linux/drivers/nvdimm/namespace_devs.c

2053 lines
50 KiB
C
Raw Normal View History

/*
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/pmem.h>
#include <linux/nd.h>
#include "nd-core.h"
#include "nd.h"
static void namespace_io_release(struct device *dev)
{
struct nd_namespace_io *nsio = to_nd_namespace_io(dev);
kfree(nsio);
}
static void namespace_pmem_release(struct device *dev)
{
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
kfree(nspm->alt_name);
kfree(nspm->uuid);
kfree(nspm);
}
static void namespace_blk_release(struct device *dev)
{
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
struct nd_region *nd_region = to_nd_region(dev->parent);
if (nsblk->id >= 0)
ida_simple_remove(&nd_region->ns_ida, nsblk->id);
kfree(nsblk->alt_name);
kfree(nsblk->uuid);
kfree(nsblk->res);
kfree(nsblk);
}
static struct device_type namespace_io_device_type = {
.name = "nd_namespace_io",
.release = namespace_io_release,
};
static struct device_type namespace_pmem_device_type = {
.name = "nd_namespace_pmem",
.release = namespace_pmem_release,
};
static struct device_type namespace_blk_device_type = {
.name = "nd_namespace_blk",
.release = namespace_blk_release,
};
static bool is_namespace_pmem(struct device *dev)
{
return dev ? dev->type == &namespace_pmem_device_type : false;
}
static bool is_namespace_blk(struct device *dev)
{
return dev ? dev->type == &namespace_blk_device_type : false;
}
static bool is_namespace_io(struct device *dev)
{
return dev ? dev->type == &namespace_io_device_type : false;
}
static int is_uuid_busy(struct device *dev, void *data)
{
u8 *uuid1 = data, *uuid2 = NULL;
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
uuid2 = nspm->uuid;
} else if (is_namespace_blk(dev)) {
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
uuid2 = nsblk->uuid;
} else if (is_nd_btt(dev)) {
struct nd_btt *nd_btt = to_nd_btt(dev);
uuid2 = nd_btt->uuid;
} else if (is_nd_pfn(dev)) {
struct nd_pfn *nd_pfn = to_nd_pfn(dev);
uuid2 = nd_pfn->uuid;
}
if (uuid2 && memcmp(uuid1, uuid2, NSLABEL_UUID_LEN) == 0)
return -EBUSY;
return 0;
}
static int is_namespace_uuid_busy(struct device *dev, void *data)
{
if (is_nd_pmem(dev) || is_nd_blk(dev))
return device_for_each_child(dev, data, is_uuid_busy);
return 0;
}
/**
* nd_is_uuid_unique - verify that no other namespace has @uuid
* @dev: any device on a nvdimm_bus
* @uuid: uuid to check
*/
bool nd_is_uuid_unique(struct device *dev, u8 *uuid)
{
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
if (!nvdimm_bus)
return false;
WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm_bus->dev));
if (device_for_each_child(&nvdimm_bus->dev, uuid,
is_namespace_uuid_busy) != 0)
return false;
return true;
}
bool pmem_should_map_pages(struct device *dev)
{
struct nd_region *nd_region = to_nd_region(dev->parent);
struct nd_namespace_io *nsio;
if (!IS_ENABLED(CONFIG_ZONE_DEVICE))
return false;
if (!test_bit(ND_REGION_PAGEMAP, &nd_region->flags))
return false;
if (is_nd_pfn(dev) || is_nd_btt(dev))
return false;
nsio = to_nd_namespace_io(dev);
if (region_intersects(nsio->res.start, resource_size(&nsio->res),
IORESOURCE_SYSTEM_RAM,
IORES_DESC_NONE) == REGION_MIXED)
return false;
#ifdef ARCH_MEMREMAP_PMEM
return ARCH_MEMREMAP_PMEM == MEMREMAP_WB;
#else
return false;
#endif
}
EXPORT_SYMBOL(pmem_should_map_pages);
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 16:20:32 +08:00
const char *nvdimm_namespace_disk_name(struct nd_namespace_common *ndns,
char *name)
{
struct nd_region *nd_region = to_nd_region(ndns->dev.parent);
const char *suffix = NULL;
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 16:20:32 +08:00
if (ndns->claim && is_nd_btt(ndns->claim))
suffix = "s";
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 16:20:32 +08:00
if (is_namespace_pmem(&ndns->dev) || is_namespace_io(&ndns->dev)) {
sprintf(name, "pmem%d%s", nd_region->id, suffix ? suffix : "");
} else if (is_namespace_blk(&ndns->dev)) {
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 16:20:32 +08:00
struct nd_namespace_blk *nsblk;
nsblk = to_nd_namespace_blk(&ndns->dev);
sprintf(name, "ndblk%d.%d%s", nd_region->id, nsblk->id,
suffix ? suffix : "");
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 16:20:32 +08:00
} else {
return NULL;
}
return name;
}
EXPORT_SYMBOL(nvdimm_namespace_disk_name);
const u8 *nd_dev_to_uuid(struct device *dev)
{
static const u8 null_uuid[16];
if (!dev)
return null_uuid;
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
return nspm->uuid;
} else if (is_namespace_blk(dev)) {
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
return nsblk->uuid;
} else
return null_uuid;
}
EXPORT_SYMBOL(nd_dev_to_uuid);
static ssize_t nstype_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev->parent);
return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
}
static DEVICE_ATTR_RO(nstype);
static ssize_t __alt_name_store(struct device *dev, const char *buf,
const size_t len)
{
char *input, *pos, *alt_name, **ns_altname;
ssize_t rc;
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
ns_altname = &nspm->alt_name;
} else if (is_namespace_blk(dev)) {
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
ns_altname = &nsblk->alt_name;
} else
return -ENXIO;
if (dev->driver || to_ndns(dev)->claim)
return -EBUSY;
input = kmemdup(buf, len + 1, GFP_KERNEL);
if (!input)
return -ENOMEM;
input[len] = '\0';
pos = strim(input);
if (strlen(pos) + 1 > NSLABEL_NAME_LEN) {
rc = -EINVAL;
goto out;
}
alt_name = kzalloc(NSLABEL_NAME_LEN, GFP_KERNEL);
if (!alt_name) {
rc = -ENOMEM;
goto out;
}
kfree(*ns_altname);
*ns_altname = alt_name;
sprintf(*ns_altname, "%s", pos);
rc = len;
out:
kfree(input);
return rc;
}
static resource_size_t nd_namespace_blk_size(struct nd_namespace_blk *nsblk)
{
struct nd_region *nd_region = to_nd_region(nsblk->common.dev.parent);
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
struct nd_label_id label_id;
resource_size_t size = 0;
struct resource *res;
if (!nsblk->uuid)
return 0;
nd_label_gen_id(&label_id, nsblk->uuid, NSLABEL_FLAG_LOCAL);
for_each_dpa_resource(ndd, res)
if (strcmp(res->name, label_id.id) == 0)
size += resource_size(res);
return size;
}
static bool __nd_namespace_blk_validate(struct nd_namespace_blk *nsblk)
{
struct nd_region *nd_region = to_nd_region(nsblk->common.dev.parent);
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
struct nd_label_id label_id;
struct resource *res;
int count, i;
if (!nsblk->uuid || !nsblk->lbasize || !ndd)
return false;
count = 0;
nd_label_gen_id(&label_id, nsblk->uuid, NSLABEL_FLAG_LOCAL);
for_each_dpa_resource(ndd, res) {
if (strcmp(res->name, label_id.id) != 0)
continue;
/*
* Resources with unacknoweldged adjustments indicate a
* failure to update labels
*/
if (res->flags & DPA_RESOURCE_ADJUSTED)
return false;
count++;
}
/* These values match after a successful label update */
if (count != nsblk->num_resources)
return false;
for (i = 0; i < nsblk->num_resources; i++) {
struct resource *found = NULL;
for_each_dpa_resource(ndd, res)
if (res == nsblk->res[i]) {
found = res;
break;
}
/* stale resource */
if (!found)
return false;
}
return true;
}
resource_size_t nd_namespace_blk_validate(struct nd_namespace_blk *nsblk)
{
resource_size_t size;
nvdimm_bus_lock(&nsblk->common.dev);
size = __nd_namespace_blk_validate(nsblk);
nvdimm_bus_unlock(&nsblk->common.dev);
return size;
}
EXPORT_SYMBOL(nd_namespace_blk_validate);
static int nd_namespace_label_update(struct nd_region *nd_region,
struct device *dev)
{
dev_WARN_ONCE(dev, dev->driver || to_ndns(dev)->claim,
"namespace must be idle during label update\n");
if (dev->driver || to_ndns(dev)->claim)
return 0;
/*
* Only allow label writes that will result in a valid namespace
* or deletion of an existing namespace.
