = xfs_btree_get_block(cur, level, &bp);
trace_xfs_btree_updkeys(cur, level, bp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, level, bp);
if (error) {
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
#endif
ptr = cur->bc_ptrs[level];
nlkey = xfs_btree_key_addr(cur, ptr, block);
nhkey = xfs_btree_high_key_addr(cur, ptr, block);
if (!force_all &&
!(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
break;
xfs_btree_copy_keys(cur, nlkey, lkey, 1);
xfs_btree_log_keys(cur, bp, ptr, ptr);
if (level + 1 >= cur->bc_nlevels)
break;
xfs_btree_get_node_keys(cur, block, lkey);
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
}
return 0;
}
/* Update all the keys from some level in cursor back to the root. */
STATIC int
xfs_btree_updkeys_force(
struct xfs_btree_cur *cur,
int level)
{
struct xfs_buf *bp;
struct xfs_btree_block *block;
block = xfs_btree_get_block(cur, level, &bp);
return __xfs_btree_updkeys(cur, level, block, bp, true);
}
/*
* Update the parent keys of the given level, progressing towards the root.
*/
STATIC int
xfs_btree_update_keys(
struct xfs_btree_cur *cur,
int level)
{
struct xfs_btree_block *block;
struct xfs_buf *bp;
union xfs_btree_key *kp;
union xfs_btree_key key;
int ptr;
ASSERT(level >= 0);
block = xfs_btree_get_block(cur, level, &bp);
if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
return __xfs_btree_updkeys(cur, level, block, bp, false);
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
/*
* Go up the tree from this level toward the root.
* At each level, update the key value to the value input.
* Stop when we reach a level where the cursor isn't pointing
* at the first entry in the block.
*/
xfs_btree_get_keys(cur, block, &key);
for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
#ifdef DEBUG
int error;
#endif
block = xfs_btree_get_block(cur, level, &bp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, level, bp);
if (error) {
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
#endif
ptr = cur->bc_ptrs[level];
kp = xfs_btree_key_addr(cur, ptr, block);
xfs_btree_copy_keys(cur, kp, &key, 1);
xfs_btree_log_keys(cur, bp, ptr, ptr);
}
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
return 0;
}
/*
* Update the record referred to by cur to the value in the
* given record. This either works (return 0) or gets an
* EFSCORRUPTED error.
*/
int
xfs_btree_update(
struct xfs_btree_cur *cur,
union xfs_btree_rec *rec)
{
struct xfs_btree_block *block;
struct xfs_buf *bp;
int error;
int ptr;
union xfs_btree_rec *rp;
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGR(cur, rec);
/* Pick up the current block. */
block = xfs_btree_get_block(cur, 0, &bp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, 0, bp);
if (error)
goto error0;
#endif
/* Get the address of the rec to be updated. */
ptr = cur->bc_ptrs[0];
rp = xfs_btree_rec_addr(cur, ptr, block);
/* Fill in the new contents and log them. */
xfs_btree_copy_recs(cur, rp, rec, 1);
xfs_btree_log_recs(cur, bp, ptr, ptr);
/*
* If we are tracking the last record in the tree and
* we are at the far right edge of the tree, update it.
*/
if (xfs_btree_is_lastrec(cur, block, 0)) {
cur->bc_ops->update_lastrec(cur, block, rec,
ptr, LASTREC_UPDATE);
}
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
/* Pass new key value up to our parent. */
if (xfs_btree_needs_key_update(cur, ptr)) {
error = xfs_btree_update_keys(cur, 0);
if (error)
goto error0;
}
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
/*
* Move 1 record left from cur/level if possible.
* Update cur to reflect the new path.
*/
STATIC int /* error */
xfs_btree_lshift(
struct xfs_btree_cur *cur,
int level,
int *stat) /* success/failure */
{
struct xfs_buf *lbp; /* left buffer pointer */
struct xfs_btree_block *left; /* left btree block */
int lrecs; /* left record count */
struct xfs_buf *rbp; /* right buffer pointer */
struct xfs_btree_block *right; /* right btree block */
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
struct xfs_btree_cur *tcur; /* temporary btree cursor */
int rrecs; /* right record count */
union xfs_btree_ptr lptr; /* left btree pointer */
union xfs_btree_key *rkp = NULL; /* right btree key */
union xfs_btree_ptr *rpp = NULL; /* right address pointer */
union xfs_btree_rec *rrp = NULL; /* right record pointer */
int error; /* error return value */
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
int i;
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGI(cur, level);
if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
level == cur->bc_nlevels - 1)
goto out0;
/* Set up variables for this block as "right". */
right = xfs_btree_get_block(cur, level, &rbp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, right, level, rbp);
if (error)
goto error0;
#endif
/* If we've got no left sibling then we can't shift an entry left. */
xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
if (xfs_btree_ptr_is_null(cur, &lptr))
goto out0;
/*
* If the cursor entry is the one that would be moved, don't
* do it... it's too complicated.
*/
if (cur->bc_ptrs[level] <= 1)
goto out0;
/* Set up the left neighbor as "left". */
error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
if (error)
goto error0;
/* If it's full, it can't take another entry. */
lrecs = xfs_btree_get_numrecs(left);
if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
goto out0;
rrecs = xfs_btree_get_numrecs(right);
/*
* We add one entry to the left side and remove one for the right side.
* Account for it here, the changes will be updated on disk and logged
* later.
*/
lrecs++;
rrecs--;
XFS_BTREE_STATS_INC(cur, lshift);
XFS_BTREE_STATS_ADD(cur, moves, 1);
/*
* If non-leaf, copy a key and a ptr to the left block.
* Log the changes to the left block.
*/
if (level > 0) {
/* It's a non-leaf. Move keys and pointers. */
union xfs_btree_key *lkp; /* left btree key */
union xfs_btree_ptr *lpp; /* left address pointer */
lkp = xfs_btree_key_addr(cur, lrecs, left);
rkp = xfs_btree_key_addr(cur, 1, right);
lpp = xfs_btree_ptr_addr(cur, lrecs, left);
rpp = xfs_btree_ptr_addr(cur, 1, right);
#ifdef DEBUG
error = xfs_btree_check_ptr(cur, rpp, 0, level);
if (error)
goto error0;
#endif
xfs_btree_copy_keys(cur, lkp, rkp, 1);
xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
ASSERT(cur->bc_ops->keys_inorder(cur,
xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
} else {
/* It's a leaf. Move records. */
union xfs_btree_rec *lrp; /* left record pointer */
lrp = xfs_btree_rec_addr(cur, lrecs, left);
rrp = xfs_btree_rec_addr(cur, 1, right);
xfs_btree_copy_recs(cur, lrp, rrp, 1);
xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
ASSERT(cur->bc_ops->recs_inorder(cur,
xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
}
xfs_btree_set_numrecs(left, lrecs);
xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
xfs_btree_set_numrecs(right, rrecs);
xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
/*
* Slide the contents of right down one entry.
*/
XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
if (level > 0) {
/* It's a nonleaf. operate on keys and ptrs */
#ifdef DEBUG
int i; /* loop index */
for (i = 0; i < rrecs; i++) {
error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
if (error)
goto error0;
}
#endif
xfs_btree_shift_keys(cur,
xfs_btree_key_addr(cur, 2, right),
-1, rrecs);
xfs_btree_shift_ptrs(cur,
xfs_btree_ptr_addr(cur, 2, right),
-1, rrecs);
xfs_btree_log_keys(cur, rbp, 1, rrecs);
xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
} else {
/* It's a leaf. operate on records */
xfs_btree_shift_recs(cur,
xfs_btree_rec_addr(cur, 2, right),
-1, rrecs);
xfs_btree_log_recs(cur, rbp, 1, rrecs);
}
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
/*
* Using a temporary cursor, update the parent key values of the
* block on the left.
*/
error = xfs_btree_dup_cursor(cur, &tcur);
if (error)
goto error0;
i = xfs_btree_firstrec(tcur, level);
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
error = xfs_btree_decrement(tcur, level, &i);
if (error)
goto error1;
/* Update the parent keys of the right block. */
error = xfs_btree_update_keys(cur, level);
if (error)
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
goto error1;
/* Update the parent high keys of the left block, if needed. */
if (tcur->bc_flags & XFS_BTREE_OVERLAPPING) {
error = xfs_btree_update_keys(tcur, level);
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
if (error)
goto error1;
}
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
/* Slide the cursor value left one. */
cur->bc_ptrs[level]--;
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 1;
return 0;
out0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 0;
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
error1:
XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
return error;
}
/*
* Move 1 record right from cur/level if possible.
* Update cur to reflect the new path.
*/
STATIC int /* error */
xfs_btree_rshift(
struct xfs_btree_cur *cur,
int level,
int *stat) /* success/failure */
{
struct xfs_buf *lbp; /* left buffer pointer */
struct xfs_btree_block *left; /* left btree block */
struct xfs_buf *rbp; /* right buffer pointer */
struct xfs_btree_block *right; /* right btree block */
struct xfs_btree_cur *tcur; /* temporary btree cursor */
union xfs_btree_ptr rptr; /* right block pointer */
union xfs_btree_key *rkp; /* right btree key */
int rrecs; /* right record count */
int lrecs; /* left record count */
int error; /* error return value */
int i; /* loop counter */
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGI(cur, level);
if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
(level == cur->bc_nlevels - 1))
goto out0;
/* Set up variables for this block as "left". */
left = xfs_btree_get_block(cur, level, &lbp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, left, level, lbp);
if (error)
goto error0;
#endif
/* If we've got no right sibling then we can't shift an entry right. */
xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
if (xfs_btree_ptr_is_null(cur, &rptr))
goto out0;
/*
* If the cursor entry is the one that would be moved, don't
* do it... it's too complicated.
*/
lrecs = xfs_btree_get_numrecs(left);
if (cur->bc_ptrs[level] >= lrecs)
goto out0;
/* Set up the right neighbor as "right". */
error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
if (error)
goto error0;
/* If it's full, it can't take another entry. */
rrecs = xfs_btree_get_numrecs(right);
if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
goto out0;
XFS_BTREE_STATS_INC(cur, rshift);
XFS_BTREE_STATS_ADD(cur, moves, rrecs);
/*
* Make a hole at the start of the right neighbor block, then
* copy the last left block entry to the hole.
*/
if (level > 0) {
/* It's a nonleaf. make a hole in the keys and ptrs */
union xfs_btree_key *lkp;
union xfs_btree_ptr *lpp;
union xfs_btree_ptr *rpp;
lkp = xfs_btree_key_addr(cur, lrecs, left);
lpp = xfs_btree_ptr_addr(cur, lrecs, left);
rkp = xfs_btree_key_addr(cur, 1, right);
rpp = xfs_btree_ptr_addr(cur, 1, right);
#ifdef DEBUG
for (i = rrecs - 1; i >= 0; i--) {
error = xfs_btree_check_ptr(cur, rpp, i, level);
if (error)
goto error0;
}
#endif
xfs_btree_shift_keys(cur, rkp, 1, rrecs);
xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
#ifdef DEBUG
error = xfs_btree_check_ptr(cur, lpp, 0, level);
if (error)
goto error0;
#endif
/* Now put the new data in, and log it. */
xfs_btree_copy_keys(cur, rkp, lkp, 1);
xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
xfs_btree_key_addr(cur, 2, right)));
} else {
/* It's a leaf. make a hole in the records */
union xfs_btree_rec *lrp;
union xfs_btree_rec *rrp;
lrp = xfs_btree_rec_addr(cur, lrecs, left);
rrp = xfs_btree_rec_addr(cur, 1, right);
xfs_btree_shift_recs(cur, rrp, 1, rrecs);
/* Now put the new data in, and log it. */
xfs_btree_copy_recs(cur, rrp, lrp, 1);
xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
}
/*
* Decrement and log left's numrecs, bump and log right's numrecs.
