linux/drivers/net/ethernet/socionext/netsec.c

2211 lines
56 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
#include <linux/types.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/acpi.h>
#include <linux/of_mdio.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/netlink.h>
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <net/tcp.h>
#include <net/page_pool.h>
#include <net/ip6_checksum.h>
#define NETSEC_REG_SOFT_RST 0x104
#define NETSEC_REG_COM_INIT 0x120
#define NETSEC_REG_TOP_STATUS 0x200
#define NETSEC_IRQ_RX BIT(1)
#define NETSEC_IRQ_TX BIT(0)
#define NETSEC_REG_TOP_INTEN 0x204
#define NETSEC_REG_INTEN_SET 0x234
#define NETSEC_REG_INTEN_CLR 0x238
#define NETSEC_REG_NRM_TX_STATUS 0x400
#define NETSEC_REG_NRM_TX_INTEN 0x404
#define NETSEC_REG_NRM_TX_INTEN_SET 0x428
#define NETSEC_REG_NRM_TX_INTEN_CLR 0x42c
#define NRM_TX_ST_NTOWNR BIT(17)
#define NRM_TX_ST_TR_ERR BIT(16)
#define NRM_TX_ST_TXDONE BIT(15)
#define NRM_TX_ST_TMREXP BIT(14)
#define NETSEC_REG_NRM_RX_STATUS 0x440
#define NETSEC_REG_NRM_RX_INTEN 0x444
#define NETSEC_REG_NRM_RX_INTEN_SET 0x468
#define NETSEC_REG_NRM_RX_INTEN_CLR 0x46c
#define NRM_RX_ST_RC_ERR BIT(16)
#define NRM_RX_ST_PKTCNT BIT(15)
#define NRM_RX_ST_TMREXP BIT(14)
#define NETSEC_REG_PKT_CMD_BUF 0xd0
#define NETSEC_REG_CLK_EN 0x100
#define NETSEC_REG_PKT_CTRL 0x140
#define NETSEC_REG_DMA_TMR_CTRL 0x20c
#define NETSEC_REG_F_TAIKI_MC_VER 0x22c
#define NETSEC_REG_F_TAIKI_VER 0x230
#define NETSEC_REG_DMA_HM_CTRL 0x214
#define NETSEC_REG_DMA_MH_CTRL 0x220
#define NETSEC_REG_ADDR_DIS_CORE 0x218
#define NETSEC_REG_DMAC_HM_CMD_BUF 0x210
#define NETSEC_REG_DMAC_MH_CMD_BUF 0x21c
#define NETSEC_REG_NRM_TX_PKTCNT 0x410
#define NETSEC_REG_NRM_TX_DONE_PKTCNT 0x414
#define NETSEC_REG_NRM_TX_DONE_TXINT_PKTCNT 0x418
#define NETSEC_REG_NRM_TX_TMR 0x41c
#define NETSEC_REG_NRM_RX_PKTCNT 0x454
#define NETSEC_REG_NRM_RX_RXINT_PKTCNT 0x458
#define NETSEC_REG_NRM_TX_TXINT_TMR 0x420
#define NETSEC_REG_NRM_RX_RXINT_TMR 0x460
#define NETSEC_REG_NRM_RX_TMR 0x45c
#define NETSEC_REG_NRM_TX_DESC_START_UP 0x434
#define NETSEC_REG_NRM_TX_DESC_START_LW 0x408
#define NETSEC_REG_NRM_RX_DESC_START_UP 0x474
#define NETSEC_REG_NRM_RX_DESC_START_LW 0x448
#define NETSEC_REG_NRM_TX_CONFIG 0x430
#define NETSEC_REG_NRM_RX_CONFIG 0x470
#define MAC_REG_STATUS 0x1024
#define MAC_REG_DATA 0x11c0
#define MAC_REG_CMD 0x11c4
#define MAC_REG_FLOW_TH 0x11cc
#define MAC_REG_INTF_SEL 0x11d4
#define MAC_REG_DESC_INIT 0x11fc
#define MAC_REG_DESC_SOFT_RST 0x1204
#define NETSEC_REG_MODE_TRANS_COMP_STATUS 0x500
#define GMAC_REG_MCR 0x0000
#define GMAC_REG_MFFR 0x0004
#define GMAC_REG_GAR 0x0010
#define GMAC_REG_GDR 0x0014
#define GMAC_REG_FCR 0x0018
#define GMAC_REG_BMR 0x1000
#define GMAC_REG_RDLAR 0x100c
#define GMAC_REG_TDLAR 0x1010
#define GMAC_REG_OMR 0x1018
