linux/arch/x86/kvm/svm/nested.c

828 lines
24 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
*
* AMD SVM support
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*/
#define pr_fmt(fmt) "SVM: " fmt
#include <linux/kvm_types.h>
#include <linux/kvm_host.h>
#include <linux/kernel.h>
#include <asm/msr-index.h>
#include "kvm_emulate.h"
#include "trace.h"
#include "mmu.h"
#include "x86.h"
#include "svm.h"
static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
/*
* TODO: track the cause of the nested page fault, and
* correctly fill in the high bits of exit_info_1.
*/
svm->vmcb->control.exit_code = SVM_EXIT_NPF;
svm->vmcb->control.exit_code_hi = 0;
svm->vmcb->control.exit_info_1 = (1ULL << 32);
svm->vmcb->control.exit_info_2 = fault->address;
}
svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
svm->vmcb->control.exit_info_1 |= fault->error_code;
/*
* The present bit is always zero for page structure faults on real
* hardware.
*/
if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
svm->vmcb->control.exit_info_1 &= ~1;
nested_svm_vmexit(svm);
}
static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 cr3 = svm->nested.nested_cr3;
u64 pdpte;
int ret;
ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
offset_in_page(cr3) + index * 8, 8);
if (ret)
return 0;
return pdpte;
}
static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return svm->nested.nested_cr3;
}
static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
{
WARN_ON(mmu_is_nested(vcpu));
vcpu->arch.mmu = &vcpu->arch.guest_mmu;
kvm_init_shadow_mmu(vcpu);
vcpu->arch.mmu->get_guest_pgd = nested_svm_get_tdp_cr3;
vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
vcpu->arch.mmu->shadow_root_level = kvm_x86_ops.get_tdp_level(vcpu);
reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
}
static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
vcpu->arch.mmu = &vcpu->arch.root_mmu;
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
}
void recalc_intercepts(struct vcpu_svm *svm)
{
struct vmcb_control_area *c, *h;
struct nested_state *g;
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
if (!is_guest_mode(&svm->vcpu))
return;
c = &svm->vmcb->control;
h = &svm->nested.hsave->control;
g = &svm->nested;
c->intercept_cr = h->intercept_cr;
c->intercept_dr = h->intercept_dr;
c->intercept_exceptions = h->intercept_exceptions;
c->intercept = h->intercept;
if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
/* We only want the cr8 intercept bits of L1 */
c->intercept_cr &= ~(1U << INTERCEPT_CR8_READ);
c->intercept_cr &= ~(1U << INTERCEPT_CR8_WRITE);
/*
* Once running L2 with HF_VINTR_MASK, EFLAGS.IF does not
* affect any interrupt we may want to inject; therefore,
* interrupt window vmexits are irrelevant to L0.
*/
c->intercept &= ~(1ULL << INTERCEPT_VINTR);
}
/* We don't want to see VMMCALLs from a nested guest */
c->intercept &= ~(1ULL << INTERCEPT_VMMCALL);
c->intercept_cr |= g->intercept_cr;
c->intercept_dr |= g->intercept_dr;
c->intercept_exceptions |= g->intercept_exceptions;
c->intercept |= g->intercept;
}
static void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
{
struct vmcb_control_area *dst = &dst_vmcb->control;
struct vmcb_control_area *from = &from_vmcb->control;
dst->intercept_cr = from->intercept_cr;
dst->intercept_dr = from->intercept_dr;
dst->intercept_exceptions = from->intercept_exceptions;
dst->intercept = from->intercept;
dst->iopm_base_pa = from->iopm_base_pa;
dst->msrpm_base_pa = from->msrpm_base_pa;
dst->tsc_offset = from->tsc_offset;
dst->asid = from->asid;
dst->tlb_ctl = from->tlb_ctl;
dst->int_ctl = from->int_ctl;
dst->int_vector = from->int_vector;
dst->int_state = from->int_state;
dst->exit_code = from->exit_code;
dst->exit_code_hi = from->exit_code_hi;
dst->exit_info_1 = from->exit_info_1;
dst->exit_info_2 = from->exit_info_2;
dst->exit_int_info = from->exit_int_info;
dst->exit_int_info_err = from->exit_int_info_err;
dst->nested_ctl = from->nested_ctl;
dst->event_inj = from->event_inj;
dst->event_inj_err = from->event_inj_err;