*/
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
resource_size_t size = resource_size(&nspm->nsio.res);
if (size == 0 && nspm->uuid)
/* delete allocation */;
else if (!nspm->uuid)
return 0;
return nd_pmem_namespace_label_update(nd_region, nspm, size);
} else if (is_namespace_blk(dev)) {
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
resource_size_t size = nd_namespace_blk_size(nsblk);
if (size == 0 && nsblk->uuid)
/* delete allocation */;
else if (!nsblk->uuid || !nsblk->lbasize)
return 0;
return nd_blk_namespace_label_update(nd_region, nsblk, size);
} else
return -ENXIO;
}
static ssize_t alt_name_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct nd_region *nd_region = to_nd_region(dev->parent);
ssize_t rc;
device_lock(dev);
nvdimm_bus_lock(dev);
wait_nvdimm_bus_probe_idle(dev);
rc = __alt_name_store(dev, buf, len);
if (rc >= 0)
rc = nd_namespace_label_update(nd_region, dev);
dev_dbg(dev, "%s: %s(%zd)\n", __func__, rc < 0 ? "fail " : "", rc);
nvdimm_bus_unlock(dev);
device_unlock(dev);
return rc < 0 ? rc : len;
}
static ssize_t alt_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
char *ns_altname;
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
ns_altname = nspm->alt_name;
} else if (is_namespace_blk(dev)) {
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
ns_altname = nsblk->alt_name;
} else
return -ENXIO;
return sprintf(buf, "%s\n", ns_altname ? ns_altname : "");
}
static DEVICE_ATTR_RW(alt_name);
static int scan_free(struct nd_region *nd_region,
struct nd_mapping *nd_mapping, struct nd_label_id *label_id,
resource_size_t n)
{
bool is_blk = strncmp(label_id->id, "blk", 3) == 0;
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
int rc = 0;
while (n) {
struct resource *res, *last;
resource_size_t new_start;
last = NULL;
for_each_dpa_resource(ndd, res)
if (strcmp(res->name, label_id->id) == 0)
last = res;
res = last;
if (!res)
return 0;
if (n >= resource_size(res)) {
n -= resource_size(res);
nd_dbg_dpa(nd_region, ndd, res, "delete %d\n", rc);
nvdimm_free_dpa(ndd, res);
/* retry with last resource deleted */
continue;
}
/*
* Keep BLK allocations relegated to high DPA as much as
* possible
*/
if (is_blk)
new_start = res->start + n;
else
new_start = res->start;
rc = adjust_resource(res, new_start, resource_size(res) - n);
if (rc == 0)
res->flags |= DPA_RESOURCE_ADJUSTED;
nd_dbg_dpa(nd_region, ndd, res, "shrink %d\n", rc);
break;
}
return rc;
}
/**
* shrink_dpa_allocation - for each dimm in region free n bytes for label_id
* @nd_region: the set of dimms to reclaim @n bytes from
* @label_id: unique identifier for the namespace consuming this dpa range
* @n: number of bytes per-dimm to release
*
* Assumes resources are ordered. Starting from the end try to
* adjust_resource() the allocation to @n, but if @n is larger than the
* allocation delete it and find the 'new' last allocation in the label
* set.
*/
static int shrink_dpa_allocation(struct nd_region *nd_region,
struct nd_label_id *label_id, resource_size_t n)
{
int i;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
int rc;
rc = scan_free(nd_region, nd_mapping, label_id, n);
if (rc)
return rc;
}
return 0;
}
static resource_size_t init_dpa_allocation(struct nd_label_id *label_id,
struct nd_region *nd_region, struct nd_mapping *nd_mapping,
resource_size_t n)
{
bool is_blk = strncmp(label_id->id, "blk", 3) == 0;
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
resource_size_t first_dpa;
struct resource *res;
int rc = 0;
/* allocate blk from highest dpa first */
if (is_blk)
first_dpa = nd_mapping->start + nd_mapping->size - n;
else
first_dpa = nd_mapping->start;
/* first resource allocation for this label-id or dimm */
res = nvdimm_allocate_dpa(ndd, label_id, first_dpa, n);
if (!res)
rc = -EBUSY;
nd_dbg_dpa(nd_region, ndd, res, "init %d\n", rc);
return rc ? n : 0;
}
static bool space_valid(bool is_pmem, bool is_reserve,
struct nd_label_id *label_id, struct resource *res)
{
/*
* For BLK-space any space is valid, for PMEM-space, it must be
* contiguous with an existing allocation unless we are
* reserving pmem.