#define MHZ(n) ((n) * 1000 * 1000)
#define NETSEC_TX_SHIFT_OWN_FIELD 31
#define NETSEC_TX_SHIFT_LD_FIELD 30
#define NETSEC_TX_SHIFT_DRID_FIELD 24
#define NETSEC_TX_SHIFT_PT_FIELD 21
#define NETSEC_TX_SHIFT_TDRID_FIELD 16
#define NETSEC_TX_SHIFT_CC_FIELD 15
#define NETSEC_TX_SHIFT_FS_FIELD 9
#define NETSEC_TX_LAST 8
#define NETSEC_TX_SHIFT_CO 7
#define NETSEC_TX_SHIFT_SO 6
#define NETSEC_TX_SHIFT_TRS_FIELD 4
#define NETSEC_RX_PKT_OWN_FIELD 31
#define NETSEC_RX_PKT_LD_FIELD 30
#define NETSEC_RX_PKT_SDRID_FIELD 24
#define NETSEC_RX_PKT_FR_FIELD 23
#define NETSEC_RX_PKT_ER_FIELD 21
#define NETSEC_RX_PKT_ERR_FIELD 16
#define NETSEC_RX_PKT_TDRID_FIELD 12
#define NETSEC_RX_PKT_FS_FIELD 9
#define NETSEC_RX_PKT_LS_FIELD 8
#define NETSEC_RX_PKT_CO_FIELD 6
#define NETSEC_RX_PKT_ERR_MASK 3
#define NETSEC_MAX_TX_PKT_LEN 1518
#define NETSEC_MAX_TX_JUMBO_PKT_LEN 9018
#define NETSEC_RING_GMAC 15
#define NETSEC_RING_MAX 2
#define NETSEC_TCP_SEG_LEN_MAX 1460
#define NETSEC_TCP_JUMBO_SEG_LEN_MAX 8960
#define NETSEC_RX_CKSUM_NOTAVAIL 0
#define NETSEC_RX_CKSUM_OK 1
#define NETSEC_RX_CKSUM_NG 2
#define NETSEC_TOP_IRQ_REG_CODE_LOAD_END BIT(20)
#define NETSEC_IRQ_TRANSITION_COMPLETE BIT(4)
#define NETSEC_MODE_TRANS_COMP_IRQ_N2T BIT(20)
#define NETSEC_MODE_TRANS_COMP_IRQ_T2N BIT(19)
#define NETSEC_INT_PKTCNT_MAX 2047
#define NETSEC_FLOW_START_TH_MAX 95
#define NETSEC_FLOW_STOP_TH_MAX 95
#define NETSEC_FLOW_PAUSE_TIME_MIN 5
#define NETSEC_CLK_EN_REG_DOM_ALL 0x3f
#define NETSEC_PKT_CTRL_REG_MODE_NRM BIT(28)
#define NETSEC_PKT_CTRL_REG_EN_JUMBO BIT(27)
#define NETSEC_PKT_CTRL_REG_LOG_CHKSUM_ER BIT(3)
#define NETSEC_PKT_CTRL_REG_LOG_HD_INCOMPLETE BIT(2)
#define NETSEC_PKT_CTRL_REG_LOG_HD_ER BIT(1)
#define NETSEC_PKT_CTRL_REG_DRP_NO_MATCH BIT(0)
#define NETSEC_CLK_EN_REG_DOM_G BIT(5)
#define NETSEC_CLK_EN_REG_DOM_C BIT(1)
#define NETSEC_CLK_EN_REG_DOM_D BIT(0)
#define NETSEC_COM_INIT_REG_DB BIT(2)
#define NETSEC_COM_INIT_REG_CLS BIT(1)
#define NETSEC_COM_INIT_REG_ALL (NETSEC_COM_INIT_REG_CLS | \
NETSEC_COM_INIT_REG_DB)
#define NETSEC_SOFT_RST_REG_RESET 0
#define NETSEC_SOFT_RST_REG_RUN BIT(31)
#define NETSEC_DMA_CTRL_REG_STOP 1
#define MH_CTRL__MODE_TRANS BIT(20)
#define NETSEC_GMAC_CMD_ST_READ 0
#define NETSEC_GMAC_CMD_ST_WRITE BIT(28)
#define NETSEC_GMAC_CMD_ST_BUSY BIT(31)
#define NETSEC_GMAC_BMR_REG_COMMON 0x00412080
#define NETSEC_GMAC_BMR_REG_RESET 0x00020181
#define NETSEC_GMAC_BMR_REG_SWR 0x00000001
#define NETSEC_GMAC_OMR_REG_ST BIT(13)
#define NETSEC_GMAC_OMR_REG_SR BIT(1)
#define NETSEC_GMAC_MCR_REG_IBN BIT(30)
#define NETSEC_GMAC_MCR_REG_CST BIT(25)
#define NETSEC_GMAC_MCR_REG_JE BIT(20)
#define NETSEC_MCR_PS BIT(15)
#define NETSEC_GMAC_MCR_REG_FES BIT(14)
#define NETSEC_GMAC_MCR_REG_FULL_DUPLEX_COMMON 0x0000280c
#define NETSEC_GMAC_MCR_REG_HALF_DUPLEX_COMMON 0x0001a00c