dst->nested_cr3 = from->nested_cr3;
dst->virt_ext = from->virt_ext;
dst->pause_filter_count = from->pause_filter_count;
dst->pause_filter_thresh = from->pause_filter_thresh;
}
static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
{
/*
* This function merges the msr permission bitmaps of kvm and the
* nested vmcb. It is optimized in that it only merges the parts where
* the kvm msr permission bitmap may contain zero bits
*/
int i;
if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
return true;
for (i = 0; i < MSRPM_OFFSETS; i++) {
u32 value, p;
u64 offset;
if (msrpm_offsets[i] == 0xffffffff)
break;
p = msrpm_offsets[i];
offset = svm->nested.vmcb_msrpm + (p * 4);
if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
return false;
svm->nested.msrpm[p] = svm->msrpm[p] | value;
}
svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
return true;
}
static bool nested_vmcb_checks(struct vmcb *vmcb)
{
if ((vmcb->save.efer & EFER_SVME) == 0)
return false;
if (((vmcb->save.cr0 & X86_CR0_CD) == 0) &&
(vmcb->save.cr0 & X86_CR0_NW))
return false;
if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
return false;
if (vmcb->control.asid == 0)
return false;
if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
!npt_enabled)
return false;
return true;
}
void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
struct vmcb *nested_vmcb, struct kvm_host_map *map)
{
bool evaluate_pending_interrupts =
is_intercept(svm, INTERCEPT_VINTR) ||
is_intercept(svm, INTERCEPT_IRET);
if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
svm->vcpu.arch.hflags |= HF_HIF_MASK;
else
svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
nested_svm_init_mmu_context(&svm->vcpu);
}
/* Load the nested guest state */
svm->vmcb->save.es = nested_vmcb->save.es;
svm->vmcb->save.cs = nested_vmcb->save.cs;
svm->vmcb->save.ss = nested_vmcb->save.ss;
svm->vmcb->save.ds = nested_vmcb->save.ds;
svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
svm->vmcb->save.idtr = nested_vmcb->save.idtr;
kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
if (npt_enabled) {
svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
} else
(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
/* Guest paging mode is active - reset mmu */
kvm_mmu_reset_context(&svm->vcpu);
svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
/* In case we don't even reach vcpu_run, the fields are not updated */
svm->vmcb->save.rax = nested_vmcb->save.rax;
svm->vmcb->save.rsp = nested_vmcb->save.rsp;
svm->vmcb->save.rip = nested_vmcb->save.rip;
svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
svm->vmcb->save.cpl = nested_vmcb->save.cpl;
svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
/* cache intercepts */
svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
svm->nested.intercept = nested_vmcb->control.intercept;
svm_flush_tlb(&svm->vcpu);
svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
svm->vcpu.arch.hflags |= HF_VINTR_MASK;
else
svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
svm->vmcb->control.int_state = nested_vmcb->control.int_state;
svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
svm->vmcb->control.pause_filter_count =
nested_vmcb->control.pause_filter_count;
svm->vmcb->control.pause_filter_thresh =
nested_vmcb->control.pause_filter_thresh;
kvm_vcpu_unmap(&svm->vcpu, map, true);
/* Enter Guest-Mode */
enter_guest_mode(&svm->vcpu);
/*
* Merge guest and host intercepts - must be called with vcpu in
* guest-mode to take affect here
*/
recalc_intercepts(svm);
svm->nested.vmcb = vmcb_gpa;
/*
* If L1 had a pending IRQ/NMI before executing VMRUN,
* which wasn't delivered because it was disallowed (e.g.
* interrupts disabled), L0 needs to evaluate if this pending
* event should cause an exit from L2 to L1 or be delivered
* directly to L2.
*
* Usually this would be handled by the processor noticing an
* IRQ/NMI window request. However, VMRUN can unblock interrupts
* by implicitly setting GIF, so force L0 to perform pending event
* evaluation by requesting a KVM_REQ_EVENT.