*/
xfs_btree_set_numrecs(left, --lrecs);
xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
xfs_btree_set_numrecs(right, ++rrecs);
xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
/*
* Using a temporary cursor, update the parent key values of the
* block on the right.
*/
error = xfs_btree_dup_cursor(cur, &tcur);
if (error)
goto error0;
i = xfs_btree_lastrec(tcur, level);
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
error = xfs_btree_increment(tcur, level, &i);
if (error)
goto error1;
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
/* Update the parent high keys of the left block, if needed. */
if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
error = xfs_btree_update_keys(cur, level);
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
if (error)
goto error1;
}
/* Update the parent keys of the right block. */
error = xfs_btree_update_keys(tcur, level);
if (error)
goto error1;
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 1;
return 0;
out0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 0;
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
error1:
XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
return error;
}
/*
* Split cur/level block in half.
* Return new block number and the key to its first
* record (to be inserted into parent).
*/
STATIC int /* error */
xfs: refine the allocation stack switch The allocation stack switch at xfs_bmapi_allocate() has served it's purpose, but is no longer a sufficient solution to the stack usage problem we have in the XFS allocation path. Whilst the kernel stack size is now 16k, that is not a valid reason for undoing all our "keep stack usage down" modifications. What it does allow us to do is have the freedom to refine and perfect the modifications knowing that if we get it wrong it won't blow up in our faces - we have a safety net now. This is important because we still have the issue of older kernels having smaller stacks and that they are still supported and are demonstrating a wide range of different stack overflows. Red Hat has several open bugs for allocation based stack overflows from directory modifications and direct IO block allocation and these problems still need to be solved. If we can solve them upstream, then distro's won't need to bake their own unique solutions. To that end, I've observed that every allocation based stack overflow report has had a specific characteristic - it has happened during or directly after a bmap btree block split. That event requires a new block to be allocated to the tree, and so we effectively stack one allocation stack on top of another, and that's when we get into trouble. A further observation is that bmap btree block splits are much rarer than writeback allocation - over a range of different workloads I've observed the ratio of bmap btree inserts to splits ranges from 100:1 (xfstests run) to 10000:1 (local VM image server with sparse files that range in the hundreds of thousands to millions of extents). Either way, bmap btree split events are much, much rarer than allocation events. Finally, we have to move the kswapd state to the allocation workqueue work when allocation is done on behalf of kswapd. This is proving to cause significant perturbation in performance under memory pressure and appears to be generating allocation deadlock warnings under some workloads, so avoiding the use of a workqueue for the majority of kswapd writeback allocation will minimise the impact of such behaviour. Hence it makes sense to move the stack switch to xfs_btree_split() and only do it for bmap btree splits. Stack switches during allocation will be much rarer, so there won't be significant performacne overhead caused by switching stacks. The worse case stack from all allocation paths will be split, not just writeback. And the majority of memory allocations will be done in the correct context (e.g. kswapd) without causing additional latency, and so we simplify the memory reclaim interactions between processes, workqueues and kswapd. The worst stack I've been able to generate with this patch in place is 5600 bytes deep. It's very revealing because we exit XFS at: 37) 1768 64 kmem_cache_alloc+0x13b/0x170 about 1800 bytes of stack consumed, and the remaining 3800 bytes (and 36 functions) is memory reclaim, swap and the IO stack. And this occurs in the inode allocation from an open(O_CREAT) syscall, not writeback. The amount of stack being used is much less than I've previously be able to generate - fs_mark testing has been able to generate stack usage of around 7k without too much trouble; with this patch it's only just getting to 5.5k. This is primarily because the metadata allocation paths (e.g. directory blocks) are no longer causing double splits on the same stack, and hence now stack tracing is showing swapping being the worst stack consumer rather than XFS. Performance of fs_mark inode create workloads is unchanged. Performance of fs_mark async fsync workloads is consistently good with context switches reduced by around 150,000/s (30%). Performance of dbench, streaming IO and postmark is unchanged. Allocation deadlock warnings have not been seen on the workloads that generated them since adding this patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-07-15 05:08:24 +08:00
__xfs_btree_split(
struct xfs_btree_cur *cur,
int level,
union xfs_btree_ptr *ptrp,
union xfs_btree_key *key,
struct xfs_btree_cur **curp,
int *stat) /* success/failure */
{
union xfs_btree_ptr lptr; /* left sibling block ptr */
struct xfs_buf *lbp; /* left buffer pointer */
struct xfs_btree_block *left; /* left btree block */
union xfs_btree_ptr rptr; /* right sibling block ptr */
struct xfs_buf *rbp; /* right buffer pointer */
struct xfs_btree_block *right; /* right btree block */
union xfs_btree_ptr rrptr; /* right-right sibling ptr */
struct xfs_buf *rrbp; /* right-right buffer pointer */
struct xfs_btree_block *rrblock; /* right-right btree block */
int lrecs;
int rrecs;
int src_index;
int error; /* error return value */
#ifdef DEBUG
int i;
#endif
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
XFS_BTREE_STATS_INC(cur, split);
/* Set up left block (current one). */
left = xfs_btree_get_block(cur, level, &lbp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, left, level, lbp);
if (error)
goto error0;
#endif
xfs_btree_buf_to_ptr(cur, lbp, &lptr);
/* Allocate the new block. If we can't do it, we're toast. Give up. */
error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
if (error)
goto error0;
if (*stat == 0)
goto out0;
XFS_BTREE_STATS_INC(cur, alloc);
/* Set up the new block as "right". */
error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
if (error)
goto error0;
/* Fill in the btree header for the new right block. */
xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
/*
* Split the entries between the old and the new block evenly.
* Make sure that if there's an odd number of entries now, that
* each new block will have the same number of entries.
*/
lrecs = xfs_btree_get_numrecs(left);
rrecs = lrecs / 2;
if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
rrecs++;
src_index = (lrecs - rrecs + 1);
XFS_BTREE_STATS_ADD(cur, moves, rrecs);
/* Adjust numrecs for the later get_*_keys() calls. */
lrecs -= rrecs;
xfs_btree_set_numrecs(left, lrecs);
xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
/*
* Copy btree block entries from the left block over to the
* new block, the right. Update the right block and log the
* changes.
*/
if (level > 0) {
/* It's a non-leaf. Move keys and pointers. */
union xfs_btree_key *lkp; /* left btree key */
union xfs_btree_ptr *lpp; /* left address pointer */
union xfs_btree_key *rkp; /* right btree key */
union xfs_btree_ptr *rpp; /* right address pointer */
lkp = xfs_btree_key_addr(cur, src_index, left);
lpp = xfs_btree_ptr_addr(cur, src_index, left);
rkp = xfs_btree_key_addr(cur, 1, right);
rpp = xfs_btree_ptr_addr(cur, 1, right);
#ifdef DEBUG
for (i = src_index; i < rrecs; i++) {
error = xfs_btree_check_ptr(cur, lpp, i, level);
if (error)
goto error0;
}
#endif
/* Copy the keys & pointers to the new block. */
xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
xfs_btree_log_keys(cur, rbp, 1, rrecs);
xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
/* Stash the keys of the new block for later insertion. */
xfs_btree_get_node_keys(cur, right, key);
} else {
/* It's a leaf. Move records. */
union xfs_btree_rec *lrp; /* left record pointer */
union xfs_btree_rec *rrp; /* right record pointer */
lrp = xfs_btree_rec_addr(cur, src_index, left);
rrp = xfs_btree_rec_addr(cur, 1, right);
/* Copy records to the new block. */
xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
xfs_btree_log_recs(cur, rbp, 1, rrecs);
/* Stash the keys of the new block for later insertion. */
xfs_btree_get_leaf_keys(cur, right, key);
}
/*
* Find the left block number by looking in the buffer.
* Adjust sibling pointers.
*/
xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
/*
* If there's a block to the new block's right, make that block
* point back to right instead of to left.
*/
if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
error = xfs_btree_read_buf_block(cur, &rrptr,
0, &rrblock, &rrbp);
if (error)
goto error0;
xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
}
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
/* Update the parent high keys of the left block, if needed. */
if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
error = xfs_btree_update_keys(cur, level);
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
if (error)
goto error0;
}
/*
* If the cursor is really in the right block, move it there.
* If it's just pointing past the last entry in left, then we'll
* insert there, so don't change anything in that case.
*/
if (cur->bc_ptrs[level] > lrecs + 1) {
xfs_btree_setbuf(cur, level, rbp);
cur->bc_ptrs[level] -= lrecs;
}
/*
* If there are more levels, we'll need another cursor which refers
* the right block, no matter where this cursor was.
*/
if (level + 1 < cur->bc_nlevels) {
error = xfs_btree_dup_cursor(cur, curp);
if (error)
goto error0;
(*curp)->bc_ptrs[level + 1]++;
}
*ptrp = rptr;
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 1;
return 0;
out0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 0;
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
xfs: refine the allocation stack switch The allocation stack switch at xfs_bmapi_allocate() has served it's purpose, but is no longer a sufficient solution to the stack usage problem we have in the XFS allocation path. Whilst the kernel stack size is now 16k, that is not a valid reason for undoing all our "keep stack usage down" modifications. What it does allow us to do is have the freedom to refine and perfect the modifications knowing that if we get it wrong it won't blow up in our faces - we have a safety net now. This is important because we still have the issue of older kernels having smaller stacks and that they are still supported and are demonstrating a wide range of different stack overflows. Red Hat has several open bugs for allocation based stack overflows from directory modifications and direct IO block allocation and these problems still need to be solved. If we can solve them upstream, then distro's won't need to bake their own unique solutions. To that end, I've observed that every allocation based stack overflow report has had a specific characteristic - it has happened during or directly after a bmap btree block split. That event requires a new block to be allocated to the tree, and so we effectively stack one allocation stack on top of another, and that's when we get into trouble. A further observation is that bmap btree block splits are much rarer than writeback allocation - over a range of different workloads I've observed the ratio of bmap btree inserts to splits ranges from 100:1 (xfstests run) to 10000:1 (local VM image server with sparse files that range in the hundreds of thousands to millions of extents). Either way, bmap btree split events are much, much rarer than allocation events. Finally, we have to move the kswapd state to the allocation workqueue work when allocation is done on behalf of kswapd. This is proving to cause significant perturbation in performance under memory pressure and appears to be generating allocation deadlock warnings under some workloads, so avoiding the use of a workqueue for the majority of kswapd writeback allocation will minimise the impact of such behaviour. Hence it makes sense to move the stack switch to xfs_btree_split() and only do it for bmap btree splits. Stack switches during allocation will be much rarer, so there won't be significant performacne overhead caused by switching stacks. The worse case stack from all allocation paths will be split, not just writeback. And the majority of memory allocations will be done in the correct context (e.g. kswapd) without causing additional latency, and so we simplify the memory reclaim interactions between processes, workqueues and kswapd. The worst stack I've been able to generate with this patch in place is 5600 bytes deep. It's very revealing because we exit XFS at: 37) 1768 64 kmem_cache_alloc+0x13b/0x170 about 1800 bytes of stack consumed, and the remaining 3800 bytes (and 36 functions) is memory reclaim, swap and the IO stack. And this occurs in the inode allocation from an open(O_CREAT) syscall, not writeback. The amount of stack being used is much less than I've previously be able to generate - fs_mark testing has been able to generate stack usage of around 7k without too much trouble; with this patch it's only just getting to 5.5k. This is primarily because the metadata allocation paths (e.g. directory blocks) are no longer causing double splits on the same stack, and hence now stack tracing is showing swapping being the worst stack consumer rather than XFS. Performance of fs_mark inode create workloads is unchanged. Performance of fs_mark async fsync workloads is consistently good with context switches reduced by around 150,000/s (30%). Performance of dbench, streaming IO and postmark is unchanged. Allocation deadlock warnings have not been seen on the workloads that generated them since adding this patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-07-15 05:08:24 +08:00
struct xfs_btree_split_args {
struct xfs_btree_cur *cur;
int level;
union xfs_btree_ptr *ptrp;
union xfs_btree_key *key;
struct xfs_btree_cur **curp;
int *stat; /* success/failure */
int result;
bool kswapd; /* allocation in kswapd context */
struct completion *done;
struct work_struct work;
};
/*
* Stack switching interfaces for allocation
*/
static void
xfs_btree_split_worker(
struct work_struct *work)
{
struct xfs_btree_split_args *args = container_of(work,
struct xfs_btree_split_args, work);
unsigned long pflags;
unsigned long new_pflags = PF_FSTRANS;
/*
* we are in a transaction context here, but may also be doing work
* in kswapd context, and hence we may need to inherit that state
* temporarily to ensure that we don't block waiting for memory reclaim
* in any way.