#define NETSEC_FCR_RFE BIT(2)
#define NETSEC_FCR_TFE BIT(1)
#define NETSEC_GMAC_GAR_REG_GW BIT(1)
#define NETSEC_GMAC_GAR_REG_GB BIT(0)
#define NETSEC_GMAC_GAR_REG_SHIFT_PA 11
#define NETSEC_GMAC_GAR_REG_SHIFT_GR 6
#define GMAC_REG_SHIFT_CR_GAR 2
#define NETSEC_GMAC_GAR_REG_CR_25_35_MHZ 2
#define NETSEC_GMAC_GAR_REG_CR_35_60_MHZ 3
#define NETSEC_GMAC_GAR_REG_CR_60_100_MHZ 0
#define NETSEC_GMAC_GAR_REG_CR_100_150_MHZ 1
#define NETSEC_GMAC_GAR_REG_CR_150_250_MHZ 4
#define NETSEC_GMAC_GAR_REG_CR_250_300_MHZ 5
#define NETSEC_GMAC_RDLAR_REG_COMMON 0x18000
#define NETSEC_GMAC_TDLAR_REG_COMMON 0x1c000
#define NETSEC_REG_NETSEC_VER_F_TAIKI 0x50000
#define NETSEC_REG_DESC_RING_CONFIG_CFG_UP BIT(31)
#define NETSEC_REG_DESC_RING_CONFIG_CH_RST BIT(30)
#define NETSEC_REG_DESC_TMR_MODE 4
#define NETSEC_REG_DESC_ENDIAN 0
#define NETSEC_MAC_DESC_SOFT_RST_SOFT_RST 1
#define NETSEC_MAC_DESC_INIT_REG_INIT 1
#define NETSEC_EEPROM_MAC_ADDRESS 0x00
#define NETSEC_EEPROM_HM_ME_ADDRESS_H 0x08
#define NETSEC_EEPROM_HM_ME_ADDRESS_L 0x0C
#define NETSEC_EEPROM_HM_ME_SIZE 0x10
#define NETSEC_EEPROM_MH_ME_ADDRESS_H 0x14
#define NETSEC_EEPROM_MH_ME_ADDRESS_L 0x18
#define NETSEC_EEPROM_MH_ME_SIZE 0x1C
#define NETSEC_EEPROM_PKT_ME_ADDRESS 0x20
#define NETSEC_EEPROM_PKT_ME_SIZE 0x24
#define DESC_NUM 256
#define NETSEC_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
#define NETSEC_RXBUF_HEADROOM (max(XDP_PACKET_HEADROOM, NET_SKB_PAD) + \
NET_IP_ALIGN)
#define NETSEC_RX_BUF_NON_DATA (NETSEC_RXBUF_HEADROOM + \
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
#define DESC_SZ sizeof(struct netsec_de)
#define NETSEC_F_NETSEC_VER_MAJOR_NUM(x) ((x) & 0xffff0000)
#define NETSEC_XDP_PASS 0
#define NETSEC_XDP_CONSUMED BIT(0)
#define NETSEC_XDP_TX BIT(1)
#define NETSEC_XDP_REDIR BIT(2)
#define NETSEC_XDP_RX_OK (NETSEC_XDP_PASS | NETSEC_XDP_TX | NETSEC_XDP_REDIR)
enum ring_id {
NETSEC_RING_TX = 0,
NETSEC_RING_RX
};
enum buf_type {
TYPE_NETSEC_SKB = 0,
TYPE_NETSEC_XDP_TX,
TYPE_NETSEC_XDP_NDO,
};
struct netsec_desc {
union {
struct sk_buff *skb;
struct xdp_frame *xdpf;
};
dma_addr_t dma_addr;
void *addr;
u16 len;
u8 buf_type;
};
struct netsec_desc_ring {
dma_addr_t desc_dma;
struct netsec_desc *desc;
void *vaddr;
u16 head, tail;
u16 xdp_xmit; /* netsec_xdp_xmit packets */
bool is_xdp;
struct page_pool *page_pool;
struct xdp_rxq_info xdp_rxq;
spinlock_t lock; /* XDP tx queue locking */
};
struct netsec_priv {
struct netsec_desc_ring desc_ring[NETSEC_RING_MAX];
struct ethtool_coalesce et_coalesce;
struct bpf_prog *xdp_prog;
spinlock_t reglock; /* protect reg access */
struct napi_struct napi;
phy_interface_t phy_interface;
struct net_device *ndev;
struct device_node *phy_np;
struct phy_device *phydev;
struct mii_bus *mii_bus;
void __iomem *ioaddr;
void __iomem *eeprom_base;