*/
enable_gif(svm);
if (unlikely(evaluate_pending_interrupts))
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
mark_all_dirty(svm->vmcb);
}
int nested_svm_vmrun(struct vcpu_svm *svm)
{
int ret;
struct vmcb *nested_vmcb;
struct vmcb *hsave = svm->nested.hsave;
struct vmcb *vmcb = svm->vmcb;
struct kvm_host_map map;
u64 vmcb_gpa;
vmcb_gpa = svm->vmcb->save.rax;
ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
if (ret == -EINVAL) {
kvm_inject_gp(&svm->vcpu, 0);
return 1;
} else if (ret) {
return kvm_skip_emulated_instruction(&svm->vcpu);
}
ret = kvm_skip_emulated_instruction(&svm->vcpu);
nested_vmcb = map.hva;
if (!nested_vmcb_checks(nested_vmcb)) {
nested_vmcb->control.exit_code = SVM_EXIT_ERR;
nested_vmcb->control.exit_code_hi = 0;
nested_vmcb->control.exit_info_1 = 0;
nested_vmcb->control.exit_info_2 = 0;
kvm_vcpu_unmap(&svm->vcpu, &map, true);
return ret;
}
trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
nested_vmcb->save.rip,
nested_vmcb->control.int_ctl,
nested_vmcb->control.event_inj,
nested_vmcb->control.nested_ctl);
trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
nested_vmcb->control.intercept_cr >> 16,
nested_vmcb->control.intercept_exceptions,
nested_vmcb->control.intercept);
/* Clear internal status */
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
/*
* Save the old vmcb, so we don't need to pick what we save, but can
* restore everything when a VMEXIT occurs
*/
hsave->save.es = vmcb->save.es;
hsave->save.cs = vmcb->save.cs;
hsave->save.ss = vmcb->save.ss;
hsave->save.ds = vmcb->save.ds;
hsave->save.gdtr = vmcb->save.gdtr;
hsave->save.idtr = vmcb->save.idtr;
hsave->save.efer = svm->vcpu.arch.efer;
hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
hsave->save.cr4 = svm->vcpu.arch.cr4;
hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
hsave->save.rip = kvm_rip_read(&svm->vcpu);
hsave->save.rsp = vmcb->save.rsp;
hsave->save.rax = vmcb->save.rax;
if (npt_enabled)
hsave->save.cr3 = vmcb->save.cr3;
else
hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
copy_vmcb_control_area(hsave, vmcb);
enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
if (!nested_svm_vmrun_msrpm(svm)) {
svm->vmcb->control.exit_code = SVM_EXIT_ERR;
svm->vmcb->control.exit_code_hi = 0;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
nested_svm_vmexit(svm);
}
return ret;
}
void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
{
to_vmcb->save.fs = from_vmcb->save.fs;
to_vmcb->save.gs = from_vmcb->save.gs;
to_vmcb->save.tr = from_vmcb->save.tr;
to_vmcb->save.ldtr = from_vmcb->save.ldtr;
to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
to_vmcb->save.star = from_vmcb->save.star;
to_vmcb->save.lstar = from_vmcb->save.lstar;
to_vmcb->save.cstar = from_vmcb->save.cstar;
to_vmcb->save.sfmask = from_vmcb->save.sfmask;
to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
}
int nested_svm_vmexit(struct vcpu_svm *svm)
{
int rc;
struct vmcb *nested_vmcb;
struct vmcb *hsave = svm->nested.hsave;
struct vmcb *vmcb = svm->vmcb;
struct kvm_host_map map;
trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
vmcb->control.exit_info_1,
vmcb->control.exit_info_2,
vmcb->control.exit_int_info,
vmcb->control.exit_int_info_err,
KVM_ISA_SVM);
rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
if (rc) {
if (rc == -EINVAL)
kvm_inject_gp(&svm->vcpu, 0);
return 1;
}
nested_vmcb = map.hva;
/* Exit Guest-Mode */
leave_guest_mode(&svm->vcpu);
svm->nested.vmcb = 0;
/* Give the current vmcb to the guest */
disable_gif(svm);
nested_vmcb->save.es = vmcb->save.es;
nested_vmcb->save.cs = vmcb->save.cs;
nested_vmcb->save.ss = vmcb->save.ss;
nested_vmcb->save.ds = vmcb->save.ds;
nested_vmcb->save.gdtr = vmcb->save.gdtr;
nested_vmcb->save.idtr = vmcb->save.idtr;
nested_vmcb->save.efer = svm->vcpu.arch.efer;
nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
nested_vmcb->save.cr2 = vmcb->save.cr2;
nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
nested_vmcb->save.rip = vmcb->save.rip;
nested_vmcb->save.rsp = vmcb->save.rsp;
nested_vmcb->save.rax = vmcb->save.rax;
nested_vmcb->save.dr7 = vmcb->save.dr7;
nested_vmcb->save.dr6 = vmcb->save.dr6;
nested_vmcb->save.cpl = vmcb->save.cpl;
nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
nested_vmcb->control.int_vector = vmcb->control.int_vector;
nested_vmcb->control.int_state = vmcb->control.int_state;
nested_vmcb->control.exit_code = vmcb->control.exit_code;
nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
if (svm->nrips_enabled)
nested_vmcb->control.next_rip = vmcb->control.next_rip;
/*
* If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
* to make sure that we do not lose injected events. So check event_inj
* here and copy it to exit_int_info if it is valid.
