linux/drivers/gpu/drm/gma500/cdv_intel_dp.c

1505 lines
38 KiB
C
Raw Normal View History

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "psb_drv.h"
#include "psb_intel_drv.h"
#include "psb_drm.h"
#include "psb_intel_reg.h"
#include "drm_dp_helper.h"
#define DP_LINK_STATUS_SIZE 6
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
#define DP_LINK_CONFIGURATION_SIZE 9
#define CDV_FAST_LINK_TRAIN 1
struct psb_intel_dp {
uint32_t output_reg;
uint32_t DP;
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
bool has_audio;
int force_audio;
uint32_t color_range;
uint8_t link_bw;
uint8_t lane_count;
uint8_t dpcd[4];
struct psb_intel_output *output;
struct i2c_adapter adapter;
struct i2c_algo_dp_aux_data algo;
uint8_t train_set[4];
uint8_t link_status[DP_LINK_STATUS_SIZE];
};
struct ddi_regoff {
uint32_t PreEmph1;
uint32_t PreEmph2;
uint32_t VSwing1;
uint32_t VSwing2;
uint32_t VSwing3;
uint32_t VSwing4;
uint32_t VSwing5;
};
static struct ddi_regoff ddi_DP_train_table[] = {
{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
.VSwing5 = 0x8158,},
{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
.VSwing5 = 0x8258,},
};
static uint32_t dp_vswing_premph_table[] = {
0x55338954, 0x4000,
0x554d8954, 0x2000,
0x55668954, 0,
0x559ac0d4, 0x6000,
};
/**
* is_edp - is the given port attached to an eDP panel (either CPU or PCH)
* @intel_dp: DP struct
*
* If a CPU or PCH DP output is attached to an eDP panel, this function
* will return true, and false otherwise.
*/
static bool is_edp(struct psb_intel_output *output)
{
return output->type == INTEL_OUTPUT_EDP;
}
static void psb_intel_dp_start_link_train(struct psb_intel_output *output);
static void psb_intel_dp_complete_link_train(struct psb_intel_output *output);
static void psb_intel_dp_link_down(struct psb_intel_output *output);
static int
psb_intel_dp_max_lane_count(struct psb_intel_output *output)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
int max_lane_count = 4;
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
switch (max_lane_count) {
case 1: case 2: case 4:
break;
default:
max_lane_count = 4;
}
}
return max_lane_count;
}
static int
psb_intel_dp_max_link_bw(struct psb_intel_output *output)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
switch (max_link_bw) {
case DP_LINK_BW_1_62:
case DP_LINK_BW_2_7:
break;
default:
max_link_bw = DP_LINK_BW_1_62;
break;
}
return max_link_bw;
}
static int
psb_intel_dp_link_clock(uint8_t link_bw)
{
if (link_bw == DP_LINK_BW_2_7)
return 270000;
else
return 162000;
}
static int
psb_intel_dp_link_required(int pixel_clock, int bpp)
{
return (pixel_clock * bpp + 7) / 8;
}
static int
psb_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
return (max_link_clock * max_lanes * 19) / 20;
}
static int
psb_intel_dp_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct psb_intel_output *output = to_psb_intel_output(connector);
struct drm_device *dev = connector->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
int max_link_clock = psb_intel_dp_link_clock(psb_intel_dp_max_link_bw(output));
int max_lanes = psb_intel_dp_max_lane_count(output);
if (is_edp(output) && dev_priv->panel_fixed_mode) {
if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
return MODE_PANEL;
if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
return MODE_PANEL;
}
/* only refuse the mode on non eDP since we have seen some weird eDP panels
which are outside spec tolerances but somehow work by magic */
if (!is_edp(output) &&
(psb_intel_dp_link_required(mode->clock, 24)
> psb_intel_dp_max_data_rate(max_link_clock, max_lanes)))
return MODE_CLOCK_HIGH;
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
return MODE_OK;
}
static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
int i;
uint32_t v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((uint32_t) src[i]) << ((3-i) * 8);
return v;
}
static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3-i) * 8);
}
static int
psb_intel_dp_aux_ch(struct psb_intel_output *output,
uint8_t *send, int send_bytes,
uint8_t *recv, int recv_size)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
uint32_t output_reg = intel_dp->output_reg;
struct drm_device *dev = output->base.dev;
uint32_t ch_ctl = output_reg + 0x10;
uint32_t ch_data = ch_ctl + 4;
int i;
int recv_bytes;
uint32_t status;
uint32_t aux_clock_divider;
int try, precharge;
/* The clock divider is based off the hrawclk,
* and would like to run at 2MHz. So, take the
* hrawclk value and divide by 2 and use that
* On CDV platform it uses 200MHz as hrawclk.