struct device *dev;
struct clk *clk;
u32 msg_enable;
u32 freq;
u32 phy_addr;
bool rx_cksum_offload_flag;
};
struct netsec_de { /* Netsec Descriptor layout */
u32 attr;
u32 data_buf_addr_up;
u32 data_buf_addr_lw;
u32 buf_len_info;
};
struct netsec_tx_pkt_ctrl {
u16 tcp_seg_len;
bool tcp_seg_offload_flag;
bool cksum_offload_flag;
};
struct netsec_rx_pkt_info {
int rx_cksum_result;
int err_code;
bool err_flag;
};
static void netsec_write(struct netsec_priv *priv, u32 reg_addr, u32 val)
{
writel(val, priv->ioaddr + reg_addr);
}
static u32 netsec_read(struct netsec_priv *priv, u32 reg_addr)
{
return readl(priv->ioaddr + reg_addr);
}
/************* MDIO BUS OPS FOLLOW *************/
#define TIMEOUT_SPINS_MAC 1000
#define TIMEOUT_SECONDARY_MS_MAC 100
static u32 netsec_clk_type(u32 freq)
{
if (freq < MHZ(35))
return NETSEC_GMAC_GAR_REG_CR_25_35_MHZ;
if (freq < MHZ(60))
return NETSEC_GMAC_GAR_REG_CR_35_60_MHZ;
if (freq < MHZ(100))
return NETSEC_GMAC_GAR_REG_CR_60_100_MHZ;
if (freq < MHZ(150))
return NETSEC_GMAC_GAR_REG_CR_100_150_MHZ;
if (freq < MHZ(250))
return NETSEC_GMAC_GAR_REG_CR_150_250_MHZ;
return NETSEC_GMAC_GAR_REG_CR_250_300_MHZ;
}
static int netsec_wait_while_busy(struct netsec_priv *priv, u32 addr, u32 mask)
{
u32 timeout = TIMEOUT_SPINS_MAC;
while (--timeout && netsec_read(priv, addr) & mask)
cpu_relax();
if (timeout)
return 0;
timeout = TIMEOUT_SECONDARY_MS_MAC;
while (--timeout && netsec_read(priv, addr) & mask)
usleep_range(1000, 2000);
if (timeout)
return 0;
netdev_WARN(priv->ndev, "%s: timeout\n", __func__);
return -ETIMEDOUT;
}
static int netsec_mac_write(struct netsec_priv *priv, u32 addr, u32 value)
{
netsec_write(priv, MAC_REG_DATA, value);
netsec_write(priv, MAC_REG_CMD, addr | NETSEC_GMAC_CMD_ST_WRITE);
return netsec_wait_while_busy(priv,
MAC_REG_CMD, NETSEC_GMAC_CMD_ST_BUSY);
}
static int netsec_mac_read(struct netsec_priv *priv, u32 addr, u32 *read)
{
int ret;
netsec_write(priv, MAC_REG_CMD, addr | NETSEC_GMAC_CMD_ST_READ);
ret = netsec_wait_while_busy(priv,
MAC_REG_CMD, NETSEC_GMAC_CMD_ST_BUSY);
if (ret)
return ret;
*read = netsec_read(priv, MAC_REG_DATA);
return 0;
}
static int netsec_mac_wait_while_busy(struct netsec_priv *priv,
u32 addr, u32 mask)
{
u32 timeout = TIMEOUT_SPINS_MAC;
int ret, data;
do {
ret = netsec_mac_read(priv, addr, &data);
if (ret)
break;
cpu_relax();
} while (--timeout && (data & mask));
if (timeout)
return 0;
timeout = TIMEOUT_SECONDARY_MS_MAC;
do {
usleep_range(1000, 2000);
ret = netsec_mac_read(priv, addr, &data);
if (ret)
break;
cpu_relax();
} while (--timeout && (data & mask));
if (timeout && !ret)
return 0;
netdev_WARN(priv->ndev, "%s: timeout\n", __func__);
return -ETIMEDOUT;
}
static int netsec_mac_update_to_phy_state(struct netsec_priv *priv)
{
struct phy_device *phydev = priv->ndev->phydev;