*/
if (args->kswapd)
new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
current_set_flags_nested(&pflags, new_pflags);
args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
args->key, args->curp, args->stat);
complete(args->done);
current_restore_flags_nested(&pflags, new_pflags);
}
/*
* BMBT split requests often come in with little stack to work on. Push
* them off to a worker thread so there is lots of stack to use. For the other
* btree types, just call directly to avoid the context switch overhead here.
*/
STATIC int /* error */
xfs_btree_split(
struct xfs_btree_cur *cur,
int level,
union xfs_btree_ptr *ptrp,
union xfs_btree_key *key,
struct xfs_btree_cur **curp,
int *stat) /* success/failure */
{
struct xfs_btree_split_args args;
DECLARE_COMPLETION_ONSTACK(done);
if (cur->bc_btnum != XFS_BTNUM_BMAP)
return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
args.cur = cur;
args.level = level;
args.ptrp = ptrp;
args.key = key;
args.curp = curp;
args.stat = stat;
args.done = &done;
args.kswapd = current_is_kswapd();
INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
queue_work(xfs_alloc_wq, &args.work);
wait_for_completion(&done);
destroy_work_on_stack(&args.work);
return args.result;
}
/*
* Copy the old inode root contents into a real block and make the
* broot point to it.
*/
int /* error */
xfs_btree_new_iroot(
struct xfs_btree_cur *cur, /* btree cursor */
int *logflags, /* logging flags for inode */
int *stat) /* return status - 0 fail */
{
struct xfs_buf *cbp; /* buffer for cblock */
struct xfs_btree_block *block; /* btree block */
struct xfs_btree_block *cblock; /* child btree block */
union xfs_btree_key *ckp; /* child key pointer */
union xfs_btree_ptr *cpp; /* child ptr pointer */
union xfs_btree_key *kp; /* pointer to btree key */
union xfs_btree_ptr *pp; /* pointer to block addr */
union xfs_btree_ptr nptr; /* new block addr */
int level; /* btree level */
int error; /* error return code */
#ifdef DEBUG
int i; /* loop counter */
#endif
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_STATS_INC(cur, newroot);
ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
level = cur->bc_nlevels - 1;
block = xfs_btree_get_iroot(cur);
pp = xfs_btree_ptr_addr(cur, 1, block);
/* Allocate the new block. If we can't do it, we're toast. Give up. */
error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
if (error)
goto error0;
if (*stat == 0) {
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
return 0;
}
XFS_BTREE_STATS_INC(cur, alloc);
/* Copy the root into a real block. */
error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
if (error)
goto error0;
xfs: ensure btree root split sets blkno correctly For CRC enabled filesystems, the BMBT is rooted in an inode, so it passes through a different code path on root splits than the freespace and inode btrees. This is much less traversed by xfstests than the other trees. When testing on a 1k block size filesystem, I've been seeing ASSERT failures in generic/234 like: XFS: Assertion failed: cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_private.b.allocated == 0, file: fs/xfs/xfs_btree.c, line: 317 which are generally preceded by a lblock check failure. I noticed this in the bmbt stats: $ pminfo -f xfs.btree.block_map xfs.btree.block_map.lookup value 39135 xfs.btree.block_map.compare value 268432 xfs.btree.block_map.insrec value 15786 xfs.btree.block_map.delrec value 13884 xfs.btree.block_map.newroot value 2 xfs.btree.block_map.killroot value 0 ..... Very little coverage of root splits and merges. Indeed, on a 4k filesystem, block_map.newroot and block_map.killroot are both zero. i.e. the code is not exercised at all, and it's the only generic btree infrastructure operation that is not exercised by a default run of xfstests. Turns out that on a 1k filesystem, generic/234 accounts for one of those two root splits, and that is somewhat of a smoking gun. In fact, it's the same problem we saw in the directory/attr code where headers are memcpy()d from one block to another without updating the self describing metadata. Simple fix - when copying the header out of the root block, make sure the block number is updated correctly. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com> (cherry picked from commit ade1335afef556df6538eb02e8c0dc91fbd9cc37)
2013-06-12 10:19:08 +08:00
/*
* we can't just memcpy() the root in for CRC enabled btree blocks.
* In that case have to also ensure the blkno remains correct
*/
memcpy(cblock, block, xfs_btree_block_len(cur));
xfs: ensure btree root split sets blkno correctly For CRC enabled filesystems, the BMBT is rooted in an inode, so it passes through a different code path on root splits than the freespace and inode btrees. This is much less traversed by xfstests than the other trees. When testing on a 1k block size filesystem, I've been seeing ASSERT failures in generic/234 like: XFS: Assertion failed: cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_private.b.allocated == 0, file: fs/xfs/xfs_btree.c, line: 317 which are generally preceded by a lblock check failure. I noticed this in the bmbt stats: $ pminfo -f xfs.btree.block_map xfs.btree.block_map.lookup value 39135 xfs.btree.block_map.compare value 268432 xfs.btree.block_map.insrec value 15786 xfs.btree.block_map.delrec value 13884 xfs.btree.block_map.newroot value 2 xfs.btree.block_map.killroot value 0 ..... Very little coverage of root splits and merges. Indeed, on a 4k filesystem, block_map.newroot and block_map.killroot are both zero. i.e. the code is not exercised at all, and it's the only generic btree infrastructure operation that is not exercised by a default run of xfstests. Turns out that on a 1k filesystem, generic/234 accounts for one of those two root splits, and that is somewhat of a smoking gun. In fact, it's the same problem we saw in the directory/attr code where headers are memcpy()d from one block to another without updating the self describing metadata. Simple fix - when copying the header out of the root block, make sure the block number is updated correctly. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com> (cherry picked from commit ade1335afef556df6538eb02e8c0dc91fbd9cc37)
2013-06-12 10:19:08 +08:00
if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
else
cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
}
be16_add_cpu(&block->bb_level, 1);
xfs_btree_set_numrecs(block, 1);
cur->bc_nlevels++;
cur->bc_ptrs[level + 1] = 1;
kp = xfs_btree_key_addr(cur, 1, block);
ckp = xfs_btree_key_addr(cur, 1, cblock);
xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
cpp = xfs_btree_ptr_addr(cur, 1, cblock);
#ifdef DEBUG
for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
error = xfs_btree_check_ptr(cur, pp, i, level);
if (error)
goto error0;
}
#endif
xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
#ifdef DEBUG
error = xfs_btree_check_ptr(cur, &nptr, 0, level);
if (error)
goto error0;
#endif
xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
xfs_iroot_realloc(cur->bc_private.b.ip,
1 - xfs_btree_get_numrecs(cblock),
cur->bc_private.b.whichfork);
xfs_btree_setbuf(cur, level, cbp);
/*
* Do all this logging at the end so that
* the root is at the right level.
*/
xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
*logflags |=
XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
*stat = 1;
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
/*
* Allocate a new root block, fill it in.
*/
STATIC int /* error */
xfs_btree_new_root(
struct xfs_btree_cur *cur, /* btree cursor */
int *stat) /* success/failure */
{
struct xfs_btree_block *block; /* one half of the old root block */
struct xfs_buf *bp; /* buffer containing block */
int error; /* error return value */
struct xfs_buf *lbp; /* left buffer pointer */
struct xfs_btree_block *left; /* left btree block */
struct xfs_buf *nbp; /* new (root) buffer */
struct xfs_btree_block *new; /* new (root) btree block */
int nptr; /* new value for key index, 1 or 2 */
struct xfs_buf *rbp; /* right buffer pointer */
struct xfs_btree_block *right; /* right btree block */
union xfs_btree_ptr rptr;
union xfs_btree_ptr lptr;
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_STATS_INC(cur, newroot);
/* initialise our start point from the cursor */
cur->bc_ops->init_ptr_from_cur(cur, &rptr);
/* Allocate the new block. If we can't do it, we're toast. Give up. */
error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
if (error)
goto error0;
if (*stat == 0)
goto out0;
XFS_BTREE_STATS_INC(cur, alloc);
/* Set up the new block. */
error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
if (error)
goto error0;
/* Set the root in the holding structure increasing the level by 1. */
cur->bc_ops->set_root(cur, &lptr, 1);
/*
* At the previous root level there are now two blocks: the old root,
* and the new block generated when it was split. We don't know which
* one the cursor is pointing at, so we set up variables "left" and
* "right" for each case.
*/
block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
if (error)
goto error0;
#endif
xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
if (!xfs_btree_ptr_is_null(cur, &rptr)) {
/* Our block is left, pick up the right block. */
lbp = bp;
xfs_btree_buf_to_ptr(cur, lbp, &lptr);
left = block;
error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
if (error)
goto error0;
bp = rbp;
nptr = 1;
} else {
/* Our block is right, pick up the left block. */
rbp = bp;
xfs_btree_buf_to_ptr(cur, rbp, &rptr);
right = block;
xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
if (error)
goto error0;
bp = lbp;
nptr = 2;
}
/* Fill in the new block's btree header and log it. */
xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
!xfs_btree_ptr_is_null(cur, &rptr));
/* Fill in the key data in the new root. */
if (xfs_btree_get_level(left) > 0) {
/*
* Get the keys for the left block's keys and put them directly
* in the parent block. Do the same for the right block.