*
*/
aux_clock_divider = 200 / 2;
precharge = 4;
if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
REG_READ(ch_ctl));
return -EBUSY;
}
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4)
REG_WRITE(ch_data + i,
pack_aux(send + i, send_bytes - i));
/* Send the command and wait for it to complete */
REG_WRITE(ch_ctl,
DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_TIME_OUT_400us |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
for (;;) {
status = REG_READ(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
udelay(100);
}
/* Clear done status and any errors */
REG_WRITE(ch_ctl,
status |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
if (status & DP_AUX_CH_CTL_DONE)
break;
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
return -EBUSY;
}
/* Check for timeout or receive error.
* Timeouts occur when the sink is not connected
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
return -EIO;
}
/* Timeouts occur when the device isn't connected, so they're
* "normal" -- don't fill the kernel log with these */
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
return -ETIMEDOUT;
}
/* Unload any bytes sent back from the other side */
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4)
unpack_aux(REG_READ(ch_data + i),
recv + i, recv_bytes - i);
return recv_bytes;
}
/* Write data to the aux channel in native mode */
static int
psb_intel_dp_aux_native_write(struct psb_intel_output *output,
uint16_t address, uint8_t *send, int send_bytes)
{
int ret;
uint8_t msg[20];
int msg_bytes;
uint8_t ack;
if (send_bytes > 16)
return -1;
msg[0] = AUX_NATIVE_WRITE << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = send_bytes - 1;
memcpy(&msg[4], send, send_bytes);
msg_bytes = send_bytes + 4;
for (;;) {
ret = psb_intel_dp_aux_ch(output, msg, msg_bytes, &ack, 1);
if (ret < 0)
return ret;
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
break;
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
return send_bytes;
}
/* Write a single byte to the aux channel in native mode */
static int
psb_intel_dp_aux_native_write_1(struct psb_intel_output *output,
uint16_t address, uint8_t byte)
{
return psb_intel_dp_aux_native_write(output, address, &byte, 1);
}
/* read bytes from a native aux channel */
static int
psb_intel_dp_aux_native_read(struct psb_intel_output *output,
uint16_t address, uint8_t *recv, int recv_bytes)
{
uint8_t msg[4];
int msg_bytes;
uint8_t reply[20];
int reply_bytes;
uint8_t ack;
int ret;
msg[0] = AUX_NATIVE_READ << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = recv_bytes - 1;
msg_bytes = 4;
reply_bytes = recv_bytes + 1;
for (;;) {
ret = psb_intel_dp_aux_ch(output, msg, msg_bytes,
reply, reply_bytes);
if (ret == 0)
return -EPROTO;
if (ret < 0)
return ret;
ack = reply[0];
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
memcpy(recv, reply + 1, ret - 1);
return ret - 1;
}
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
}
static int
psb_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
uint8_t write_byte, uint8_t *read_byte)
{
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
struct psb_intel_dp *intel_dp = container_of(adapter,
struct psb_intel_dp,
adapter);
struct psb_intel_output *output = intel_dp->output;
uint16_t address = algo_data->address;
uint8_t msg[5];
uint8_t reply[2];
unsigned retry;
int msg_bytes;
int reply_bytes;
int ret;
/* Set up the command byte */
if (mode & MODE_I2C_READ)
msg[0] = AUX_I2C_READ << 4;
else
msg[0] = AUX_I2C_WRITE << 4;
if (!(mode & MODE_I2C_STOP))
msg[0] |= AUX_I2C_MOT << 4;
msg[1] = address >> 8;
msg[2] = address;
switch (mode) {
case MODE_I2C_WRITE:
msg[3] = 0;
msg[4] = write_byte;
msg_bytes = 5;
reply_bytes = 1;
break;
case MODE_I2C_READ:
msg[3] = 0;
msg_bytes = 4;
reply_bytes = 2;
break;
default:
msg_bytes = 3;
reply_bytes = 1;
break;
}
for (retry = 0; retry < 5; retry++) {
ret = psb_intel_dp_aux_ch(output,
msg, msg_bytes,
reply, reply_bytes);
if (ret < 0) {
DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
return ret;
}
switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
case AUX_NATIVE_REPLY_ACK:
/* I2C-over-AUX Reply field is only valid
* when paired with AUX ACK.