* Exit_int_info and event_inj can't be both valid because the case
* below only happens on a VMRUN instruction intercept which has
* no valid exit_int_info set.
*/
if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
struct vmcb_control_area *nc = &nested_vmcb->control;
nc->exit_int_info = vmcb->control.event_inj;
nc->exit_int_info_err = vmcb->control.event_inj_err;
}
nested_vmcb->control.tlb_ctl = 0;
nested_vmcb->control.event_inj = 0;
nested_vmcb->control.event_inj_err = 0;
nested_vmcb->control.pause_filter_count =
svm->vmcb->control.pause_filter_count;
nested_vmcb->control.pause_filter_thresh =
svm->vmcb->control.pause_filter_thresh;
/* We always set V_INTR_MASKING and remember the old value in hflags */
if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
/* Restore the original control entries */
copy_vmcb_control_area(vmcb, hsave);
svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
svm->nested.nested_cr3 = 0;
/* Restore selected save entries */
svm->vmcb->save.es = hsave->save.es;
svm->vmcb->save.cs = hsave->save.cs;
svm->vmcb->save.ss = hsave->save.ss;
svm->vmcb->save.ds = hsave->save.ds;
svm->vmcb->save.gdtr = hsave->save.gdtr;
svm->vmcb->save.idtr = hsave->save.idtr;
kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
svm_set_efer(&svm->vcpu, hsave->save.efer);
svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
svm_set_cr4(&svm->vcpu, hsave->save.cr4);
if (npt_enabled) {
svm->vmcb->save.cr3 = hsave->save.cr3;
svm->vcpu.arch.cr3 = hsave->save.cr3;
} else {
(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
}
kvm_rax_write(&svm->vcpu, hsave->save.rax);
kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
kvm_rip_write(&svm->vcpu, hsave->save.rip);
svm->vmcb->save.dr7 = 0;
svm->vmcb->save.cpl = 0;
svm->vmcb->control.exit_int_info = 0;
mark_all_dirty(svm->vmcb);
kvm_vcpu_unmap(&svm->vcpu, &map, true);
nested_svm_uninit_mmu_context(&svm->vcpu);
kvm_mmu_reset_context(&svm->vcpu);
kvm_mmu_load(&svm->vcpu);
/*
* Drop what we picked up for L2 via svm_complete_interrupts() so it
* doesn't end up in L1.
*/
svm->vcpu.arch.nmi_injected = false;
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
return 0;
}
static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
{
u32 offset, msr, value;
int write, mask;
if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
return NESTED_EXIT_HOST;
msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
offset = svm_msrpm_offset(msr);
write = svm->vmcb->control.exit_info_1 & 1;
mask = 1 << ((2 * (msr & 0xf)) + write);
if (offset == MSR_INVALID)
return NESTED_EXIT_DONE;
/* Offset is in 32 bit units but need in 8 bit units */
offset *= 4;
if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
return NESTED_EXIT_DONE;
return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
}
/* DB exceptions for our internal use must not cause vmexit */
static int nested_svm_intercept_db(struct vcpu_svm *svm)
{
unsigned long dr6;
/* if we're not singlestepping, it's not ours */
if (!svm->nmi_singlestep)
return NESTED_EXIT_DONE;
/* if it's not a singlestep exception, it's not ours */
if (kvm_get_dr(&svm->vcpu, 6, &dr6))
return NESTED_EXIT_DONE;
if (!(dr6 & DR6_BS))
return NESTED_EXIT_DONE;
/* if the guest is singlestepping, it should get the vmexit */
if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
disable_nmi_singlestep(svm);
return NESTED_EXIT_DONE;
}
/* it's ours, the nested hypervisor must not see this one */
return NESTED_EXIT_HOST;
}
static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
{
unsigned port, size, iopm_len;
u16 val, mask;
u8 start_bit;
u64 gpa;
if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
return NESTED_EXIT_HOST;
port = svm->vmcb->control.exit_info_1 >> 16;
size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
SVM_IOIO_SIZE_SHIFT;
gpa = svm->nested.vmcb_iopm + (port / 8);