*/
xfs_btree_get_node_keys(cur, left,
xfs_btree_key_addr(cur, 1, new));
xfs_btree_get_node_keys(cur, right,
xfs_btree_key_addr(cur, 2, new));
} else {
/*
* Get the keys for the left block's records and put them
* directly in the parent block. Do the same for the right
* block.
*/
xfs_btree_get_leaf_keys(cur, left,
xfs_btree_key_addr(cur, 1, new));
xfs_btree_get_leaf_keys(cur, right,
xfs_btree_key_addr(cur, 2, new));
}
xfs_btree_log_keys(cur, nbp, 1, 2);
/* Fill in the pointer data in the new root. */
xfs_btree_copy_ptrs(cur,
xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
xfs_btree_copy_ptrs(cur,
xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
xfs_btree_log_ptrs(cur, nbp, 1, 2);
/* Fix up the cursor. */
xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
cur->bc_ptrs[cur->bc_nlevels] = nptr;
cur->bc_nlevels++;
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 1;
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
out0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 0;
return 0;
}
STATIC int
xfs_btree_make_block_unfull(
struct xfs_btree_cur *cur, /* btree cursor */
int level, /* btree level */
int numrecs,/* # of recs in block */
int *oindex,/* old tree index */
int *index, /* new tree index */
union xfs_btree_ptr *nptr, /* new btree ptr */
struct xfs_btree_cur **ncur, /* new btree cursor */
union xfs_btree_key *key, /* key of new block */
int *stat)
{
int error = 0;
if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
level == cur->bc_nlevels - 1) {
struct xfs_inode *ip = cur->bc_private.b.ip;
if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
/* A root block that can be made bigger. */
xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
*stat = 1;
} else {
/* A root block that needs replacing */
int logflags = 0;
error = xfs_btree_new_iroot(cur, &logflags, stat);
if (error || *stat == 0)
return error;
xfs_trans_log_inode(cur->bc_tp, ip, logflags);
}
return 0;
}
/* First, try shifting an entry to the right neighbor. */
error = xfs_btree_rshift(cur, level, stat);
if (error || *stat)
return error;
/* Next, try shifting an entry to the left neighbor. */
error = xfs_btree_lshift(cur, level, stat);
if (error)
return error;
if (*stat) {
*oindex = *index = cur->bc_ptrs[level];
return 0;
}
/*
* Next, try splitting the current block in half.
*
* If this works we have to re-set our variables because we
* could be in a different block now.
*/
error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
if (error || *stat == 0)
return error;
*index = cur->bc_ptrs[level];
return 0;
}
/*
* Insert one record/level. Return information to the caller
* allowing the next level up to proceed if necessary.
*/
STATIC int
xfs_btree_insrec(
struct xfs_btree_cur *cur, /* btree cursor */
int level, /* level to insert record at */
union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
union xfs_btree_rec *rec, /* record to insert */
union xfs_btree_key *key, /* i/o: block key for ptrp */
struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
int *stat) /* success/failure */
{
struct xfs_btree_block *block; /* btree block */
struct xfs_buf *bp; /* buffer for block */
union xfs_btree_ptr nptr; /* new block ptr */
struct xfs_btree_cur *ncur; /* new btree cursor */
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
union xfs_btree_bigkey nkey; /* new block key */
union xfs_btree_key *lkey;
int optr; /* old key/record index */
int ptr; /* key/record index */
int numrecs;/* number of records */
int error; /* error return value */
#ifdef DEBUG
int i;
#endif
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
xfs_daddr_t old_bn;
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
ncur = NULL;
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
lkey = (union xfs_btree_key *)&nkey;
/*
* If we have an external root pointer, and we've made it to the
* root level, allocate a new root block and we're done.
*/
if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
(level >= cur->bc_nlevels)) {
error = xfs_btree_new_root(cur, stat);
xfs_btree_set_ptr_null(cur, ptrp);
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
return error;
}
/* If we're off the left edge, return failure. */
ptr = cur->bc_ptrs[level];
if (ptr == 0) {
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 0;
return 0;
}
optr = ptr;
XFS_BTREE_STATS_INC(cur, insrec);
/* Get pointers to the btree buffer and block. */
block = xfs_btree_get_block(cur, level, &bp);
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
numrecs = xfs_btree_get_numrecs(block);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, level, bp);
if (error)
goto error0;
/* Check that the new entry is being inserted in the right place. */
if (ptr <= numrecs) {
if (level == 0) {
ASSERT(cur->bc_ops->recs_inorder(cur, rec,
xfs_btree_rec_addr(cur, ptr, block)));
} else {
ASSERT(cur->bc_ops->keys_inorder(cur, key,
xfs_btree_key_addr(cur, ptr, block)));
}
}
#endif
/*
* If the block is full, we can't insert the new entry until we
* make the block un-full.
*/
xfs_btree_set_ptr_null(cur, &nptr);
if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
error = xfs_btree_make_block_unfull(cur, level, numrecs,
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
&optr, &ptr, &nptr, &ncur, lkey, stat);
if (error || *stat == 0)
goto error0;
}
/*
* The current block may have changed if the block was
* previously full and we have just made space in it.
*/
block = xfs_btree_get_block(cur, level, &bp);
numrecs = xfs_btree_get_numrecs(block);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, level, bp);
if (error)
return error;
#endif
/*
* At this point we know there's room for our new entry in the block
* we're pointing at.
*/
XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
if (level > 0) {
/* It's a nonleaf. make a hole in the keys and ptrs */
union xfs_btree_key *kp;
union xfs_btree_ptr *pp;
kp = xfs_btree_key_addr(cur, ptr, block);
pp = xfs_btree_ptr_addr(cur, ptr, block);
#ifdef DEBUG
for (i = numrecs - ptr; i >= 0; i--) {
error = xfs_btree_check_ptr(cur, pp, i, level);
if (error)
return error;
}
#endif
xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
#ifdef DEBUG
error = xfs_btree_check_ptr(cur, ptrp, 0, level);
if (error)
goto error0;
#endif
/* Now put the new data in, bump numrecs and log it. */
xfs_btree_copy_keys(cur, kp, key, 1);
xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
numrecs++;
xfs_btree_set_numrecs(block, numrecs);
xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
xfs_btree_log_keys(cur, bp, ptr, numrecs);
#ifdef DEBUG
if (ptr < numrecs) {
ASSERT(cur->bc_ops->keys_inorder(cur, kp,
xfs_btree_key_addr(cur, ptr + 1, block)));
}
#endif
} else {
/* It's a leaf. make a hole in the records */
union xfs_btree_rec *rp;
rp = xfs_btree_rec_addr(cur, ptr, block);
xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
/* Now put the new data in, bump numrecs and log it. */
xfs_btree_copy_recs(cur, rp, rec, 1);
xfs_btree_set_numrecs(block, ++numrecs);
xfs_btree_log_recs(cur, bp, ptr, numrecs);
#ifdef DEBUG
if (ptr < numrecs) {
ASSERT(cur->bc_ops->recs_inorder(cur, rp,
xfs_btree_rec_addr(cur, ptr + 1, block)));
}
#endif
}
/* Log the new number of records in the btree header. */
xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
/*
* If we just inserted into a new tree block, we have to
* recalculate nkey here because nkey is out of date.
*
* Otherwise we're just updating an existing block (having shoved
* some records into the new tree block), so use the regular key
* update mechanism.
*/
if (bp && bp->b_bn != old_bn) {
xfs_btree_get_keys(cur, block, lkey);
} else if (xfs_btree_needs_key_update(cur, optr)) {
error = xfs_btree_update_keys(cur, level);
if (error)
goto error0;
}
/*
* If we are tracking the last record in the tree and
* we are at the far right edge of the tree, update it.
*/
if (xfs_btree_is_lastrec(cur, block, level)) {
cur->bc_ops->update_lastrec(cur, block, rec,
ptr, LASTREC_INSREC);
}
/*
* Return the new block number, if any.
* If there is one, give back a record value and a cursor too.
*/
*ptrp = nptr;
if (!xfs_btree_ptr_is_null(cur, &nptr)) {
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
xfs_btree_copy_keys(cur, key, lkey, 1);
*curp = ncur;
}
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 1;
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
/*
* Insert the record at the point referenced by cur.
*
* A multi-level split of the tree on insert will invalidate the original
* cursor. All callers of this function should assume that the cursor is
* no longer valid and revalidate it.
*/
int
xfs_btree_insert(
struct xfs_btree_cur *cur,
int *stat)
{
int error; /* error return value */
int i; /* result value, 0 for failure */
int level; /* current level number in btree */
union xfs_btree_ptr nptr; /* new block number (split result) */
struct xfs_btree_cur *ncur; /* new cursor (split result) */
struct xfs_btree_cur *pcur; /* previous level's cursor */
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
union xfs_btree_bigkey bkey; /* key of block to insert */
union xfs_btree_key *key;
union xfs_btree_rec rec; /* record to insert */
level = 0;
ncur = NULL;
pcur = cur;
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
key = (union xfs_btree_key *)&bkey;
xfs_btree_set_ptr_null(cur, &nptr);
/* Make a key out of the record data to be inserted, and save it. */
cur->bc_ops->init_rec_from_cur(cur, &rec);
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
cur->bc_ops->init_key_from_rec(key, &rec);
/*
* Loop going up the tree, starting at the leaf level.
* Stop when we don't get a split block, that must mean that
* the insert is finished with this level.
*/
do {
/*
* Insert nrec/nptr into this level of the tree.
* Note if we fail, nptr will be null.
*/
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
&ncur, &i);
if (error) {
if (pcur != cur)
xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
goto error0;
}
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
level++;
/*
* See if the cursor we just used is trash.
* Can't trash the caller's cursor, but otherwise we should
* if ncur is a new cursor or we're about to be done.
*/
if (pcur != cur &&
(ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
/* Save the state from the cursor before we trash it */
if (cur->bc_ops->update_cursor)
cur->bc_ops->update_cursor(pcur, cur);
cur->bc_nlevels = pcur->bc_nlevels;
xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
}
/* If we got a new cursor, switch to it. */
if (ncur) {
pcur = ncur;
ncur = NULL;
}
} while (!xfs_btree_ptr_is_null(cur, &nptr));
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = i;
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
/*
* Try to merge a non-leaf block back into the inode root.
*
* Note: the killroot names comes from the fact that we're effectively
* killing the old root block. But because we can't just delete the
* inode we have to copy the single block it was pointing to into the
* inode.
*/
STATIC int
xfs_btree_kill_iroot(
struct xfs_btree_cur *cur)
{
int whichfork = cur->bc_private.b.whichfork;
struct xfs_inode *ip = cur->bc_private.b.ip;
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
struct xfs_btree_block *block;
struct xfs_btree_block *cblock;
union xfs_btree_key *kp;
union xfs_btree_key *ckp;
union xfs_btree_ptr *pp;
union xfs_btree_ptr *cpp;
struct xfs_buf *cbp;
int level;
int index;
int numrecs;
int error;
#ifdef DEBUG
union xfs_btree_ptr ptr;
int i;
#endif
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
ASSERT(cur->bc_nlevels > 1);
/*
* Don't deal with the root block needs to be a leaf case.
* We're just going to turn the thing back into extents anyway.
*/
level = cur->bc_nlevels - 1;
if (level == 1)
goto out0;
/*
* Give up if the root has multiple children.