*/
break;
case AUX_NATIVE_REPLY_NACK:
DRM_DEBUG_KMS("aux_ch native nack\n");
return -EREMOTEIO;
case AUX_NATIVE_REPLY_DEFER:
udelay(100);
continue;
default:
DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
reply[0]);
return -EREMOTEIO;
}
switch (reply[0] & AUX_I2C_REPLY_MASK) {
case AUX_I2C_REPLY_ACK:
if (mode == MODE_I2C_READ) {
*read_byte = reply[1];
}
return reply_bytes - 1;
case AUX_I2C_REPLY_NACK:
DRM_DEBUG_KMS("aux_i2c nack\n");
return -EREMOTEIO;
case AUX_I2C_REPLY_DEFER:
DRM_DEBUG_KMS("aux_i2c defer\n");
udelay(100);
break;
default:
DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
return -EREMOTEIO;
}
}
DRM_ERROR("too many retries, giving up\n");
return -EREMOTEIO;
}
static int
psb_intel_dp_i2c_init(struct psb_intel_output *output, const char *name)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
DRM_DEBUG_KMS("i2c_init %s\n", name);
intel_dp->algo.running = false;
intel_dp->algo.address = 0;
intel_dp->algo.aux_ch = psb_intel_dp_i2c_aux_ch;
memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
intel_dp->adapter.owner = THIS_MODULE;
intel_dp->adapter.class = I2C_CLASS_DDC;
strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
intel_dp->adapter.algo_data = &intel_dp->algo;
intel_dp->adapter.dev.parent = &output->base.kdev;
return i2c_dp_aux_add_bus(&intel_dp->adapter);
}
static bool
psb_intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct psb_intel_output *output = enc_to_psb_intel_output(encoder);
struct psb_intel_dp *intel_dp = output->dev_priv;
int lane_count, clock;
int max_lane_count = psb_intel_dp_max_lane_count(output);
int max_clock = psb_intel_dp_max_link_bw(output) == DP_LINK_BW_2_7 ? 1 : 0;
static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
for (clock = max_clock; clock >= 0; clock--) {
int link_avail = psb_intel_dp_max_data_rate(psb_intel_dp_link_clock(bws[clock]), lane_count);
if (psb_intel_dp_link_required(mode->clock, 24)
<= link_avail) {
intel_dp->link_bw = bws[clock];
intel_dp->lane_count = lane_count;
adjusted_mode->clock = psb_intel_dp_link_clock(intel_dp->link_bw);
DRM_DEBUG_KMS("Display port link bw %02x lane "
"count %d clock %d\n",
intel_dp->link_bw, intel_dp->lane_count,
adjusted_mode->clock);
return true;
}
}
}
return false;
}
struct psb_intel_dp_m_n {
uint32_t tu;
uint32_t gmch_m;
uint32_t gmch_n;
uint32_t link_m;
uint32_t link_n;
};
static void
psb_intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
/*
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}*/
uint64_t value, m;
m = *num;
value = m * (0x800000);
m = do_div(value, *den);
*num = value;
*den = 0x800000;
}
static void
psb_intel_dp_compute_m_n(int bpp,
int nlanes,
int pixel_clock,
int link_clock,
struct psb_intel_dp_m_n *m_n)
{
m_n->tu = 64;
m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
m_n->gmch_n = link_clock * nlanes;
psb_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
m_n->link_m = pixel_clock;
m_n->link_n = link_clock;
psb_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
void
psb_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_encoder *encoder;
struct psb_intel_crtc *intel_crtc = to_psb_intel_crtc(crtc);
int lane_count = 4, bpp = 24;
struct psb_intel_dp_m_n m_n;
int pipe = intel_crtc->pipe;
/*
* Find the lane count in the intel_encoder private
*/
list_for_each_entry(encoder, &mode_config->encoder_list, head) {
struct psb_intel_output *intel_output;
struct psb_intel_dp *intel_dp;
if (encoder->crtc != crtc)
continue;
intel_output = enc_to_psb_intel_output(encoder);
intel_dp = intel_output->dev_priv;
if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
lane_count = intel_dp->lane_count;
break;
} else if (is_edp(intel_output)) {
lane_count = intel_dp->lane_count;
break;
}
}
/*
* Compute the GMCH and Link ratios. The '3' here is
* the number of bytes_per_pixel post-LUT, which we always
* set up for 8-bits of R/G/B, or 3 bytes total.