*/
if (is_reserve || !is_pmem)
return true;
if (!res || strcmp(res->name, label_id->id) == 0)
return true;
return false;
}
enum alloc_loc {
ALLOC_ERR = 0, ALLOC_BEFORE, ALLOC_MID, ALLOC_AFTER,
};
static resource_size_t scan_allocate(struct nd_region *nd_region,
struct nd_mapping *nd_mapping, struct nd_label_id *label_id,
resource_size_t n)
{
resource_size_t mapping_end = nd_mapping->start + nd_mapping->size - 1;
bool is_reserve = strcmp(label_id->id, "pmem-reserve") == 0;
bool is_pmem = strncmp(label_id->id, "pmem", 4) == 0;
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
const resource_size_t to_allocate = n;
struct resource *res;
int first;
retry:
first = 0;
for_each_dpa_resource(ndd, res) {
resource_size_t allocate, available = 0, free_start, free_end;
struct resource *next = res->sibling, *new_res = NULL;
enum alloc_loc loc = ALLOC_ERR;
const char *action;
int rc = 0;
/* ignore resources outside this nd_mapping */
if (res->start > mapping_end)
continue;
if (res->end < nd_mapping->start)
continue;
/* space at the beginning of the mapping */
if (!first++ && res->start > nd_mapping->start) {
free_start = nd_mapping->start;
available = res->start - free_start;
if (space_valid(is_pmem, is_reserve, label_id, NULL))
loc = ALLOC_BEFORE;
}
/* space between allocations */
if (!loc && next) {
free_start = res->start + resource_size(res);
free_end = min(mapping_end, next->start - 1);
if (space_valid(is_pmem, is_reserve, label_id, res)
&& free_start < free_end) {
available = free_end + 1 - free_start;
loc = ALLOC_MID;
}
}
/* space at the end of the mapping */
if (!loc && !next) {
free_start = res->start + resource_size(res);
free_end = mapping_end;
if (space_valid(is_pmem, is_reserve, label_id, res)
&& free_start < free_end) {
available = free_end + 1 - free_start;
loc = ALLOC_AFTER;
}
}
if (!loc || !available)
continue;
allocate = min(available, n);
switch (loc) {
case ALLOC_BEFORE:
if (strcmp(res->name, label_id->id) == 0) {
/* adjust current resource up */
if (is_pmem && !is_reserve)
return n;
rc = adjust_resource(res, res->start - allocate,
resource_size(res) + allocate);
action = "cur grow up";
} else
action = "allocate";
break;
case ALLOC_MID:
if (strcmp(next->name, label_id->id) == 0) {
/* adjust next resource up */
if (is_pmem && !is_reserve)
return n;
rc = adjust_resource(next, next->start
- allocate, resource_size(next)
+ allocate);
new_res = next;
action = "next grow up";
} else if (strcmp(res->name, label_id->id) == 0) {
action = "grow down";
} else
action = "allocate";
break;
case ALLOC_AFTER:
if (strcmp(res->name, label_id->id) == 0)
action = "grow down";
else
action = "allocate";
break;
default:
return n;
}
if (strcmp(action, "allocate") == 0) {
/* BLK allocate bottom up */
if (!is_pmem)
free_start += available - allocate;
else if (!is_reserve && free_start != nd_mapping->start)
return n;
new_res = nvdimm_allocate_dpa(ndd, label_id,
free_start, allocate);
if (!new_res)
rc = -EBUSY;
} else if (strcmp(action, "grow down") == 0) {
/* adjust current resource down */
rc = adjust_resource(res, res->start, resource_size(res)
+ allocate);
if (rc == 0)
res->flags |= DPA_RESOURCE_ADJUSTED;
}
if (!new_res)
new_res = res;
nd_dbg_dpa(nd_region, ndd, new_res, "%s(%d) %d\n",
action, loc, rc);
if (rc)
return n;
n -= allocate;
if (n) {
/*
* Retry scan with newly inserted resources.
* For example, if we did an ALLOC_BEFORE
* insertion there may also have been space
* available for an ALLOC_AFTER insertion, so we
* need to check this same resource again
*/
goto retry;
} else
return 0;
}
/*
* If we allocated nothing in the BLK case it may be because we are in
* an initial "pmem-reserve pass". Only do an initial BLK allocation
* when none of the DPA space is reserved.
*/
if ((is_pmem || !ndd->dpa.child) && n == to_allocate)
return init_dpa_allocation(label_id, nd_region, nd_mapping, n);
return n;
}
static int merge_dpa(struct nd_region *nd_region,
struct nd_mapping *nd_mapping, struct nd_label_id *label_id)
{
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
struct resource *res;
if (strncmp("pmem", label_id->id, 4) == 0)
return 0;
retry:
for_each_dpa_resource(ndd, res) {
int rc;
struct resource *next = res->sibling;
resource_size_t end = res->start + resource_size(res);
if (!next || strcmp(res->name, label_id->id) != 0
|| strcmp(next->name, label_id->id) != 0
|| end != next->start)
continue;
end += resource_size(next);
nvdimm_free_dpa(ndd, next);
rc = adjust_resource(res, res->start, end - res->start);
nd_dbg_dpa(nd_region, ndd, res, "merge %d\n", rc);
if (rc)
return rc;
res->flags |= DPA_RESOURCE_ADJUSTED;
goto retry;
}
return 0;
}
static int __reserve_free_pmem(struct device *dev, void *data)
{
struct nvdimm *nvdimm = data;
struct nd_region *nd_region;
struct nd_label_id label_id;
int i;
if (!is_nd_pmem(dev))
return 0;
nd_region = to_nd_region(dev);
if (nd_region->ndr_mappings == 0)
return 0;
memset(&label_id, 0, sizeof(label_id));
strcat(label_id.id, "pmem-reserve");
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
resource_size_t n, rem = 0;
if (nd_mapping->nvdimm != nvdimm)
continue;
n = nd_pmem_available_dpa(nd_region, nd_mapping, &rem);
if (n == 0)
return 0;
rem = scan_allocate(nd_region, nd_mapping, &label_id, n);
dev_WARN_ONCE(&nd_region->dev, rem,
"pmem reserve underrun: %#llx of %#llx bytes\n",
(unsigned long long) n - rem,
(unsigned long long) n);
return rem ? -ENXIO : 0;
}
return 0;
}
static void release_free_pmem(struct nvdimm_bus *nvdimm_bus,
struct nd_mapping *nd_mapping)
{
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
struct resource *res, *_res;
for_each_dpa_resource_safe(ndd, res, _res)
if (strcmp(res->name, "pmem-reserve") == 0)
nvdimm_free_dpa(ndd, res);
}
static int reserve_free_pmem(struct nvdimm_bus *nvdimm_bus,
struct nd_mapping *nd_mapping)
{
struct nvdimm *nvdimm = nd_mapping->nvdimm;
int rc;
rc = device_for_each_child(&nvdimm_bus->dev, nvdimm,
__reserve_free_pmem);
if (rc)
release_free_pmem(nvdimm_bus, nd_mapping);
return rc;
}
/**
* grow_dpa_allocation - for each dimm allocate n bytes for @label_id
* @nd_region: the set of dimms to allocate @n more bytes from
* @label_id: unique identifier for the namespace consuming this dpa range
* @n: number of bytes per-dimm to add to the existing allocation
*
* Assumes resources are ordered. For BLK regions, first consume
* BLK-only available DPA free space, then consume PMEM-aliased DPA
* space starting at the highest DPA. For PMEM regions start
* allocations from the start of an interleave set and end at the first
* BLK allocation or the end of the interleave set, whichever comes
* first.