*/
block = xfs_btree_get_iroot(cur);
if (xfs_btree_get_numrecs(block) != 1)
goto out0;
cblock = xfs_btree_get_block(cur, level - 1, &cbp);
numrecs = xfs_btree_get_numrecs(cblock);
/*
* Only do this if the next level will fit.
* Then the data must be copied up to the inode,
* instead of freeing the root you free the next level.
*/
if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
goto out0;
XFS_BTREE_STATS_INC(cur, killroot);
#ifdef DEBUG
xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
#endif
index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
if (index) {
xfs_iroot_realloc(cur->bc_private.b.ip, index,
cur->bc_private.b.whichfork);
block = ifp->if_broot;
}
be16_add_cpu(&block->bb_numrecs, index);
ASSERT(block->bb_numrecs == cblock->bb_numrecs);
kp = xfs_btree_key_addr(cur, 1, block);
ckp = xfs_btree_key_addr(cur, 1, cblock);
xfs_btree_copy_keys(cur, kp, ckp, numrecs);
pp = xfs_btree_ptr_addr(cur, 1, block);
cpp = xfs_btree_ptr_addr(cur, 1, cblock);
#ifdef DEBUG
for (i = 0; i < numrecs; i++) {
error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
if (error) {
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
}
#endif
xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
error = xfs_btree_free_block(cur, cbp);
if (error) {
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
cur->bc_bufs[level - 1] = NULL;
be16_add_cpu(&block->bb_level, -1);
xfs_trans_log_inode(cur->bc_tp, ip,
XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
cur->bc_nlevels--;
out0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
return 0;
}
/*
* Kill the current root node, and replace it with it's only child node.
*/
STATIC int
xfs_btree_kill_root(
struct xfs_btree_cur *cur,
struct xfs_buf *bp,
int level,
union xfs_btree_ptr *newroot)
{
int error;
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_STATS_INC(cur, killroot);
/*
* Update the root pointer, decreasing the level by 1 and then
* free the old root.
*/
cur->bc_ops->set_root(cur, newroot, -1);
error = xfs_btree_free_block(cur, bp);
if (error) {
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
cur->bc_bufs[level] = NULL;
cur->bc_ra[level] = 0;
cur->bc_nlevels--;
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
return 0;
}
STATIC int
xfs_btree_dec_cursor(
struct xfs_btree_cur *cur,
int level,
int *stat)
{
int error;
int i;
if (level > 0) {
error = xfs_btree_decrement(cur, level, &i);
if (error)
return error;
}
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 1;
return 0;
}
/*
* Single level of the btree record deletion routine.
* Delete record pointed to by cur/level.
* Remove the record from its block then rebalance the tree.
* Return 0 for error, 1 for done, 2 to go on to the next level.
*/
STATIC int /* error */
xfs_btree_delrec(
struct xfs_btree_cur *cur, /* btree cursor */
int level, /* level removing record from */
int *stat) /* fail/done/go-on */
{
struct xfs_btree_block *block; /* btree block */
union xfs_btree_ptr cptr; /* current block ptr */
struct xfs_buf *bp; /* buffer for block */
int error; /* error return value */
int i; /* loop counter */
union xfs_btree_ptr lptr; /* left sibling block ptr */
struct xfs_buf *lbp; /* left buffer pointer */
struct xfs_btree_block *left; /* left btree block */
int lrecs = 0; /* left record count */
int ptr; /* key/record index */
union xfs_btree_ptr rptr; /* right sibling block ptr */
struct xfs_buf *rbp; /* right buffer pointer */
struct xfs_btree_block *right; /* right btree block */
struct xfs_btree_block *rrblock; /* right-right btree block */
struct xfs_buf *rrbp; /* right-right buffer pointer */
int rrecs = 0; /* right record count */
struct xfs_btree_cur *tcur; /* temporary btree cursor */
int numrecs; /* temporary numrec count */
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
XFS_BTREE_TRACE_ARGI(cur, level);
tcur = NULL;
/* Get the index of the entry being deleted, check for nothing there. */
ptr = cur->bc_ptrs[level];
if (ptr == 0) {
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 0;
return 0;
}
/* Get the buffer & block containing the record or key/ptr. */
block = xfs_btree_get_block(cur, level, &bp);
numrecs = xfs_btree_get_numrecs(block);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, level, bp);
if (error)
goto error0;
#endif
/* Fail if we're off the end of the block. */
if (ptr > numrecs) {
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 0;
return 0;
}
XFS_BTREE_STATS_INC(cur, delrec);
XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
/* Excise the entries being deleted. */
if (level > 0) {
/* It's a nonleaf. operate on keys and ptrs */
union xfs_btree_key *lkp;
union xfs_btree_ptr *lpp;
lkp = xfs_btree_key_addr(cur, ptr + 1, block);
lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
#ifdef DEBUG
for (i = 0; i < numrecs - ptr; i++) {
error = xfs_btree_check_ptr(cur, lpp, i, level);
if (error)
goto error0;
}
#endif
if (ptr < numrecs) {
xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
}
} else {
/* It's a leaf. operate on records */
if (ptr < numrecs) {
xfs_btree_shift_recs(cur,
xfs_btree_rec_addr(cur, ptr + 1, block),
-1, numrecs - ptr);
xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
}
}
/*
* Decrement and log the number of entries in the block.
*/
xfs_btree_set_numrecs(block, --numrecs);
xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
/*
* If we are tracking the last record in the tree and
* we are at the far right edge of the tree, update it.
*/
if (xfs_btree_is_lastrec(cur, block, level)) {
cur->bc_ops->update_lastrec(cur, block, NULL,
ptr, LASTREC_DELREC);
}
/*
* We're at the root level. First, shrink the root block in-memory.
* Try to get rid of the next level down. If we can't then there's
* nothing left to do.
*/
if (level == cur->bc_nlevels - 1) {
if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
xfs_iroot_realloc(cur->bc_private.b.ip, -1,
cur->bc_private.b.whichfork);
error = xfs_btree_kill_iroot(cur);
if (error)
goto error0;
error = xfs_btree_dec_cursor(cur, level, stat);
if (error)
goto error0;
*stat = 1;
return 0;
}
/*
* If this is the root level, and there's only one entry left,
* and it's NOT the leaf level, then we can get rid of this
* level.
*/
if (numrecs == 1 && level > 0) {
union xfs_btree_ptr *pp;
/*
* pp is still set to the first pointer in the block.
* Make it the new root of the btree.
*/
pp = xfs_btree_ptr_addr(cur, 1, block);
error = xfs_btree_kill_root(cur, bp, level, pp);
if (error)
goto error0;
} else if (level > 0) {
error = xfs_btree_dec_cursor(cur, level, stat);
if (error)
goto error0;
}
*stat = 1;
return 0;
}
/*
* If we deleted the leftmost entry in the block, update the
* key values above us in the tree.
*/
if (xfs_btree_needs_key_update(cur, ptr)) {
error = xfs_btree_update_keys(cur, level);
if (error)
goto error0;
}
/*
* If the number of records remaining in the block is at least
* the minimum, we're done.
*/
if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
error = xfs_btree_dec_cursor(cur, level, stat);
if (error)
goto error0;
return 0;
}
/*
* Otherwise, we have to move some records around to keep the
* tree balanced. Look at the left and right sibling blocks to
* see if we can re-balance by moving only one record.
*/
xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
/*
* One child of root, need to get a chance to copy its contents
* into the root and delete it. Can't go up to next level,
* there's nothing to delete there.
*/
if (xfs_btree_ptr_is_null(cur, &rptr) &&
xfs_btree_ptr_is_null(cur, &lptr) &&
level == cur->bc_nlevels - 2) {
error = xfs_btree_kill_iroot(cur);
if (!error)
error = xfs_btree_dec_cursor(cur, level, stat);
if (error)
goto error0;
return 0;
}
}
ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
!xfs_btree_ptr_is_null(cur, &lptr));
/*
* Duplicate the cursor so our btree manipulations here won't
* disrupt the next level up.
*/
error = xfs_btree_dup_cursor(cur, &tcur);
if (error)
goto error0;
/*
* If there's a right sibling, see if it's ok to shift an entry
* out of it.
*/
if (!xfs_btree_ptr_is_null(cur, &rptr)) {
/*
* Move the temp cursor to the last entry in the next block.
* Actually any entry but the first would suffice.
*/
i = xfs_btree_lastrec(tcur, level);
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
error = xfs_btree_increment(tcur, level, &i);
if (error)
goto error0;
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
i = xfs_btree_lastrec(tcur, level);
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
/* Grab a pointer to the block. */
right = xfs_btree_get_block(tcur, level, &rbp);
#ifdef DEBUG
error = xfs_btree_check_block(tcur, right, level, rbp);
if (error)
goto error0;
#endif
/* Grab the current block number, for future use. */
xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
/*
* If right block is full enough so that removing one entry
* won't make it too empty, and left-shifting an entry out
* of right to us works, we're done.
*/
if (xfs_btree_get_numrecs(right) - 1 >=
cur->bc_ops->get_minrecs(tcur, level)) {
error = xfs_btree_lshift(tcur, level, &i);
if (error)
goto error0;
if (i) {
ASSERT(xfs_btree_get_numrecs(block) >=
cur->bc_ops->get_minrecs(tcur, level));
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
tcur = NULL;
error = xfs_btree_dec_cursor(cur, level, stat);
if (error)
goto error0;
return 0;
}
}
/*
* Otherwise, grab the number of records in right for
* future reference, and fix up the temp cursor to point
* to our block again (last record).
*/
rrecs = xfs_btree_get_numrecs(right);
if (!xfs_btree_ptr_is_null(cur, &lptr)) {
i = xfs_btree_firstrec(tcur, level);
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
error = xfs_btree_decrement(tcur, level, &i);
if (error)
goto error0;
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
}
}
/*
* If there's a left sibling, see if it's ok to shift an entry
* out of it.
*/
if (!xfs_btree_ptr_is_null(cur, &lptr)) {
/*
* Move the temp cursor to the first entry in the
* previous block.
*/
i = xfs_btree_firstrec(tcur, level);
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
error = xfs_btree_decrement(tcur, level, &i);
if (error)
goto error0;
i = xfs_btree_firstrec(tcur, level);
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
/* Grab a pointer to the block. */
left = xfs_btree_get_block(tcur, level, &lbp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, left, level, lbp);
if (error)
goto error0;
#endif
/* Grab the current block number, for future use. */
xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
/*
* If left block is full enough so that removing one entry
* won't make it too empty, and right-shifting an entry out
* of left to us works, we're done.
*/
if (xfs_btree_get_numrecs(left) - 1 >=
cur->bc_ops->get_minrecs(tcur, level)) {
error = xfs_btree_rshift(tcur, level, &i);
if (error)
goto error0;
if (i) {
ASSERT(xfs_btree_get_numrecs(block) >=
cur->bc_ops->get_minrecs(tcur, level));
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
tcur = NULL;
if (level == 0)
cur->bc_ptrs[0]++;
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = 1;
return 0;
}
}
/*
* Otherwise, grab the number of records in right for
* future reference.