*/
psb_intel_dp_compute_m_n(bpp, lane_count,
mode->clock, adjusted_mode->clock, &m_n);
{
REG_WRITE(PIPE_GMCH_DATA_M(pipe),
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
m_n.gmch_m);
REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
}
}
static void
psb_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct psb_intel_output *intel_output = enc_to_psb_intel_output(encoder);
struct drm_crtc *crtc = encoder->crtc;
struct psb_intel_crtc *intel_crtc = to_psb_intel_crtc(crtc);
struct psb_intel_dp *intel_dp = intel_output->dev_priv;
intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
intel_dp->DP |= intel_dp->color_range;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF;
switch (intel_dp->lane_count) {
case 1:
intel_dp->DP |= DP_PORT_WIDTH_1;
break;
case 2:
intel_dp->DP |= DP_PORT_WIDTH_2;
break;
case 4:
intel_dp->DP |= DP_PORT_WIDTH_4;
break;
}
if (intel_dp->has_audio)
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
intel_dp->link_configuration[0] = intel_dp->link_bw;
intel_dp->link_configuration[1] = intel_dp->lane_count;
/*
* Check for DPCD version > 1.1 and enhanced framing support
*/
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
(intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
intel_dp->DP |= DP_ENHANCED_FRAMING;
}
/* CPT DP's pipe select is decided in TRANS_DP_CTL */
if (intel_crtc->pipe == 1)
intel_dp->DP |= DP_PIPEB_SELECT;
DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
}
/* If the sink supports it, try to set the power state appropriately */
static void psb_intel_dp_sink_dpms(struct psb_intel_output *output, int mode)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
int ret, i;
/* Should have a valid DPCD by this point */
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return;
if (mode != DRM_MODE_DPMS_ON) {
ret = psb_intel_dp_aux_native_write_1(output, DP_SET_POWER,
DP_SET_POWER_D3);
if (ret != 1)
DRM_DEBUG_DRIVER("failed to write sink power state\n");
} else {
/*
* When turning on, we need to retry for 1ms to give the sink
* time to wake up.
*/
for (i = 0; i < 3; i++) {
ret = psb_intel_dp_aux_native_write_1(output,
DP_SET_POWER,
DP_SET_POWER_D0);
if (ret == 1)
break;
udelay(1000);
}
}
}
static void psb_intel_dp_prepare(struct drm_encoder *encoder)
{
struct psb_intel_output *output = enc_to_psb_intel_output(encoder);
/* Wake up the sink first */
psb_intel_dp_sink_dpms(output, DRM_MODE_DPMS_ON);
psb_intel_dp_link_down(output);
}
static void psb_intel_dp_commit(struct drm_encoder *encoder)
{
struct psb_intel_output *output = enc_to_psb_intel_output(encoder);
psb_intel_dp_start_link_train(output);
psb_intel_dp_complete_link_train(output);
}
static void
psb_intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
struct psb_intel_output *intel_output = enc_to_psb_intel_output(encoder);
struct psb_intel_dp *intel_dp = intel_output->dev_priv;
struct drm_device *dev = encoder->dev;
uint32_t dp_reg = REG_READ(intel_dp->output_reg);
if (mode != DRM_MODE_DPMS_ON) {
psb_intel_dp_sink_dpms(intel_output, mode);
psb_intel_dp_link_down(intel_output);
} else {
psb_intel_dp_sink_dpms(intel_output, mode);
if (!(dp_reg & DP_PORT_EN)) {
psb_intel_dp_start_link_train(intel_output);
psb_intel_dp_complete_link_train(intel_output);
}
}
}
/*
* Native read with retry for link status and receiver capability reads for
* cases where the sink may still be asleep.