*/
static int grow_dpa_allocation(struct nd_region *nd_region,
struct nd_label_id *label_id, resource_size_t n)
{
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
bool is_pmem = strncmp(label_id->id, "pmem", 4) == 0;
int i;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
resource_size_t rem = n;
int rc, j;
/*
* In the BLK case try once with all unallocated PMEM
* reserved, and once without
*/
for (j = is_pmem; j < 2; j++) {
bool blk_only = j == 0;
if (blk_only) {
rc = reserve_free_pmem(nvdimm_bus, nd_mapping);
if (rc)
return rc;
}
rem = scan_allocate(nd_region, nd_mapping,
label_id, rem);
if (blk_only)
release_free_pmem(nvdimm_bus, nd_mapping);
/* try again and allow encroachments into PMEM */
if (rem == 0)
break;
}
dev_WARN_ONCE(&nd_region->dev, rem,
"allocation underrun: %#llx of %#llx bytes\n",
(unsigned long long) n - rem,
(unsigned long long) n);
if (rem)
return -ENXIO;
rc = merge_dpa(nd_region, nd_mapping, label_id);
if (rc)
return rc;
}
return 0;
}
static void nd_namespace_pmem_set_size(struct nd_region *nd_region,
struct nd_namespace_pmem *nspm, resource_size_t size)
{
struct resource *res = &nspm->nsio.res;
res->start = nd_region->ndr_start;
res->end = nd_region->ndr_start + size - 1;
}
static bool uuid_not_set(const u8 *uuid, struct device *dev, const char *where)
{
if (!uuid) {
dev_dbg(dev, "%s: uuid not set\n", where);
return true;
}
return false;
}
static ssize_t __size_store(struct device *dev, unsigned long long val)
{
resource_size_t allocated = 0, available = 0;
struct nd_region *nd_region = to_nd_region(dev->parent);
struct nd_mapping *nd_mapping;
struct nvdimm_drvdata *ndd;
struct nd_label_id label_id;
u32 flags = 0, remainder;
u8 *uuid = NULL;
int rc, i;
if (dev->driver || to_ndns(dev)->claim)
return -EBUSY;
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
uuid = nspm->uuid;
} else if (is_namespace_blk(dev)) {
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
uuid = nsblk->uuid;
flags = NSLABEL_FLAG_LOCAL;
}
/*
* We need a uuid for the allocation-label and dimm(s) on which
* to store the label.
*/
if (uuid_not_set(uuid, dev, __func__))
return -ENXIO;
if (nd_region->ndr_mappings == 0) {
dev_dbg(dev, "%s: not associated with dimm(s)\n", __func__);
return -ENXIO;
}
div_u64_rem(val, SZ_4K * nd_region->ndr_mappings, &remainder);
if (remainder) {
dev_dbg(dev, "%llu is not %dK aligned\n", val,
(SZ_4K * nd_region->ndr_mappings) / SZ_1K);
return -EINVAL;
}
nd_label_gen_id(&label_id, uuid, flags);
for (i = 0; i < nd_region->ndr_mappings; i++) {
nd_mapping = &nd_region->mapping[i];
ndd = to_ndd(nd_mapping);
/*
* All dimms in an interleave set, or the base dimm for a blk
* region, need to be enabled for the size to be changed.
*/
if (!ndd)
return -ENXIO;
allocated += nvdimm_allocated_dpa(ndd, &label_id);
}
available = nd_region_available_dpa(nd_region);
if (val > available + allocated)
return -ENOSPC;
if (val == allocated)
return 0;
val = div_u64(val, nd_region->ndr_mappings);
allocated = div_u64(allocated, nd_region->ndr_mappings);
if (val < allocated)
rc = shrink_dpa_allocation(nd_region, &label_id,
allocated - val);
else
rc = grow_dpa_allocation(nd_region, &label_id, val - allocated);
if (rc)
return rc;
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
nd_namespace_pmem_set_size(nd_region, nspm,
val * nd_region->ndr_mappings);
} else if (is_namespace_blk(dev)) {
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
/*
* Try to delete the namespace if we deleted all of its
* allocation, this is not the seed device for the
* region, and it is not actively claimed by a btt
* instance.
*/
if (val == 0 && nd_region->ns_seed != dev
&& !nsblk->common.claim)
nd_device_unregister(dev, ND_ASYNC);
}
return rc;
}
static ssize_t size_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct nd_region *nd_region = to_nd_region(dev->parent);
unsigned long long val;
u8 **uuid = NULL;
int rc;
rc = kstrtoull(buf, 0, &val);
if (rc)
return rc;
device_lock(dev);
nvdimm_bus_lock(dev);
wait_nvdimm_bus_probe_idle(dev);
rc = __size_store(dev, val);
if (rc >= 0)
rc = nd_namespace_label_update(nd_region, dev);
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
uuid = &nspm->uuid;
} else if (is_namespace_blk(dev)) {
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
uuid = &nsblk->uuid;
}
if (rc == 0 && val == 0 && uuid) {
/* setting size zero == 'delete namespace' */
kfree(*uuid);
*uuid = NULL;
}
dev_dbg(dev, "%s: %llx %s (%d)\n", __func__, val, rc < 0
? "fail" : "success", rc);
nvdimm_bus_unlock(dev);
device_unlock(dev);
return rc < 0 ? rc : len;
}
resource_size_t __nvdimm_namespace_capacity(struct nd_namespace_common *ndns)
{
struct device *dev = &ndns->dev;
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
return resource_size(&nspm->nsio.res);
} else if (is_namespace_blk(dev)) {
return nd_namespace_blk_size(to_nd_namespace_blk(dev));
} else if (is_namespace_io(dev)) {
struct nd_namespace_io *nsio = to_nd_namespace_io(dev);
return resource_size(&nsio->res);
} else
WARN_ONCE(1, "unknown namespace type\n");
return 0;
}
resource_size_t nvdimm_namespace_capacity(struct nd_namespace_common *ndns)
{
resource_size_t size;
nvdimm_bus_lock(&ndns->dev);
size = __nvdimm_namespace_capacity(ndns);
nvdimm_bus_unlock(&ndns->dev);
return size;
}
EXPORT_SYMBOL(nvdimm_namespace_capacity);
static ssize_t size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%llu\n", (unsigned long long)
nvdimm_namespace_capacity(to_ndns(dev)));
}
static DEVICE_ATTR(size, S_IRUGO, size_show, size_store);
static ssize_t uuid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 *uuid;
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
uuid = nspm->uuid;
} else if (is_namespace_blk(dev)) {
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
uuid = nsblk->uuid;
} else
return -ENXIO;
if (uuid)
return sprintf(buf, "%pUb\n", uuid);
return sprintf(buf, "\n");
}
/**
* namespace_update_uuid - check for a unique uuid and whether we're "renaming"
* @nd_region: parent region so we can updates all dimms in the set
* @dev: namespace type for generating label_id
* @new_uuid: incoming uuid
* @old_uuid: reference to the uuid storage location in the namespace object
*/
static int namespace_update_uuid(struct nd_region *nd_region,
struct device *dev, u8 *new_uuid, u8 **old_uuid)
{
u32 flags = is_namespace_blk(dev) ? NSLABEL_FLAG_LOCAL : 0;
struct nd_label_id old_label_id;
struct nd_label_id new_label_id;
int i;
if (!nd_is_uuid_unique(dev, new_uuid))
return -EINVAL;
if (*old_uuid == NULL)
goto out;
/*
* If we've already written a label with this uuid, then it's
* too late to rename because we can't reliably update the uuid
* without losing the old namespace. Userspace must delete this
* namespace to abandon the old uuid.