*/
lrecs = xfs_btree_get_numrecs(left);
}
/* Delete the temp cursor, we're done with it. */
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
tcur = NULL;
/* If here, we need to do a join to keep the tree balanced. */
ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
if (!xfs_btree_ptr_is_null(cur, &lptr) &&
lrecs + xfs_btree_get_numrecs(block) <=
cur->bc_ops->get_maxrecs(cur, level)) {
/*
* Set "right" to be the starting block,
* "left" to be the left neighbor.
*/
rptr = cptr;
right = block;
rbp = bp;
error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
if (error)
goto error0;
/*
* If that won't work, see if we can join with the right neighbor block.
*/
} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
rrecs + xfs_btree_get_numrecs(block) <=
cur->bc_ops->get_maxrecs(cur, level)) {
/*
* Set "left" to be the starting block,
* "right" to be the right neighbor.
*/
lptr = cptr;
left = block;
lbp = bp;
error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
if (error)
goto error0;
/*
* Otherwise, we can't fix the imbalance.
* Just return. This is probably a logic error, but it's not fatal.
*/
} else {
error = xfs_btree_dec_cursor(cur, level, stat);
if (error)
goto error0;
return 0;
}
rrecs = xfs_btree_get_numrecs(right);
lrecs = xfs_btree_get_numrecs(left);
/*
* We're now going to join "left" and "right" by moving all the stuff
* in "right" to "left" and deleting "right".
*/
XFS_BTREE_STATS_ADD(cur, moves, rrecs);
if (level > 0) {
/* It's a non-leaf. Move keys and pointers. */
union xfs_btree_key *lkp; /* left btree key */
union xfs_btree_ptr *lpp; /* left address pointer */
union xfs_btree_key *rkp; /* right btree key */
union xfs_btree_ptr *rpp; /* right address pointer */
lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
rkp = xfs_btree_key_addr(cur, 1, right);
rpp = xfs_btree_ptr_addr(cur, 1, right);
#ifdef DEBUG
for (i = 1; i < rrecs; i++) {
error = xfs_btree_check_ptr(cur, rpp, i, level);
if (error)
goto error0;
}
#endif
xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
} else {
/* It's a leaf. Move records. */
union xfs_btree_rec *lrp; /* left record pointer */
union xfs_btree_rec *rrp; /* right record pointer */
lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
rrp = xfs_btree_rec_addr(cur, 1, right);
xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
}
XFS_BTREE_STATS_INC(cur, join);
/*
* Fix up the number of records and right block pointer in the
* surviving block, and log it.
*/
xfs_btree_set_numrecs(left, lrecs + rrecs);
xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
/* If there is a right sibling, point it to the remaining block. */
xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
if (!xfs_btree_ptr_is_null(cur, &cptr)) {
error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
if (error)
goto error0;
xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
}
/* Free the deleted block. */
error = xfs_btree_free_block(cur, rbp);
if (error)
goto error0;
/*
* If we joined with the left neighbor, set the buffer in the
* cursor to the left block, and fix up the index.
*/
if (bp != lbp) {
cur->bc_bufs[level] = lbp;
cur->bc_ptrs[level] += lrecs;
cur->bc_ra[level] = 0;
}
/*
* If we joined with the right neighbor and there's a level above
* us, increment the cursor at that level.
*/
else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
(level + 1 < cur->bc_nlevels)) {
error = xfs_btree_increment(cur, level + 1, &i);
if (error)
goto error0;
}
/*
* Readjust the ptr at this level if it's not a leaf, since it's
* still pointing at the deletion point, which makes the cursor
* inconsistent. If this makes the ptr 0, the caller fixes it up.
* We can't use decrement because it would change the next level up.
*/
if (level > 0)
cur->bc_ptrs[level]--;
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
/*
* We combined blocks, so we have to update the parent keys if the
* btree supports overlapped intervals. However, bc_ptrs[level + 1]
* points to the old block so that the caller knows which record to
* delete. Therefore, the caller must be savvy enough to call updkeys
* for us if we return stat == 2. The other exit points from this
* function don't require deletions further up the tree, so they can
* call updkeys directly.
*/
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
/* Return value means the next level up has something to do. */
*stat = 2;
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
if (tcur)
xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
return error;
}
/*
* Delete the record pointed to by cur.
* The cursor refers to the place where the record was (could be inserted)
* when the operation returns.
*/
int /* error */
xfs_btree_delete(
struct xfs_btree_cur *cur,
int *stat) /* success/failure */
{
int error; /* error return value */
int level;
int i;
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
bool joined = false;
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
/*
* Go up the tree, starting at leaf level.
*
* If 2 is returned then a join was done; go to the next level.
* Otherwise we are done.
*/
for (level = 0, i = 2; i == 2; level++) {
error = xfs_btree_delrec(cur, level, &i);
if (error)
goto error0;
xfs: support btrees with overlapping intervals for keys On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 09:08:36 +08:00
if (i == 2)
joined = true;
}
/*
* If we combined blocks as part of deleting the record, delrec won't
* have updated the parent high keys so we have to do that here.
*/
if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
error = xfs_btree_updkeys_force(cur, 0);
if (error)
goto error0;
}
if (i == 0) {
for (level = 1; level < cur->bc_nlevels; level++) {
if (cur->bc_ptrs[level] == 0) {
error = xfs_btree_decrement(cur, level, &i);
if (error)
goto error0;
break;
}
}
}
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
*stat = i;
return 0;
error0:
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
return error;
}
/*
* Get the data from the pointed-to record.
*/
int /* error */
xfs_btree_get_rec(
struct xfs_btree_cur *cur, /* btree cursor */
union xfs_btree_rec **recp, /* output: btree record */
int *stat) /* output: success/failure */
{
struct xfs_btree_block *block; /* btree block */
struct xfs_buf *bp; /* buffer pointer */
int ptr; /* record number */
#ifdef DEBUG
int error; /* error return value */
#endif
ptr = cur->bc_ptrs[0];
block = xfs_btree_get_block(cur, 0, &bp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, 0, bp);
if (error)
return error;
#endif
/*
* Off the right end or left end, return failure.
*/
if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
*stat = 0;
return 0;
}
/*
* Point to the record and extract its data.
*/
*recp = xfs_btree_rec_addr(cur, ptr, block);
*stat = 1;
return 0;
}
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
/* Visit a block in a btree. */
STATIC int
xfs_btree_visit_block(
struct xfs_btree_cur *cur,
int level,
xfs_btree_visit_blocks_fn fn,
void *data)
{
struct xfs_btree_block *block;
struct xfs_buf *bp;
union xfs_btree_ptr rptr;
int error;
/* do right sibling readahead */
xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
block = xfs_btree_get_block(cur, level, &bp);
/* process the block */
error = fn(cur, level, data);
if (error)
return error;
/* now read rh sibling block for next iteration */
xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
if (xfs_btree_ptr_is_null(cur, &rptr))
return -ENOENT;
return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
}
/* Visit every block in a btree. */
int
xfs_btree_visit_blocks(
struct xfs_btree_cur *cur,
xfs_btree_visit_blocks_fn fn,
void *data)
{
union xfs_btree_ptr lptr;
int level;
struct xfs_btree_block *block = NULL;
int error = 0;
cur->bc_ops->init_ptr_from_cur(cur, &lptr);
/* for each level */
for (level = cur->bc_nlevels - 1; level >= 0; level--) {
/* grab the left hand block */
error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
if (error)
return error;
/* readahead the left most block for the next level down */
if (level > 0) {
union xfs_btree_ptr *ptr;
ptr = xfs_btree_ptr_addr(cur, 1, block);
xfs_btree_readahead_ptr(cur, ptr, 1);
/* save for the next iteration of the loop */
lptr = *ptr;
}
/* for each buffer in the level */
do {
error = xfs_btree_visit_block(cur, level, fn, data);
} while (!error);
if (error != -ENOENT)
return error;
}
return 0;
}
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
/*
* Change the owner of a btree.
*
* The mechanism we use here is ordered buffer logging. Because we don't know
* how many buffers were are going to need to modify, we don't really want to
* have to make transaction reservations for the worst case of every buffer in a
* full size btree as that may be more space that we can fit in the log....
*
* We do the btree walk in the most optimal manner possible - we have sibling
* pointers so we can just walk all the blocks on each level from left to right
* in a single pass, and then move to the next level and do the same. We can
* also do readahead on the sibling pointers to get IO moving more quickly,
* though for slow disks this is unlikely to make much difference to performance
* as the amount of CPU work we have to do before moving to the next block is
* relatively small.
*
* For each btree block that we load, modify the owner appropriately, set the
* buffer as an ordered buffer and log it appropriately. We need to ensure that
* we mark the region we change dirty so that if the buffer is relogged in
* a subsequent transaction the changes we make here as an ordered buffer are
xfs: recovery of swap extents operations for CRC filesystems This is the recovery side of the btree block owner change operation performed by swapext on CRC enabled filesystems. We detect that an owner change is needed by the flag that has been placed on the inode log format flag field. Because the inode recovery is being replayed after the buffers that make up the BMBT in the given checkpoint, we can walk all the buffers and directly modify them when we see the flag set on an inode. Because the inode can be relogged and hence present in multiple chekpoints with the "change owner" flag set, we could do multiple passes across the inode to do this change. While this isn't optimal, we can't directly ignore the flag as there may be multiple independent swap extent operations being replayed on the same inode in different checkpoints so we can't ignore them. Further, because the owner change operation uses ordered buffers, we might have buffers that are newer on disk than the current checkpoint and so already have the owner changed in them. Hence we cannot just peek at a buffer in the tree and check that it has the correct owner and assume that the change was completed. So, for the moment just brute force the owner change every time we see an inode with the flag set. Note that we have to be careful here because the owner of the buffers may point to either the old owner or the new owner. Currently the verifier can't verify the owner directly, so there is no failure case here right now. If we verify the owner exactly in future, then we'll have to take this into account. This was tested in terms of normal operation via xfstests - all of the fsr tests now pass without failure. however, we really need to modify xfs/227 to stress v3 inodes correctly to ensure we fully cover this case for v5 filesystems. In terms of recovery testing, I used a hacked version of xfs_fsr that held the temp inode open for a few seconds before exiting so that the filesystem could be shut down with an open owner change recovery flags set on at least the temp inode. fsr leaves the temp inode unlinked and in btree format, so this was necessary for the owner change to be reliably replayed. logprint confirmed the tmp inode in the log had the correct flag set: INO: cnt:3 total:3 a:0x69e9e0 len:56 a:0x69ea20 len:176 a:0x69eae0 len:88 INODE: #regs:3 ino:0x44 flags:0x209 dsize:88 ^^^^^ 0x200 is set, indicating a data fork owner change needed to be replayed on inode 0x44. A printk in the revoery code confirmed that the inode change was recovered: XFS (vdc): Mounting Filesystem XFS (vdc): Starting recovery (logdev: internal) recovering owner change ino 0x44 XFS (vdc): Version 5 superblock detected. This kernel L support enabled! Use of these features in this kernel is at your own risk! XFS (vdc): Ending recovery (logdev: internal) The script used to test this was: $ cat ./recovery-fsr.sh #!/bin/bash dev=/dev/vdc mntpt=/mnt/scratch testfile=$mntpt/testfile umount $mntpt mkfs.xfs -f -m crc=1 $dev mount $dev $mntpt chmod 777 $mntpt for i in `seq 10000 -1 0`; do xfs_io -f -d -c "pwrite $(($i * 4096)) 4096" $testfile > /dev/null 2>&1 done xfs_bmap -vp $testfile |head -20 xfs_fsr -d -v $testfile & sleep 10 /home/dave/src/xfstests-dev/src/godown -f $mntpt wait umount $mntpt xfs_logprint -t $dev |tail -20 time mount $dev $mntpt xfs_bmap -vp $testfile umount $mntpt $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:45 +08:00
* correctly relogged in that transaction. If we are in recovery context, then
* just queue the modified buffer as delayed write buffer so the transaction
* recovery completion writes the changes to disk.