*/
static bool
psb_intel_dp_aux_native_read_retry(struct psb_intel_output *output, uint16_t address,
uint8_t *recv, int recv_bytes)
{
int ret, i;
/*
* Sinks are *supposed* to come up within 1ms from an off state,
* but we're also supposed to retry 3 times per the spec.
*/
for (i = 0; i < 3; i++) {
ret = psb_intel_dp_aux_native_read(output, address, recv,
recv_bytes);
if (ret == recv_bytes)
return true;
udelay(1000);
}
return false;
}
/*
* Fetch AUX CH registers 0x202 - 0x207 which contain
* link status information
*/
static bool
psb_intel_dp_get_link_status(struct psb_intel_output *output)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
return psb_intel_dp_aux_native_read_retry(output,
DP_LANE0_1_STATUS,
intel_dp->link_status,
DP_LINK_STATUS_SIZE);
}
static uint8_t
psb_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int r)
{
return link_status[r - DP_LANE0_1_STATUS];
}
static uint8_t
psb_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
uint8_t l = psb_intel_dp_link_status(link_status, i);
return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}
static uint8_t
psb_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
uint8_t l = psb_intel_dp_link_status(link_status, i);
return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}
#if 0
static char *voltage_names[] = {
"0.4V", "0.6V", "0.8V", "1.2V"
};
static char *pre_emph_names[] = {
"0dB", "3.5dB", "6dB", "9.5dB"
};
static char *link_train_names[] = {
"pattern 1", "pattern 2", "idle", "off"
};
#endif
#define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200
/*
static uint8_t
psb_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
}
*/
static void
psb_intel_get_adjust_train(struct psb_intel_output *output)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
uint8_t v = 0;
uint8_t p = 0;
int lane;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
uint8_t this_v = psb_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
uint8_t this_p = psb_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
if (v >= CDV_DP_VOLTAGE_MAX)
v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
for (lane = 0; lane < 4; lane++)
intel_dp->train_set[lane] = v | p;
}
static uint8_t
psb_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_LANE0_1_STATUS + (lane >> 1);
int s = (lane & 1) * 4;
uint8_t l = psb_intel_dp_link_status(link_status, i);
return (l >> s) & 0xf;
}
/* Check for clock recovery is done on all channels */
static bool
psb_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
int lane;
uint8_t lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = psb_intel_get_lane_status(link_status, lane);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return false;
}
return true;
}
/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
DP_LANE_CHANNEL_EQ_DONE|\
DP_LANE_SYMBOL_LOCKED)
static bool
psb_intel_channel_eq_ok(struct psb_intel_output *output)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
uint8_t lane_align;
uint8_t lane_status;
int lane;
lane_align = psb_intel_dp_link_status(intel_dp->link_status,
DP_LANE_ALIGN_STATUS_UPDATED);
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
return false;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
lane_status = psb_intel_get_lane_status(intel_dp->link_status, lane);
if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
return false;
}
return true;
}
static bool
psb_intel_dp_set_link_train(struct psb_intel_output *output,
uint32_t dp_reg_value,
uint8_t dp_train_pat)
{
struct drm_device *dev = output->base.dev;
int ret;
struct psb_intel_dp *intel_dp = output->dev_priv;
REG_WRITE(intel_dp->output_reg, dp_reg_value);
REG_READ(intel_dp->output_reg);
ret = psb_intel_dp_aux_native_write_1(output,
DP_TRAINING_PATTERN_SET,
dp_train_pat);
if (ret != 1) {
DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
dp_train_pat);
return false;
}
return true;
}
static bool
psb_intel_dplink_set_level(struct psb_intel_output *output,
uint8_t dp_train_pat)
{
int ret;
struct psb_intel_dp *intel_dp = output->dev_priv;
ret = psb_intel_dp_aux_native_write(output,
DP_TRAINING_LANE0_SET,