start_bit = port % 8;
iopm_len = (start_bit + size > 8) ? 2 : 1;
mask = (0xf >> (4 - size)) << start_bit;
val = 0;
if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
return NESTED_EXIT_DONE;
return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
}
static int nested_svm_intercept(struct vcpu_svm *svm)
{
u32 exit_code = svm->vmcb->control.exit_code;
int vmexit = NESTED_EXIT_HOST;
switch (exit_code) {
case SVM_EXIT_MSR:
vmexit = nested_svm_exit_handled_msr(svm);
break;
case SVM_EXIT_IOIO:
vmexit = nested_svm_intercept_ioio(svm);
break;
case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
if (svm->nested.intercept_cr & bit)
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
if (svm->nested.intercept_dr & bit)
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
if (svm->nested.intercept_exceptions & excp_bits) {
if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
vmexit = nested_svm_intercept_db(svm);
else
vmexit = NESTED_EXIT_DONE;
}
/* async page fault always cause vmexit */
else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
svm->vcpu.arch.exception.nested_apf != 0)
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_ERR: {
vmexit = NESTED_EXIT_DONE;
break;
}
default: {
u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
if (svm->nested.intercept & exit_bits)
vmexit = NESTED_EXIT_DONE;
}
}
return vmexit;
}
int nested_svm_exit_handled(struct vcpu_svm *svm)
{
int vmexit;
vmexit = nested_svm_intercept(svm);
if (vmexit == NESTED_EXIT_DONE)
nested_svm_vmexit(svm);
return vmexit;
}
int nested_svm_check_permissions(struct vcpu_svm *svm)
{
if (!(svm->vcpu.arch.efer & EFER_SVME) ||
!is_paging(&svm->vcpu)) {
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
if (svm->vmcb->save.cpl) {
kvm_inject_gp(&svm->vcpu, 0);
return 1;
}
return 0;
}
int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
bool has_error_code, u32 error_code)
{
int vmexit;
if (!is_guest_mode(&svm->vcpu))
return 0;
vmexit = nested_svm_intercept(svm);
if (vmexit != NESTED_EXIT_DONE)
return 0;
svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
svm->vmcb->control.exit_code_hi = 0;
svm->vmcb->control.exit_info_1 = error_code;
/*
* EXITINFO2 is undefined for all exception intercepts other
* than #PF.
*/
if (svm->vcpu.arch.exception.nested_apf)
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
else if (svm->vcpu.arch.exception.has_payload)
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
else
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
svm->nested.exit_required = true;
return vmexit;
}
static void nested_svm_intr(struct vcpu_svm *svm)
{
svm->vmcb->control.exit_code = SVM_EXIT_INTR;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
/* nested_svm_vmexit this gets called afterwards from handle_exit */
svm->nested.exit_required = true;
trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
}
static bool nested_exit_on_intr(struct vcpu_svm *svm)
{
return (svm->nested.intercept & 1ULL);
}
int svm_check_nested_events(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
bool block_nested_events =
kvm_event_needs_reinjection(vcpu) || svm->nested.exit_required;
if (kvm_cpu_has_interrupt(vcpu) && nested_exit_on_intr(svm)) {
if (block_nested_events)
return -EBUSY;
nested_svm_intr(svm);
return 0;
}
return 0;
}
int nested_svm_exit_special(struct vcpu_svm *svm)
{
u32 exit_code = svm->vmcb->control.exit_code;
switch (exit_code) {
case SVM_EXIT_INTR:
case SVM_EXIT_NMI:
case SVM_EXIT_EXCP_BASE + MC_VECTOR:
return NESTED_EXIT_HOST;
case SVM_EXIT_NPF:
/* For now we are always handling NPFs when using them */
if (npt_enabled)
return NESTED_EXIT_HOST;
break;
case SVM_EXIT_EXCP_BASE + PF_VECTOR:
/* When we're shadowing, trap PFs, but not async PF */
if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
return NESTED_EXIT_HOST;
break;
default:
break;
}
return NESTED_EXIT_CONTINUE;
}