*/
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
/*
* This check by itself is sufficient because old_uuid
* would be NULL above if this uuid did not exist in the
* currently written set.
*
* FIXME: can we delete uuid with zero dpa allocated?
*/
if (nd_mapping->labels)
return -EBUSY;
}
nd_label_gen_id(&old_label_id, *old_uuid, flags);
nd_label_gen_id(&new_label_id, new_uuid, flags);
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
struct resource *res;
for_each_dpa_resource(ndd, res)
if (strcmp(res->name, old_label_id.id) == 0)
sprintf((void *) res->name, "%s",
new_label_id.id);
}
kfree(*old_uuid);
out:
*old_uuid = new_uuid;
return 0;
}
static ssize_t uuid_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct nd_region *nd_region = to_nd_region(dev->parent);
u8 *uuid = NULL;
ssize_t rc = 0;
u8 **ns_uuid;
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
ns_uuid = &nspm->uuid;
} else if (is_namespace_blk(dev)) {
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
ns_uuid = &nsblk->uuid;
} else
return -ENXIO;
device_lock(dev);
nvdimm_bus_lock(dev);
wait_nvdimm_bus_probe_idle(dev);
if (to_ndns(dev)->claim)
rc = -EBUSY;
if (rc >= 0)
rc = nd_uuid_store(dev, &uuid, buf, len);
if (rc >= 0)
rc = namespace_update_uuid(nd_region, dev, uuid, ns_uuid);
if (rc >= 0)
rc = nd_namespace_label_update(nd_region, dev);
else
kfree(uuid);
dev_dbg(dev, "%s: result: %zd wrote: %s%s", __func__,
rc, buf, buf[len - 1] == '\n' ? "" : "\n");
nvdimm_bus_unlock(dev);
device_unlock(dev);
return rc < 0 ? rc : len;
}
static DEVICE_ATTR_RW(uuid);
static ssize_t resource_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct resource *res;
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
res = &nspm->nsio.res;
} else if (is_namespace_io(dev)) {
struct nd_namespace_io *nsio = to_nd_namespace_io(dev);
res = &nsio->res;
} else
return -ENXIO;
/* no address to convey if the namespace has no allocation */
if (resource_size(res) == 0)
return -ENXIO;
return sprintf(buf, "%#llx\n", (unsigned long long) res->start);
}
static DEVICE_ATTR_RO(resource);
static const unsigned long ns_lbasize_supported[] = { 512, 520, 528,
4096, 4104, 4160, 4224, 0 };
static ssize_t sector_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
if (!is_namespace_blk(dev))
return -ENXIO;
return nd_sector_size_show(nsblk->lbasize, ns_lbasize_supported, buf);
}
static ssize_t sector_size_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
struct nd_region *nd_region = to_nd_region(dev->parent);
ssize_t rc = 0;
if (!is_namespace_blk(dev))
return -ENXIO;
device_lock(dev);
nvdimm_bus_lock(dev);
if (to_ndns(dev)->claim)
rc = -EBUSY;
if (rc >= 0)
rc = nd_sector_size_store(dev, buf, &nsblk->lbasize,
ns_lbasize_supported);
if (rc >= 0)
rc = nd_namespace_label_update(nd_region, dev);
dev_dbg(dev, "%s: result: %zd %s: %s%s", __func__,
rc, rc < 0 ? "tried" : "wrote", buf,
buf[len - 1] == '\n' ? "" : "\n");
nvdimm_bus_unlock(dev);
device_unlock(dev);
return rc ? rc : len;
}
static DEVICE_ATTR_RW(sector_size);
static ssize_t dpa_extents_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev->parent);
struct nd_label_id label_id;
int count = 0, i;
u8 *uuid = NULL;
u32 flags = 0;
nvdimm_bus_lock(dev);
if (is_namespace_pmem(dev)) {
struct nd_namespace_pmem *nspm = to_nd_namespace_pmem(dev);
uuid = nspm->uuid;
flags = 0;
} else if (is_namespace_blk(dev)) {
struct nd_namespace_blk *nsblk = to_nd_namespace_blk(dev);
uuid = nsblk->uuid;
flags = NSLABEL_FLAG_LOCAL;
}
if (!uuid)
goto out;
nd_label_gen_id(&label_id, uuid, flags);
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
struct resource *res;
for_each_dpa_resource(ndd, res)
if (strcmp(res->name, label_id.id) == 0)
count++;
}
out:
nvdimm_bus_unlock(dev);
return sprintf(buf, "%d\n", count);
}
static DEVICE_ATTR_RO(dpa_extents);
static ssize_t holder_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_namespace_common *ndns = to_ndns(dev);
ssize_t rc;
device_lock(dev);
rc = sprintf(buf, "%s\n", ndns->claim ? dev_name(ndns->claim) : "");
device_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(holder);
static ssize_t mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_namespace_common *ndns = to_ndns(dev);
struct device *claim;
char *mode;
ssize_t rc;
device_lock(dev);
claim = ndns->claim;
if (claim && is_nd_btt(claim))
mode = "safe";
else if (claim && is_nd_pfn(claim))
mode = "memory";
else if (claim && is_nd_dax(claim))
mode = "dax";
else if (!claim && pmem_should_map_pages(dev))
mode = "memory";
else
mode = "raw";
rc = sprintf(buf, "%s\n", mode);
device_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(mode);
static ssize_t force_raw_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
bool force_raw;
int rc = strtobool(buf, &force_raw);
if (rc)
return rc;
to_ndns(dev)->force_raw = force_raw;
return len;
}
static ssize_t force_raw_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", to_ndns(dev)->force_raw);
}
static DEVICE_ATTR_RW(force_raw);
static struct attribute *nd_namespace_attributes[] = {
&dev_attr_nstype.attr,
&dev_attr_size.attr,
&dev_attr_mode.attr,
&dev_attr_uuid.attr,
&dev_attr_holder.attr,
&dev_attr_resource.attr,
&dev_attr_alt_name.attr,
&dev_attr_force_raw.attr,
&dev_attr_sector_size.attr,
&dev_attr_dpa_extents.attr,
NULL,
};
static umode_t namespace_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
if (a == &dev_attr_resource.attr) {
if (is_namespace_blk(dev))
return 0;
return a->mode;
}
if (is_namespace_pmem(dev) || is_namespace_blk(dev)) {
if (a == &dev_attr_size.attr)
return S_IWUSR | S_IRUGO;
if (is_namespace_pmem(dev) && a == &dev_attr_sector_size.attr)
return 0;
return a->mode;
}
if (a == &dev_attr_nstype.attr || a == &dev_attr_size.attr
|| a == &dev_attr_holder.attr
|| a == &dev_attr_force_raw.attr
|| a == &dev_attr_mode.attr)
return a->mode;
return 0;
}
static struct attribute_group nd_namespace_attribute_group = {
.attrs = nd_namespace_attributes,
.is_visible = namespace_visible,
};
static const struct attribute_group *nd_namespace_attribute_groups[] = {
&nd_device_attribute_group,
&nd_namespace_attribute_group,
&nd_numa_attribute_group,
NULL,
};
struct nd_namespace_common *nvdimm_namespace_common_probe(struct device *dev)
{
struct nd_btt *nd_btt = is_nd_btt(dev) ? to_nd_btt(dev) : NULL;
struct nd_pfn *nd_pfn = is_nd_pfn(dev) ? to_nd_pfn(dev) : NULL;
struct nd_dax *nd_dax = is_nd_dax(dev) ? to_nd_dax(dev) : NULL;
struct nd_namespace_common *ndns = NULL;
resource_size_t size;
if (nd_btt || nd_pfn || nd_dax) {
if (nd_btt)
ndns = nd_btt->ndns;
else if (nd_pfn)
ndns = nd_pfn->ndns;
else if (nd_dax)
ndns = nd_dax->nd_pfn.ndns;
if (!ndns)
return ERR_PTR(-ENODEV);
/*
* Flush any in-progess probes / removals in the driver
* for the raw personality of this namespace.