intel_dp->train_set,
intel_dp->lane_count);
if (ret != intel_dp->lane_count) {
DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
intel_dp->train_set[0], intel_dp->lane_count);
return false;
}
return true;
}
static void
psb_intel_dp_set_vswing_premph(struct psb_intel_output *output, uint8_t signal_level)
{
struct drm_device *dev = output->base.dev;
struct psb_intel_dp *intel_dp = output->dev_priv;
struct ddi_regoff *ddi_reg;
int vswing, premph, index;
if (intel_dp->output_reg == DP_B)
ddi_reg = &ddi_DP_train_table[0];
else
ddi_reg = &ddi_DP_train_table[1];
vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT;
if (vswing + premph > 3)
return;
#ifdef CDV_FAST_LINK_TRAIN
return;
#endif
DRM_DEBUG_KMS("Test2\n");
//return ;
psb_sb_reset(dev);
/* ;Swing voltage programming
;gfx_dpio_set_reg(0xc058, 0x0505313A) */
psb_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
psb_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
* The VSwing_PreEmph table is also considered based on the vswing/premp
*/
index = (vswing + premph) * 2;
if (premph == 1 && vswing == 1) {
psb_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
} else
psb_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_1200)
psb_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
else
psb_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
//psb_sb_write(dev, ddi_reg->VSwing4, 0x2b405555);
/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
psb_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
/* ;Pre emphasis programming
* ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
*/
psb_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
index = 2 * premph + 1;
psb_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
return;
}
/* Enable corresponding port and start training pattern 1 */
static void
psb_intel_dp_start_link_train(struct psb_intel_output *output)
{
struct drm_device *dev = output->base.dev;
struct psb_intel_dp *intel_dp = output->dev_priv;
int i;
uint8_t voltage;
bool clock_recovery = false;
int tries;
u32 reg;
uint32_t DP = intel_dp->DP;
DP |= DP_PORT_EN;
DP &= ~DP_LINK_TRAIN_MASK;
reg = DP;
reg |= DP_LINK_TRAIN_PAT_1;
/* Enable output, wait for it to become active */
REG_WRITE(intel_dp->output_reg, reg);
REG_READ(intel_dp->output_reg);
psb_intel_wait_for_vblank(dev);
DRM_DEBUG_KMS("Link config\n");
/* Write the link configuration data */
psb_intel_dp_aux_native_write(output, DP_LINK_BW_SET,
intel_dp->link_configuration,
2);
memset(intel_dp->train_set, 0, 4);
voltage = 0;
tries = 0;
clock_recovery = false;
DRM_DEBUG_KMS("Start train\n");
reg = DP | DP_LINK_TRAIN_PAT_1;
for (;;) {
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
if (!psb_intel_dp_set_link_train(output, reg, DP_TRAINING_PATTERN_1)) {
DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
}
psb_intel_dp_set_vswing_premph(output, intel_dp->train_set[0]);
/* Set training pattern 1 */
psb_intel_dplink_set_level(output, DP_TRAINING_PATTERN_1);
udelay(200);
if (!psb_intel_dp_get_link_status(output))
break;
if (psb_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
DRM_DEBUG_KMS("PT1 train is done\n");
clock_recovery = true;
break;
}
/* Check to see if we've tried the max voltage */
for (i = 0; i < intel_dp->lane_count; i++)
if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
if (i == intel_dp->lane_count)
break;
/* Check to see if we've tried the same voltage 5 times */
if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++tries;
if (tries == 5)
break;
} else
tries = 0;
voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Compute new intel_dp->train_set as requested by target */
psb_intel_get_adjust_train(output);
}
if (!clock_recovery) {
DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
}
intel_dp->DP = DP;
}
static void
psb_intel_dp_complete_link_train(struct psb_intel_output *output)
{
struct drm_device *dev = output->base.dev;
struct psb_intel_dp *intel_dp = output->dev_priv;
bool channel_eq = false;
int tries, cr_tries;
u32 reg;
uint32_t DP = intel_dp->DP;
/* channel equalization */
tries = 0;
cr_tries = 0;
channel_eq = false;