u32 value = 0;
value = phydev->duplex ? NETSEC_GMAC_MCR_REG_FULL_DUPLEX_COMMON :
NETSEC_GMAC_MCR_REG_HALF_DUPLEX_COMMON;
if (phydev->speed != SPEED_1000)
value |= NETSEC_MCR_PS;
if (priv->phy_interface != PHY_INTERFACE_MODE_GMII &&
phydev->speed == SPEED_100)
value |= NETSEC_GMAC_MCR_REG_FES;
value |= NETSEC_GMAC_MCR_REG_CST | NETSEC_GMAC_MCR_REG_JE;
if (phy_interface_mode_is_rgmii(priv->phy_interface))
value |= NETSEC_GMAC_MCR_REG_IBN;
if (netsec_mac_write(priv, GMAC_REG_MCR, value))
return -ETIMEDOUT;
return 0;
}
static int netsec_phy_read(struct mii_bus *bus, int phy_addr, int reg_addr);
static int netsec_phy_write(struct mii_bus *bus,
int phy_addr, int reg, u16 val)
{
int status;
struct netsec_priv *priv = bus->priv;
if (netsec_mac_write(priv, GMAC_REG_GDR, val))
return -ETIMEDOUT;
if (netsec_mac_write(priv, GMAC_REG_GAR,
phy_addr << NETSEC_GMAC_GAR_REG_SHIFT_PA |
reg << NETSEC_GMAC_GAR_REG_SHIFT_GR |
NETSEC_GMAC_GAR_REG_GW | NETSEC_GMAC_GAR_REG_GB |
(netsec_clk_type(priv->freq) <<
GMAC_REG_SHIFT_CR_GAR)))
return -ETIMEDOUT;
status = netsec_mac_wait_while_busy(priv, GMAC_REG_GAR,
NETSEC_GMAC_GAR_REG_GB);
/* Developerbox implements RTL8211E PHY and there is
* a compatibility problem with F_GMAC4.
* RTL8211E expects MDC clock must be kept toggling for several
* clock cycle with MDIO high before entering the IDLE state.
* To meet this requirement, netsec driver needs to issue dummy
* read(e.g. read PHYID1(offset 0x2) register) right after write.
*/
netsec_phy_read(bus, phy_addr, MII_PHYSID1);
return status;
}
static int netsec_phy_read(struct mii_bus *bus, int phy_addr, int reg_addr)
{
struct netsec_priv *priv = bus->priv;
u32 data;
int ret;
if (netsec_mac_write(priv, GMAC_REG_GAR, NETSEC_GMAC_GAR_REG_GB |
phy_addr << NETSEC_GMAC_GAR_REG_SHIFT_PA |
reg_addr << NETSEC_GMAC_GAR_REG_SHIFT_GR |
(netsec_clk_type(priv->freq) <<
GMAC_REG_SHIFT_CR_GAR)))
return -ETIMEDOUT;
ret = netsec_mac_wait_while_busy(priv, GMAC_REG_GAR,
NETSEC_GMAC_GAR_REG_GB);
if (ret)
return ret;
ret = netsec_mac_read(priv, GMAC_REG_GDR, &data);
if (ret)
return ret;
return data;
}
/************* ETHTOOL_OPS FOLLOW *************/
static void netsec_et_get_drvinfo(struct net_device *net_device,
struct ethtool_drvinfo *info)
{
strlcpy(info->driver, "netsec", sizeof(info->driver));
strlcpy(info->bus_info, dev_name(net_device->dev.parent),
sizeof(info->bus_info));
}
static int netsec_et_get_coalesce(struct net_device *net_device,
struct ethtool_coalesce *et_coalesce)
{
struct netsec_priv *priv = netdev_priv(net_device);
*et_coalesce = priv->et_coalesce;
return 0;
}
static int netsec_et_set_coalesce(struct net_device *net_device,
struct ethtool_coalesce *et_coalesce)
{
struct netsec_priv *priv = netdev_priv(net_device);
priv->et_coalesce = *et_coalesce;
if (priv->et_coalesce.tx_coalesce_usecs < 50)