*/
device_lock(&ndns->dev);
device_unlock(&ndns->dev);
if (ndns->dev.driver) {
dev_dbg(&ndns->dev, "is active, can't bind %s\n",
dev_name(dev));
return ERR_PTR(-EBUSY);
}
if (dev_WARN_ONCE(&ndns->dev, ndns->claim != dev,
"host (%s) vs claim (%s) mismatch\n",
dev_name(dev),
dev_name(ndns->claim)))
return ERR_PTR(-ENXIO);
} else {
ndns = to_ndns(dev);
if (ndns->claim) {
dev_dbg(dev, "claimed by %s, failing probe\n",
dev_name(ndns->claim));
return ERR_PTR(-ENXIO);
}
}
size = nvdimm_namespace_capacity(ndns);
if (size < ND_MIN_NAMESPACE_SIZE) {
dev_dbg(&ndns->dev, "%pa, too small must be at least %#x\n",
&size, ND_MIN_NAMESPACE_SIZE);
return ERR_PTR(-ENODEV);
}
if (is_namespace_pmem(&ndns->dev)) {
struct nd_namespace_pmem *nspm;
nspm = to_nd_namespace_pmem(&ndns->dev);
if (uuid_not_set(nspm->uuid, &ndns->dev, __func__))
return ERR_PTR(-ENODEV);
} else if (is_namespace_blk(&ndns->dev)) {
struct nd_namespace_blk *nsblk;
nsblk = to_nd_namespace_blk(&ndns->dev);
if (uuid_not_set(nsblk->uuid, &ndns->dev, __func__))
return ERR_PTR(-ENODEV);
if (!nsblk->lbasize) {
dev_dbg(&ndns->dev, "%s: sector size not set\n",
__func__);
return ERR_PTR(-ENODEV);
}
if (!nd_namespace_blk_validate(nsblk))
return ERR_PTR(-ENODEV);
}
return ndns;
}
EXPORT_SYMBOL(nvdimm_namespace_common_probe);
static struct device **create_namespace_io(struct nd_region *nd_region)
{
struct nd_namespace_io *nsio;
struct device *dev, **devs;
struct resource *res;
nsio = kzalloc(sizeof(*nsio), GFP_KERNEL);
if (!nsio)
return NULL;
devs = kcalloc(2, sizeof(struct device *), GFP_KERNEL);
if (!devs) {
kfree(nsio);
return NULL;
}
dev = &nsio->common.dev;
dev->type = &namespace_io_device_type;
dev->parent = &nd_region->dev;
res = &nsio->res;
res->name = dev_name(&nd_region->dev);
res->flags = IORESOURCE_MEM;
res->start = nd_region->ndr_start;
res->end = res->start + nd_region->ndr_size - 1;
devs[0] = dev;
return devs;
}
static bool has_uuid_at_pos(struct nd_region *nd_region, u8 *uuid,
u64 cookie, u16 pos)
{
struct nd_namespace_label *found = NULL;
int i;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nd_namespace_label *nd_label;
bool found_uuid = false;
int l;
for_each_label(l, nd_label, nd_mapping->labels) {
u64 isetcookie = __le64_to_cpu(nd_label->isetcookie);
u16 position = __le16_to_cpu(nd_label->position);
u16 nlabel = __le16_to_cpu(nd_label->nlabel);
if (isetcookie != cookie)
continue;
if (memcmp(nd_label->uuid, uuid, NSLABEL_UUID_LEN) != 0)
continue;
if (found_uuid) {
dev_dbg(to_ndd(nd_mapping)->dev,
"%s duplicate entry for uuid\n",
__func__);
return false;
}
found_uuid = true;
if (nlabel != nd_region->ndr_mappings)
continue;
if (position != pos)
continue;
found = nd_label;
break;
}
if (found)
break;
}
return found != NULL;
}
static int select_pmem_id(struct nd_region *nd_region, u8 *pmem_id)
{
struct nd_namespace_label *select = NULL;
int i;
if (!pmem_id)
return -ENODEV;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nd_namespace_label *nd_label;
u64 hw_start, hw_end, pmem_start, pmem_end;
int l;
for_each_label(l, nd_label, nd_mapping->labels)
if (memcmp(nd_label->uuid, pmem_id, NSLABEL_UUID_LEN) == 0)
break;
if (!nd_label) {
WARN_ON(1);
return -EINVAL;
}
select = nd_label;
/*
* Check that this label is compliant with the dpa
* range published in NFIT
*/
hw_start = nd_mapping->start;
hw_end = hw_start + nd_mapping->size;
pmem_start = __le64_to_cpu(select->dpa);
pmem_end = pmem_start + __le64_to_cpu(select->rawsize);
if (pmem_start == hw_start && pmem_end <= hw_end)
/* pass */;
else
return -EINVAL;
nd_mapping->labels[0] = select;
nd_mapping->labels[1] = NULL;
}
return 0;
}
/**
* find_pmem_label_set - validate interleave set labelling, retrieve label0
* @nd_region: region with mappings to validate
*/
static int find_pmem_label_set(struct nd_region *nd_region,
struct nd_namespace_pmem *nspm)
{
u64 cookie = nd_region_interleave_set_cookie(nd_region);
struct nd_namespace_label *nd_label;
u8 select_id[NSLABEL_UUID_LEN];
resource_size_t size = 0;
u8 *pmem_id = NULL;
int rc = -ENODEV, l;
u16 i;
if (cookie == 0)
return -ENXIO;
/*
* Find a complete set of labels by uuid. By definition we can start
* with any mapping as the reference label
*/
for_each_label(l, nd_label, nd_region->mapping[0].labels) {
u64 isetcookie = __le64_to_cpu(nd_label->isetcookie);
if (isetcookie != cookie)
continue;
for (i = 0; nd_region->ndr_mappings; i++)
if (!has_uuid_at_pos(nd_region, nd_label->uuid,
cookie, i))
break;
if (i < nd_region->ndr_mappings) {
/*
* Give up if we don't find an instance of a
* uuid at each position (from 0 to
* nd_region->ndr_mappings - 1), or if we find a
* dimm with two instances of the same uuid.