DRM_DEBUG_KMS("\n");
reg = DP | DP_LINK_TRAIN_PAT_2;
for (;;) {
/* channel eq pattern */
if (!psb_intel_dp_set_link_train(output, reg,
DP_TRAINING_PATTERN_2)) {
DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
}
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
if (cr_tries > 5) {
DRM_ERROR("failed to train DP, aborting\n");
psb_intel_dp_link_down(output);
break;
}
psb_intel_dp_set_vswing_premph(output, intel_dp->train_set[0]);
psb_intel_dplink_set_level(output, DP_TRAINING_PATTERN_2);
udelay(1000);
if (!psb_intel_dp_get_link_status(output))
break;
/* Make sure clock is still ok */
if (!psb_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
psb_intel_dp_start_link_train(output);
cr_tries++;
continue;
}
if (psb_intel_channel_eq_ok(output)) {
DRM_DEBUG_KMS("PT2 train is done\n");
channel_eq = true;
break;
}
/* Try 5 times, then try clock recovery if that fails */
if (tries > 5) {
psb_intel_dp_link_down(output);
psb_intel_dp_start_link_train(output);
tries = 0;
cr_tries++;
continue;
}
/* Compute new intel_dp->train_set as requested by target */
psb_intel_get_adjust_train(output);
++tries;
}
reg = DP | DP_LINK_TRAIN_OFF;
REG_WRITE(intel_dp->output_reg, reg);
REG_READ(intel_dp->output_reg);
psb_intel_dp_aux_native_write_1(output,
DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}
static void
psb_intel_dp_link_down(struct psb_intel_output *output)
{
struct drm_device *dev = output->base.dev;
struct psb_intel_dp *intel_dp = output->dev_priv;
uint32_t DP = intel_dp->DP;
if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
return;
DRM_DEBUG_KMS("\n");
{
DP &= ~DP_LINK_TRAIN_MASK;
REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
}
REG_READ(intel_dp->output_reg);
msleep(17);
REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
REG_READ(intel_dp->output_reg);
}
static enum drm_connector_status
cdv_dp_detect(struct psb_intel_output *output)
{
struct psb_intel_dp *intel_dp = output->dev_priv;
enum drm_connector_status status;
status = connector_status_disconnected;
if (psb_intel_dp_aux_native_read(output, 0x000, intel_dp->dpcd,
sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
{
if (intel_dp->dpcd[DP_DPCD_REV] != 0)
status = connector_status_connected;
}
if (status == connector_status_connected)
DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
intel_dp->dpcd[0], intel_dp->dpcd[1],
intel_dp->dpcd[2], intel_dp->dpcd[3]);
return status;
}
/**
* Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
*
* \return true if DP port is connected.
* \return false if DP port is disconnected.
*/
static enum drm_connector_status
psb_intel_dp_detect(struct drm_connector *connector, bool force)
{
struct psb_intel_output *output = to_psb_intel_output(connector);
struct psb_intel_dp *intel_dp = output->dev_priv;
enum drm_connector_status status;
struct edid *edid = NULL;
intel_dp->has_audio = false;
status = cdv_dp_detect(output);
if (status != connector_status_connected)
return status;
if (intel_dp->force_audio) {
intel_dp->has_audio = intel_dp->force_audio > 0;
} else {
edid = drm_get_edid(connector, &intel_dp->adapter);
if (edid) {
intel_dp->has_audio = drm_detect_monitor_audio(edid);
connector->display_info.raw_edid = NULL;
kfree(edid);
}
}
return connector_status_connected;
}
static int psb_intel_dp_get_modes(struct drm_connector *connector)
{
struct psb_intel_output *intel_output = to_psb_intel_output(connector);
struct psb_intel_dp *intel_dp = intel_output->dev_priv;
struct edid *edid = NULL;
int ret = 0;
edid = drm_get_edid(&intel_output->base,
&intel_dp->adapter);
if (edid) {
drm_mode_connector_update_edid_property(&intel_output->
base, edid);
ret = drm_add_edid_modes(&intel_output->base, edid);
kfree(edid);
}
return ret;
}
static bool
psb_intel_dp_detect_audio(struct drm_connector *connector)
{
struct psb_intel_output *output = to_psb_intel_output(connector);
struct psb_intel_dp *intel_dp = output->dev_priv;
struct edid *edid;
bool has_audio = false;
edid = drm_get_edid(connector, &intel_dp->adapter);
if (edid) {
has_audio = drm_detect_monitor_audio(edid);
connector->display_info.raw_edid = NULL;