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
*/
struct xfs_btree_block_change_owner_info {
__uint64_t new_owner;
struct list_head *buffer_list;
};
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
static int
xfs_btree_block_change_owner(
struct xfs_btree_cur *cur,
int level,
void *data)
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
{
struct xfs_btree_block_change_owner_info *bbcoi = data;
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
struct xfs_btree_block *block;
struct xfs_buf *bp;
/* modify the owner */
block = xfs_btree_get_block(cur, level, &bp);
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
else
block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
/*
xfs: recovery of swap extents operations for CRC filesystems This is the recovery side of the btree block owner change operation performed by swapext on CRC enabled filesystems. We detect that an owner change is needed by the flag that has been placed on the inode log format flag field. Because the inode recovery is being replayed after the buffers that make up the BMBT in the given checkpoint, we can walk all the buffers and directly modify them when we see the flag set on an inode. Because the inode can be relogged and hence present in multiple chekpoints with the "change owner" flag set, we could do multiple passes across the inode to do this change. While this isn't optimal, we can't directly ignore the flag as there may be multiple independent swap extent operations being replayed on the same inode in different checkpoints so we can't ignore them. Further, because the owner change operation uses ordered buffers, we might have buffers that are newer on disk than the current checkpoint and so already have the owner changed in them. Hence we cannot just peek at a buffer in the tree and check that it has the correct owner and assume that the change was completed. So, for the moment just brute force the owner change every time we see an inode with the flag set. Note that we have to be careful here because the owner of the buffers may point to either the old owner or the new owner. Currently the verifier can't verify the owner directly, so there is no failure case here right now. If we verify the owner exactly in future, then we'll have to take this into account. This was tested in terms of normal operation via xfstests - all of the fsr tests now pass without failure. however, we really need to modify xfs/227 to stress v3 inodes correctly to ensure we fully cover this case for v5 filesystems. In terms of recovery testing, I used a hacked version of xfs_fsr that held the temp inode open for a few seconds before exiting so that the filesystem could be shut down with an open owner change recovery flags set on at least the temp inode. fsr leaves the temp inode unlinked and in btree format, so this was necessary for the owner change to be reliably replayed. logprint confirmed the tmp inode in the log had the correct flag set: INO: cnt:3 total:3 a:0x69e9e0 len:56 a:0x69ea20 len:176 a:0x69eae0 len:88 INODE: #regs:3 ino:0x44 flags:0x209 dsize:88 ^^^^^ 0x200 is set, indicating a data fork owner change needed to be replayed on inode 0x44. A printk in the revoery code confirmed that the inode change was recovered: XFS (vdc): Mounting Filesystem XFS (vdc): Starting recovery (logdev: internal) recovering owner change ino 0x44 XFS (vdc): Version 5 superblock detected. This kernel L support enabled! Use of these features in this kernel is at your own risk! XFS (vdc): Ending recovery (logdev: internal) The script used to test this was: $ cat ./recovery-fsr.sh #!/bin/bash dev=/dev/vdc mntpt=/mnt/scratch testfile=$mntpt/testfile umount $mntpt mkfs.xfs -f -m crc=1 $dev mount $dev $mntpt chmod 777 $mntpt for i in `seq 10000 -1 0`; do xfs_io -f -d -c "pwrite $(($i * 4096)) 4096" $testfile > /dev/null 2>&1 done xfs_bmap -vp $testfile |head -20 xfs_fsr -d -v $testfile & sleep 10 /home/dave/src/xfstests-dev/src/godown -f $mntpt wait umount $mntpt xfs_logprint -t $dev |tail -20 time mount $dev $mntpt xfs_bmap -vp $testfile umount $mntpt $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:45 +08:00
* If the block is a root block hosted in an inode, we might not have a
* buffer pointer here and we shouldn't attempt to log the change as the
* information is already held in the inode and discarded when the root
* block is formatted into the on-disk inode fork. We still change it,
* though, so everything is consistent in memory.
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
*/
if (bp) {
xfs: recovery of swap extents operations for CRC filesystems This is the recovery side of the btree block owner change operation performed by swapext on CRC enabled filesystems. We detect that an owner change is needed by the flag that has been placed on the inode log format flag field. Because the inode recovery is being replayed after the buffers that make up the BMBT in the given checkpoint, we can walk all the buffers and directly modify them when we see the flag set on an inode. Because the inode can be relogged and hence present in multiple chekpoints with the "change owner" flag set, we could do multiple passes across the inode to do this change. While this isn't optimal, we can't directly ignore the flag as there may be multiple independent swap extent operations being replayed on the same inode in different checkpoints so we can't ignore them. Further, because the owner change operation uses ordered buffers, we might have buffers that are newer on disk than the current checkpoint and so already have the owner changed in them. Hence we cannot just peek at a buffer in the tree and check that it has the correct owner and assume that the change was completed. So, for the moment just brute force the owner change every time we see an inode with the flag set. Note that we have to be careful here because the owner of the buffers may point to either the old owner or the new owner. Currently the verifier can't verify the owner directly, so there is no failure case here right now. If we verify the owner exactly in future, then we'll have to take this into account. This was tested in terms of normal operation via xfstests - all of the fsr tests now pass without failure. however, we really need to modify xfs/227 to stress v3 inodes correctly to ensure we fully cover this case for v5 filesystems. In terms of recovery testing, I used a hacked version of xfs_fsr that held the temp inode open for a few seconds before exiting so that the filesystem could be shut down with an open owner change recovery flags set on at least the temp inode. fsr leaves the temp inode unlinked and in btree format, so this was necessary for the owner change to be reliably replayed. logprint confirmed the tmp inode in the log had the correct flag set: INO: cnt:3 total:3 a:0x69e9e0 len:56 a:0x69ea20 len:176 a:0x69eae0 len:88 INODE: #regs:3 ino:0x44 flags:0x209 dsize:88 ^^^^^ 0x200 is set, indicating a data fork owner change needed to be replayed on inode 0x44. A printk in the revoery code confirmed that the inode change was recovered: XFS (vdc): Mounting Filesystem XFS (vdc): Starting recovery (logdev: internal) recovering owner change ino 0x44 XFS (vdc): Version 5 superblock detected. This kernel L support enabled! Use of these features in this kernel is at your own risk! XFS (vdc): Ending recovery (logdev: internal) The script used to test this was: $ cat ./recovery-fsr.sh #!/bin/bash dev=/dev/vdc mntpt=/mnt/scratch testfile=$mntpt/testfile umount $mntpt mkfs.xfs -f -m crc=1 $dev mount $dev $mntpt chmod 777 $mntpt for i in `seq 10000 -1 0`; do xfs_io -f -d -c "pwrite $(($i * 4096)) 4096" $testfile > /dev/null 2>&1 done xfs_bmap -vp $testfile |head -20 xfs_fsr -d -v $testfile & sleep 10 /home/dave/src/xfstests-dev/src/godown -f $mntpt wait umount $mntpt xfs_logprint -t $dev |tail -20 time mount $dev $mntpt xfs_bmap -vp $testfile umount $mntpt $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:45 +08:00
if (cur->bc_tp) {
xfs_trans_ordered_buf(cur->bc_tp, bp);
xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
} else {
xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
xfs: recovery of swap extents operations for CRC filesystems This is the recovery side of the btree block owner change operation performed by swapext on CRC enabled filesystems. We detect that an owner change is needed by the flag that has been placed on the inode log format flag field. Because the inode recovery is being replayed after the buffers that make up the BMBT in the given checkpoint, we can walk all the buffers and directly modify them when we see the flag set on an inode. Because the inode can be relogged and hence present in multiple chekpoints with the "change owner" flag set, we could do multiple passes across the inode to do this change. While this isn't optimal, we can't directly ignore the flag as there may be multiple independent swap extent operations being replayed on the same inode in different checkpoints so we can't ignore them. Further, because the owner change operation uses ordered buffers, we might have buffers that are newer on disk than the current checkpoint and so already have the owner changed in them. Hence we cannot just peek at a buffer in the tree and check that it has the correct owner and assume that the change was completed. So, for the moment just brute force the owner change every time we see an inode with the flag set. Note that we have to be careful here because the owner of the buffers may point to either the old owner or the new owner. Currently the verifier can't verify the owner directly, so there is no failure case here right now. If we verify the owner exactly in future, then we'll have to take this into account. This was tested in terms of normal operation via xfstests - all of the fsr tests now pass without failure. however, we really need to modify xfs/227 to stress v3 inodes correctly to ensure we fully cover this case for v5 filesystems. In terms of recovery testing, I used a hacked version of xfs_fsr that held the temp inode open for a few seconds before exiting so that the filesystem could be shut down with an open owner change recovery flags set on at least the temp inode. fsr leaves the temp inode unlinked and in btree format, so this was necessary for the owner change to be reliably replayed. logprint confirmed the tmp inode in the log had the correct flag set: INO: cnt:3 total:3 a:0x69e9e0 len:56 a:0x69ea20 len:176 a:0x69eae0 len:88 INODE: #regs:3 ino:0x44 flags:0x209 dsize:88 ^^^^^ 0x200 is set, indicating a data fork owner change needed to be replayed on inode 0x44. A printk in the revoery code confirmed that the inode change was recovered: XFS (vdc): Mounting Filesystem XFS (vdc): Starting recovery (logdev: internal) recovering owner change ino 0x44 XFS (vdc): Version 5 superblock detected. This kernel L support enabled! Use of these features in this kernel is at your own risk! XFS (vdc): Ending recovery (logdev: internal) The script used to test this was: $ cat ./recovery-fsr.sh #!/bin/bash dev=/dev/vdc mntpt=/mnt/scratch testfile=$mntpt/testfile umount $mntpt mkfs.xfs -f -m crc=1 $dev mount $dev $mntpt chmod 777 $mntpt for i in `seq 10000 -1 0`; do xfs_io -f -d -c "pwrite $(($i * 4096)) 4096" $testfile > /dev/null 2>&1 done xfs_bmap -vp $testfile |head -20 xfs_fsr -d -v $testfile & sleep 10 /home/dave/src/xfstests-dev/src/godown -f $mntpt wait umount $mntpt xfs_logprint -t $dev |tail -20 time mount $dev $mntpt xfs_bmap -vp $testfile umount $mntpt $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:45 +08:00
}
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
} else {
ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
ASSERT(level == cur->bc_nlevels - 1);
}
return 0;
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
}
int
xfs_btree_change_owner(
struct xfs_btree_cur *cur,