*/
rc = -EINVAL;
goto err;
} else if (pmem_id) {
/*
* If there is more than one valid uuid set, we
* need userspace to clean this up.
*/
rc = -EBUSY;
goto err;
}
memcpy(select_id, nd_label->uuid, NSLABEL_UUID_LEN);
pmem_id = select_id;
}
/*
* Fix up each mapping's 'labels' to have the validated pmem label for
* that position at labels[0], and NULL at labels[1]. In the process,
* check that the namespace aligns with interleave-set. We know
* that it does not overlap with any blk namespaces by virtue of
* the dimm being enabled (i.e. nd_label_reserve_dpa()
* succeeded).
*/
rc = select_pmem_id(nd_region, pmem_id);
if (rc)
goto err;
/* Calculate total size and populate namespace properties from label0 */
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nd_namespace_label *label0 = nd_mapping->labels[0];
size += __le64_to_cpu(label0->rawsize);
if (__le16_to_cpu(label0->position) != 0)
continue;
WARN_ON(nspm->alt_name || nspm->uuid);
nspm->alt_name = kmemdup((void __force *) label0->name,
NSLABEL_NAME_LEN, GFP_KERNEL);
nspm->uuid = kmemdup((void __force *) label0->uuid,
NSLABEL_UUID_LEN, GFP_KERNEL);
}
if (!nspm->alt_name || !nspm->uuid) {
rc = -ENOMEM;
goto err;
}
nd_namespace_pmem_set_size(nd_region, nspm, size);
return 0;
err:
switch (rc) {
case -EINVAL:
dev_dbg(&nd_region->dev, "%s: invalid label(s)\n", __func__);
break;
case -ENODEV:
dev_dbg(&nd_region->dev, "%s: label not found\n", __func__);
break;
default:
dev_dbg(&nd_region->dev, "%s: unexpected err: %d\n",
__func__, rc);
break;
}
return rc;
}
static struct device **create_namespace_pmem(struct nd_region *nd_region)
{
struct nd_namespace_pmem *nspm;
struct device *dev, **devs;
struct resource *res;
int rc;
nspm = kzalloc(sizeof(*nspm), GFP_KERNEL);
if (!nspm)
return NULL;
dev = &nspm->nsio.common.dev;
dev->type = &namespace_pmem_device_type;
dev->parent = &nd_region->dev;
res = &nspm->nsio.res;
res->name = dev_name(&nd_region->dev);
res->flags = IORESOURCE_MEM;
rc = find_pmem_label_set(nd_region, nspm);
if (rc == -ENODEV) {
int i;
/* Pass, try to permit namespace creation... */
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
kfree(nd_mapping->labels);
nd_mapping->labels = NULL;
}
/* Publish a zero-sized namespace for userspace to configure. */
nd_namespace_pmem_set_size(nd_region, nspm, 0);
rc = 0;
} else if (rc)
goto err;
devs = kcalloc(2, sizeof(struct device *), GFP_KERNEL);
if (!devs)
goto err;
devs[0] = dev;
return devs;
err:
namespace_pmem_release(&nspm->nsio.common.dev);
return NULL;
}
struct resource *nsblk_add_resource(struct nd_region *nd_region,
struct nvdimm_drvdata *ndd, struct nd_namespace_blk *nsblk,
resource_size_t start)
{
struct nd_label_id label_id;
struct resource *res;
nd_label_gen_id(&label_id, nsblk->uuid, NSLABEL_FLAG_LOCAL);
res = krealloc(nsblk->res,
sizeof(void *) * (nsblk->num_resources + 1),
GFP_KERNEL);
if (!res)
return NULL;
nsblk->res = (struct resource **) res;
for_each_dpa_resource(ndd, res)
if (strcmp(res->name, label_id.id) == 0
&& res->start == start) {
nsblk->res[nsblk->num_resources++] = res;
return res;
}
return NULL;
}
static struct device *nd_namespace_blk_create(struct nd_region *nd_region)
{
struct nd_namespace_blk *nsblk;
struct device *dev;
if (!is_nd_blk(&nd_region->dev))
return NULL;
nsblk = kzalloc(sizeof(*nsblk), GFP_KERNEL);
if (!nsblk)
return NULL;
dev = &nsblk->common.dev;
dev->type = &namespace_blk_device_type;
nsblk->id = ida_simple_get(&nd_region->ns_ida, 0, 0, GFP_KERNEL);
if (nsblk->id < 0) {
kfree(nsblk);
return NULL;
}
dev_set_name(dev, "namespace%d.%d", nd_region->id, nsblk->id);
dev->parent = &nd_region->dev;
dev->groups = nd_namespace_attribute_groups;
return &nsblk->common.dev;
}
void nd_region_create_blk_seed(struct nd_region *nd_region)
{
WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
nd_region->ns_seed = nd_namespace_blk_create(nd_region);
/*
* Seed creation failures are not fatal, provisioning is simply
* disabled until memory becomes available
*/
if (!nd_region->ns_seed)
dev_err(&nd_region->dev, "failed to create blk namespace\n");
else
nd_device_register(nd_region->ns_seed);
}
void nd_region_create_dax_seed(struct nd_region *nd_region)
{
WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
nd_region->dax_seed = nd_dax_create(nd_region);
/*
* Seed creation failures are not fatal, provisioning is simply
* disabled until memory becomes available
*/
if (!nd_region->dax_seed)
dev_err(&nd_region->dev, "failed to create dax namespace\n");
}
void nd_region_create_pfn_seed(struct nd_region *nd_region)
{
WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
nd_region->pfn_seed = nd_pfn_create(nd_region);
/*
* Seed creation failures are not fatal, provisioning is simply
* disabled until memory becomes available
*/
if (!nd_region->pfn_seed)
dev_err(&nd_region->dev, "failed to create pfn namespace\n");
}
void nd_region_create_btt_seed(struct nd_region *nd_region)
{
WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
nd_region->btt_seed = nd_btt_create(nd_region);