kfree(edid);
}
return has_audio;
}
static int
psb_intel_dp_set_property(struct drm_connector *connector,
struct drm_property *property,
uint64_t val)
{
struct drm_psb_private *dev_priv = connector->dev->dev_private;
struct psb_intel_output *output = to_psb_intel_output(connector);
struct psb_intel_dp *intel_dp = output->dev_priv;
int ret;
ret = drm_connector_property_set_value(connector, property, val);
if (ret)
return ret;
if (property == dev_priv->force_audio_property) {
int i = val;
bool has_audio;
if (i == intel_dp->force_audio)
return 0;
intel_dp->force_audio = i;
if (i == 0)
has_audio = psb_intel_dp_detect_audio(connector);
else
has_audio = i > 0;
if (has_audio == intel_dp->has_audio)
return 0;
intel_dp->has_audio = has_audio;
goto done;
}
if (property == dev_priv->broadcast_rgb_property) {
if (val == !!intel_dp->color_range)
return 0;
intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
goto done;
}
return -EINVAL;
done:
if (output->enc.crtc) {
struct drm_crtc *crtc = output->enc.crtc;
drm_crtc_helper_set_mode(crtc, &crtc->mode,
crtc->x, crtc->y,
crtc->fb);
}
return 0;
}
static void
psb_intel_dp_destroy (struct drm_connector *connector)
{
struct psb_intel_output *output = to_psb_intel_output(connector);
struct psb_intel_dp *intel_dp = output->dev_priv;
i2c_del_adapter(&intel_dp->adapter);
drm_sysfs_connector_remove(connector);
drm_connector_cleanup(connector);
kfree(connector);
}
static void psb_intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_helper_funcs psb_intel_dp_helper_funcs = {
.dpms = psb_intel_dp_dpms,
.mode_fixup = psb_intel_dp_mode_fixup,
.prepare = psb_intel_dp_prepare,
.mode_set = psb_intel_dp_mode_set,
.commit = psb_intel_dp_commit,
};
static const struct drm_connector_funcs psb_intel_dp_connector_funcs = {
.dpms = drm_helper_connector_dpms,
.detect = psb_intel_dp_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = psb_intel_dp_set_property,
.destroy = psb_intel_dp_destroy,
};
static const struct drm_connector_helper_funcs psb_intel_dp_connector_helper_funcs = {
.get_modes = psb_intel_dp_get_modes,
.mode_valid = psb_intel_dp_mode_valid,
.best_encoder = psb_intel_best_encoder,
};
static const struct drm_encoder_funcs psb_intel_dp_enc_funcs = {
.destroy = psb_intel_dp_encoder_destroy,
};
static void
psb_intel_dp_add_properties(struct psb_intel_output *output, struct drm_connector *connector)
{
psb_intel_attach_force_audio_property(connector);
psb_intel_attach_broadcast_rgb_property(connector);
}
void
psb_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
{
struct drm_connector *connector;
struct drm_encoder *encoder;
struct psb_intel_output *psb_intel_output;
struct psb_intel_dp *intel_dp;
const char *name = NULL;
int type;
psb_intel_output = kzalloc(sizeof(struct psb_intel_output) +
sizeof(struct psb_intel_dp), GFP_KERNEL);
if (!psb_intel_output)
return;
intel_dp = (struct psb_intel_dp *)(psb_intel_output + 1);
psb_intel_output->mode_dev = mode_dev;
connector = &psb_intel_output->base;
encoder = &psb_intel_output->enc;
psb_intel_output->dev_priv=intel_dp;
intel_dp->output = psb_intel_output;
intel_dp->output_reg = output_reg;
type = DRM_MODE_CONNECTOR_DisplayPort;
psb_intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
drm_connector_init(dev, connector, &psb_intel_dp_connector_funcs, type);
drm_connector_helper_add(connector, &psb_intel_dp_connector_helper_funcs);
connector->polled = DRM_CONNECTOR_POLL_HPD;
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;
drm_encoder_init(dev, encoder, &psb_intel_dp_enc_funcs,
DRM_MODE_ENCODER_TMDS);
drm_encoder_helper_add(encoder, &psb_intel_dp_helper_funcs);
drm_mode_connector_attach_encoder(&psb_intel_output->base,
&psb_intel_output->enc);
drm_sysfs_connector_add(connector);
/* Set up the DDC bus. */
switch (output_reg) {
case DP_B:
name = "DPDDC-B";
psb_intel_output->ddi_select = (DP_MASK | DDI0_SELECT);
break;
case DP_C:
name = "DPDDC-C";
psb_intel_output->ddi_select = (DP_MASK | DDI1_SELECT);
break;
}
psb_intel_dp_i2c_init(psb_intel_output, name);
psb_intel_dp_add_properties(psb_intel_output, connector);
}