xfs: recovery of swap extents operations for CRC filesystems This is the recovery side of the btree block owner change operation performed by swapext on CRC enabled filesystems. We detect that an owner change is needed by the flag that has been placed on the inode log format flag field. Because the inode recovery is being replayed after the buffers that make up the BMBT in the given checkpoint, we can walk all the buffers and directly modify them when we see the flag set on an inode. Because the inode can be relogged and hence present in multiple chekpoints with the "change owner" flag set, we could do multiple passes across the inode to do this change. While this isn't optimal, we can't directly ignore the flag as there may be multiple independent swap extent operations being replayed on the same inode in different checkpoints so we can't ignore them. Further, because the owner change operation uses ordered buffers, we might have buffers that are newer on disk than the current checkpoint and so already have the owner changed in them. Hence we cannot just peek at a buffer in the tree and check that it has the correct owner and assume that the change was completed. So, for the moment just brute force the owner change every time we see an inode with the flag set. Note that we have to be careful here because the owner of the buffers may point to either the old owner or the new owner. Currently the verifier can't verify the owner directly, so there is no failure case here right now. If we verify the owner exactly in future, then we'll have to take this into account. This was tested in terms of normal operation via xfstests - all of the fsr tests now pass without failure. however, we really need to modify xfs/227 to stress v3 inodes correctly to ensure we fully cover this case for v5 filesystems. In terms of recovery testing, I used a hacked version of xfs_fsr that held the temp inode open for a few seconds before exiting so that the filesystem could be shut down with an open owner change recovery flags set on at least the temp inode. fsr leaves the temp inode unlinked and in btree format, so this was necessary for the owner change to be reliably replayed. logprint confirmed the tmp inode in the log had the correct flag set: INO: cnt:3 total:3 a:0x69e9e0 len:56 a:0x69ea20 len:176 a:0x69eae0 len:88 INODE: #regs:3 ino:0x44 flags:0x209 dsize:88 ^^^^^ 0x200 is set, indicating a data fork owner change needed to be replayed on inode 0x44. A printk in the revoery code confirmed that the inode change was recovered: XFS (vdc): Mounting Filesystem XFS (vdc): Starting recovery (logdev: internal) recovering owner change ino 0x44 XFS (vdc): Version 5 superblock detected. This kernel L support enabled! Use of these features in this kernel is at your own risk! XFS (vdc): Ending recovery (logdev: internal) The script used to test this was: $ cat ./recovery-fsr.sh #!/bin/bash dev=/dev/vdc mntpt=/mnt/scratch testfile=$mntpt/testfile umount $mntpt mkfs.xfs -f -m crc=1 $dev mount $dev $mntpt chmod 777 $mntpt for i in `seq 10000 -1 0`; do xfs_io -f -d -c "pwrite $(($i * 4096)) 4096" $testfile > /dev/null 2>&1 done xfs_bmap -vp $testfile |head -20 xfs_fsr -d -v $testfile & sleep 10 /home/dave/src/xfstests-dev/src/godown -f $mntpt wait umount $mntpt xfs_logprint -t $dev |tail -20 time mount $dev $mntpt xfs_bmap -vp $testfile umount $mntpt $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:45 +08:00
__uint64_t new_owner,
struct list_head *buffer_list)
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
{
struct xfs_btree_block_change_owner_info bbcoi;
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
bbcoi.new_owner = new_owner;
bbcoi.buffer_list = buffer_list;
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
&bbcoi);
xfs: swap extents operations for CRC filesystems For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 08:23:44 +08:00
}
/**
* xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
* btree block
*
* @bp: buffer containing the btree block
* @max_recs: pointer to the m_*_mxr max records field in the xfs mount
* @pag_max_level: pointer to the per-ag max level field
*/
bool
xfs_btree_sblock_v5hdr_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
struct xfs_perag *pag = bp->b_pag;
if (!xfs_sb_version_hascrc(&mp->m_sb))
return false;
if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
return false;
if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
return false;
if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
return false;
return true;
}
/**
* xfs_btree_sblock_verify() -- verify a short-format btree block
*
* @bp: buffer containing the btree block
* @max_recs: maximum records allowed in this btree node
*/
bool
xfs_btree_sblock_verify(
struct xfs_buf *bp,
unsigned int max_recs)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
/* numrecs verification */
if (be16_to_cpu(block->bb_numrecs) > max_recs)
return false;
/* sibling pointer verification */
if (!block->bb_u.s.bb_leftsib ||
(be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
return false;
if (!block->bb_u.s.bb_rightsib ||
(be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
return false;
return true;
}
/*
* Calculate the number of btree levels needed to store a given number of
* records in a short-format btree.
*/
uint
xfs_btree_compute_maxlevels(
struct xfs_mount *mp,
uint *limits,
unsigned long len)
{
uint level;
unsigned long maxblocks;
maxblocks = (len + limits[0] - 1) / limits[0];
for (level = 1; maxblocks > 1; level++)
maxblocks = (maxblocks + limits[1] - 1) / limits[1];
return level;
}
/*
* Query a regular btree for all records overlapping a given interval.
* Start with a LE lookup of the key of low_rec and return all records
* until we find a record with a key greater than the key of high_rec.
*/
STATIC int
xfs_btree_simple_query_range(
struct xfs_btree_cur *cur,
union xfs_btree_key *low_key,
union xfs_btree_key *high_key,
xfs_btree_query_range_fn fn,
void *priv)
{
union xfs_btree_rec *recp;
union xfs_btree_key rec_key;
__int64_t diff;
int stat;
bool firstrec = true;
int error;
ASSERT(cur->bc_ops->init_high_key_from_rec);
ASSERT(cur->bc_ops->diff_two_keys);
/*
* Find the leftmost record. The btree cursor must be set
* to the low record used to generate low_key.
*/
stat = 0;
error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
if (error)
goto out;
while (stat) {
/* Find the record. */
error = xfs_btree_get_rec(cur, &recp, &stat);
if (error || !stat)
break;
cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
/* Skip if high_key(rec) < low_key. */
if (firstrec) {
firstrec = false;
diff = cur->bc_ops->diff_two_keys(cur, low_key,
&rec_key);
if (diff > 0)
goto advloop;
}
/* Stop if high_key < low_key(rec). */
diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
if (diff > 0)
break;
/* Callback */
error = fn(cur, recp, priv);
if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
break;
advloop:
/* Move on to the next record. */
error = xfs_btree_increment(cur, 0, &stat);
if (error)
break;
}
out:
return error;
}
/*
* Query an overlapped interval btree for all records overlapping a given
* interval. This function roughly follows the algorithm given in
* "Interval Trees" of _Introduction to Algorithms_, which is section
* 14.3 in the 2nd and 3rd editions.
*
* First, generate keys for the low and high records passed in.
*
* For any leaf node, generate the high and low keys for the record.
* If the record keys overlap with the query low/high keys, pass the
* record to the function iterator.
*
* For any internal node, compare the low and high keys of each
* pointer against the query low/high keys. If there's an overlap,
* follow the pointer.
*
* As an optimization, we stop scanning a block when we find a low key
* that is greater than the query's high key.
*/
STATIC int
xfs_btree_overlapped_query_range(
struct xfs_btree_cur *cur,
union xfs_btree_key *low_key,
union xfs_btree_key *high_key,
xfs_btree_query_range_fn fn,
void *priv)
{
union xfs_btree_ptr ptr;
union xfs_btree_ptr *pp;
union xfs_btree_key rec_key;
union xfs_btree_key rec_hkey;
union xfs_btree_key *lkp;
union xfs_btree_key *hkp;
union xfs_btree_rec *recp;
struct xfs_btree_block *block;
__int64_t ldiff;
__int64_t hdiff;
int level;
struct xfs_buf *bp;
int i;
int error;
/* Load the root of the btree. */
level = cur->bc_nlevels - 1;
cur->bc_ops->init_ptr_from_cur(cur, &ptr);
error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
if (error)
return error;
xfs_btree_get_block(cur, level, &bp);
trace_xfs_btree_overlapped_query_range(cur, level, bp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, level, bp);
if (error)
goto out;
#endif
cur->bc_ptrs[level] = 1;
while (level < cur->bc_nlevels) {
block = xfs_btree_get_block(cur, level, &bp);
/* End of node, pop back towards the root. */
if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
pop_up:
if (level < cur->bc_nlevels - 1)
cur->bc_ptrs[level + 1]++;
level++;
continue;
}
if (level == 0) {
/* Handle a leaf node. */
recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
low_key);
cur->bc_ops->init_key_from_rec(&rec_key, recp);
hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
&rec_key);
/*
* If (record's high key >= query's low key) and
* (query's high key >= record's low key), then
* this record overlaps the query range; callback.
*/
if (ldiff >= 0 && hdiff >= 0) {
error = fn(cur, recp, priv);
if (error < 0 ||
error == XFS_BTREE_QUERY_RANGE_ABORT)
break;
} else if (hdiff < 0) {
/* Record is larger than high key; pop. */
goto pop_up;
}
cur->bc_ptrs[level]++;
continue;
}
/* Handle an internal node. */
lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
/*
* If (pointer's high key >= query's low key) and
* (query's high key >= pointer's low key), then
* this record overlaps the query range; follow pointer.
*/
if (ldiff >= 0 && hdiff >= 0) {
level--;
error = xfs_btree_lookup_get_block(cur, level, pp,
&block);
if (error)
goto out;
xfs_btree_get_block(cur, level, &bp);
trace_xfs_btree_overlapped_query_range(cur, level, bp);
#ifdef DEBUG
error = xfs_btree_check_block(cur, block, level, bp);
if (error)
goto out;
#endif
cur->bc_ptrs[level] = 1;
continue;
} else if (hdiff < 0) {
/* The low key is larger than the upper range; pop. */
goto pop_up;
}
cur->bc_ptrs[level]++;
}
out:
/*
* If we don't end this function with the cursor pointing at a record
* block, a subsequent non-error cursor deletion will not release
* node-level buffers, causing a buffer leak. This is quite possible
* with a zero-results range query, so release the buffers if we
* failed to return any results.
*/
if (cur->bc_bufs[0] == NULL) {
for (i = 0; i < cur->bc_nlevels; i++) {
if (cur->bc_bufs[i]) {
xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
cur->bc_bufs[i] = NULL;
cur->bc_ptrs[i] = 0;
cur->bc_ra[i] = 0;
}
}
}
return error;
}
/*
* Query a btree for all records overlapping a given interval of keys. The
* supplied function will be called with each record found; return one of the
* XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
* code. This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
* negative error code.
*/
int
xfs_btree_query_range(
struct xfs_btree_cur *cur,
union xfs_btree_irec *low_rec,
union xfs_btree_irec *high_rec,
xfs_btree_query_range_fn fn,
void *priv)
{
union xfs_btree_rec rec;
union xfs_btree_key low_key;
union xfs_btree_key high_key;
/* Find the keys of both ends of the interval. */
cur->bc_rec = *high_rec;
cur->bc_ops->init_rec_from_cur(cur, &rec);
cur->bc_ops->init_key_from_rec(&high_key, &rec);
cur->bc_rec = *low_rec;
cur->bc_ops->init_rec_from_cur(cur, &rec);
cur->bc_ops->init_key_from_rec(&low_key, &rec);
/* Enforce low key < high key. */
if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
return -EINVAL;
if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
return xfs_btree_simple_query_range(cur, &low_key,
&high_key, fn, priv);
return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
fn, priv);
}