/*
* Seed creation failures are not fatal, provisioning is simply
* disabled until memory becomes available
*/
if (!nd_region->btt_seed)
dev_err(&nd_region->dev, "failed to create btt namespace\n");
}
static struct device **create_namespace_blk(struct nd_region *nd_region)
{
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
struct nd_namespace_label *nd_label;
struct device *dev, **devs = NULL;
struct nd_namespace_blk *nsblk;
struct nvdimm_drvdata *ndd;
int i, l, count = 0;
struct resource *res;
if (nd_region->ndr_mappings == 0)
return NULL;
ndd = to_ndd(nd_mapping);
for_each_label(l, nd_label, nd_mapping->labels) {
u32 flags = __le32_to_cpu(nd_label->flags);
char *name[NSLABEL_NAME_LEN];
struct device **__devs;
if (flags & NSLABEL_FLAG_LOCAL)
/* pass */;
else
continue;
for (i = 0; i < count; i++) {
nsblk = to_nd_namespace_blk(devs[i]);
if (memcmp(nsblk->uuid, nd_label->uuid,
NSLABEL_UUID_LEN) == 0) {
res = nsblk_add_resource(nd_region, ndd, nsblk,
__le64_to_cpu(nd_label->dpa));
if (!res)
goto err;
nd_dbg_dpa(nd_region, ndd, res, "%s assign\n",
dev_name(&nsblk->common.dev));
break;
}
}
if (i < count)
continue;
__devs = kcalloc(count + 2, sizeof(dev), GFP_KERNEL);
if (!__devs)
goto err;
memcpy(__devs, devs, sizeof(dev) * count);
kfree(devs);
devs = __devs;
nsblk = kzalloc(sizeof(*nsblk), GFP_KERNEL);
if (!nsblk)
goto err;
dev = &nsblk->common.dev;
dev->type = &namespace_blk_device_type;
dev->parent = &nd_region->dev;
dev_set_name(dev, "namespace%d.%d", nd_region->id, count);
devs[count++] = dev;
nsblk->id = -1;
nsblk->lbasize = __le64_to_cpu(nd_label->lbasize);
nsblk->uuid = kmemdup(nd_label->uuid, NSLABEL_UUID_LEN,
GFP_KERNEL);
if (!nsblk->uuid)
goto err;
memcpy(name, nd_label->name, NSLABEL_NAME_LEN);
if (name[0])
nsblk->alt_name = kmemdup(name, NSLABEL_NAME_LEN,
GFP_KERNEL);
res = nsblk_add_resource(nd_region, ndd, nsblk,
__le64_to_cpu(nd_label->dpa));
if (!res)
goto err;
nd_dbg_dpa(nd_region, ndd, res, "%s assign\n",
dev_name(&nsblk->common.dev));
}
dev_dbg(&nd_region->dev, "%s: discovered %d blk namespace%s\n",
__func__, count, count == 1 ? "" : "s");
if (count == 0) {
/* Publish a zero-sized namespace for userspace to configure. */
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
kfree(nd_mapping->labels);
nd_mapping->labels = NULL;
}
devs = kcalloc(2, sizeof(dev), GFP_KERNEL);
if (!devs)
goto err;
nsblk = kzalloc(sizeof(*nsblk), GFP_KERNEL);
if (!nsblk)
goto err;
dev = &nsblk->common.dev;
dev->type = &namespace_blk_device_type;
dev->parent = &nd_region->dev;
devs[count++] = dev;
}
return devs;
err:
for (i = 0; i < count; i++) {
nsblk = to_nd_namespace_blk(devs[i]);
namespace_blk_release(&nsblk->common.dev);
}
kfree(devs);
return NULL;
}
static int init_active_labels(struct nd_region *nd_region)
{
int i;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
struct nvdimm *nvdimm = nd_mapping->nvdimm;
int count, j;
/*
* If the dimm is disabled then prevent the region from
* being activated if it aliases DPA.
*/
if (!ndd) {
if ((nvdimm->flags & NDD_ALIASING) == 0)
return 0;
dev_dbg(&nd_region->dev, "%s: is disabled, failing probe\n",
dev_name(&nd_mapping->nvdimm->dev));
return -ENXIO;
}
nd_mapping->ndd = ndd;
atomic_inc(&nvdimm->busy);
get_ndd(ndd);
count = nd_label_active_count(ndd);
dev_dbg(ndd->dev, "%s: %d\n", __func__, count);
if (!count)
continue;
nd_mapping->labels = kcalloc(count + 1, sizeof(void *),
GFP_KERNEL);
if (!nd_mapping->labels)
return -ENOMEM;
for (j = 0; j < count; j++) {
struct nd_namespace_label *label;
label = nd_label_active(ndd, j);
nd_mapping->labels[j] = label;
}
}
return 0;
}
int nd_region_register_namespaces(struct nd_region *nd_region, int *err)
{
struct device **devs = NULL;
int i, rc = 0, type;
*err = 0;
nvdimm_bus_lock(&nd_region->dev);
rc = init_active_labels(nd_region);
if (rc) {
nvdimm_bus_unlock(&nd_region->dev);
return rc;
}
type = nd_region_to_nstype(nd_region);
switch (type) {
case ND_DEVICE_NAMESPACE_IO:
devs = create_namespace_io(nd_region);
break;
case ND_DEVICE_NAMESPACE_PMEM:
devs = create_namespace_pmem(nd_region);
break;
case ND_DEVICE_NAMESPACE_BLK:
devs = create_namespace_blk(nd_region);
break;
default:
break;
}
nvdimm_bus_unlock(&nd_region->dev);
if (!devs)
return -ENODEV;
for (i = 0; devs[i]; i++) {
struct device *dev = devs[i];
int id;
if (type == ND_DEVICE_NAMESPACE_BLK) {
struct nd_namespace_blk *nsblk;
nsblk = to_nd_namespace_blk(dev);
id = ida_simple_get(&nd_region->ns_ida, 0, 0,
GFP_KERNEL);
nsblk->id = id;
} else
id = i;
if (id < 0)
break;
dev_set_name(dev, "namespace%d.%d", nd_region->id, id);
dev->groups = nd_namespace_attribute_groups;
nd_device_register(dev);
}
if (i)
nd_region->ns_seed = devs[0];
if (devs[i]) {
int j;
for (j = i; devs[j]; j++) {
struct device *dev = devs[j];
device_initialize(dev);
put_device(dev);
}
*err = j - i;
/*
* All of the namespaces we tried to register failed, so
* fail region activation.
*/
if (*err == 0)
rc = -ENODEV;
}
kfree(devs);
if (rc == -ENODEV)
return rc;
return i;
}