priv->et_coalesce.tx_coalesce_usecs = 50;
if (priv->et_coalesce.tx_max_coalesced_frames < 1)
priv->et_coalesce.tx_max_coalesced_frames = 1;
netsec_write(priv, NETSEC_REG_NRM_TX_DONE_TXINT_PKTCNT,
priv->et_coalesce.tx_max_coalesced_frames);
netsec_write(priv, NETSEC_REG_NRM_TX_TXINT_TMR,
priv->et_coalesce.tx_coalesce_usecs);
netsec_write(priv, NETSEC_REG_NRM_TX_INTEN_SET, NRM_TX_ST_TXDONE);
netsec_write(priv, NETSEC_REG_NRM_TX_INTEN_SET, NRM_TX_ST_TMREXP);
if (priv->et_coalesce.rx_coalesce_usecs < 50)
priv->et_coalesce.rx_coalesce_usecs = 50;
if (priv->et_coalesce.rx_max_coalesced_frames < 1)
priv->et_coalesce.rx_max_coalesced_frames = 1;
netsec_write(priv, NETSEC_REG_NRM_RX_RXINT_PKTCNT,
priv->et_coalesce.rx_max_coalesced_frames);
netsec_write(priv, NETSEC_REG_NRM_RX_RXINT_TMR,
priv->et_coalesce.rx_coalesce_usecs);
netsec_write(priv, NETSEC_REG_NRM_RX_INTEN_SET, NRM_RX_ST_PKTCNT);
netsec_write(priv, NETSEC_REG_NRM_RX_INTEN_SET, NRM_RX_ST_TMREXP);
return 0;
}
static u32 netsec_et_get_msglevel(struct net_device *dev)
{
struct netsec_priv *priv = netdev_priv(dev);
return priv->msg_enable;
}
static void netsec_et_set_msglevel(struct net_device *dev, u32 datum)
{
struct netsec_priv *priv = netdev_priv(dev);
priv->msg_enable = datum;
}
static const struct ethtool_ops netsec_ethtool_ops = {
.get_drvinfo = netsec_et_get_drvinfo,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
.get_link = ethtool_op_get_link,
.get_coalesce = netsec_et_get_coalesce,
.set_coalesce = netsec_et_set_coalesce,
.get_msglevel = netsec_et_get_msglevel,
.set_msglevel = netsec_et_set_msglevel,
};
/************* NETDEV_OPS FOLLOW *************/
static void netsec_set_rx_de(struct netsec_priv *priv,
struct netsec_desc_ring *dring, u16 idx,
const struct netsec_desc *desc)
{
struct netsec_de *de = dring->vaddr + DESC_SZ * idx;
u32 attr = (1 << NETSEC_RX_PKT_OWN_FIELD) |
(1 << NETSEC_RX_PKT_FS_FIELD) |
(1 << NETSEC_RX_PKT_LS_FIELD);
if (idx == DESC_NUM - 1)
attr |= (1 << NETSEC_RX_PKT_LD_FIELD);
de->data_buf_addr_up = upper_32_bits(desc->dma_addr);
de->data_buf_addr_lw = lower_32_bits(desc->dma_addr);
de->buf_len_info = desc->len;
de->attr = attr;
dma_wmb();
dring->desc[idx].dma_addr = desc->dma_addr;
dring->desc[idx].addr = desc->addr;
dring->desc[idx].len = desc->len;
}
static bool netsec_clean_tx_dring(struct netsec_priv *priv)
{
struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_TX];
struct netsec_de *entry;
int tail = dring->tail;
unsigned int bytes;
int cnt = 0;
if (dring->is_xdp)
spin_lock(&dring->lock);
bytes = 0;
entry = dring->vaddr + DESC_SZ * tail;
while (!(entry->attr & (1U << NETSEC_TX_SHIFT_OWN_FIELD)) &&
cnt < DESC_NUM) {
struct netsec_desc *desc;
int eop;
desc = &dring->desc[tail];
eop = (entry->attr >> NETSEC_TX_LAST) & 1;
dma_rmb();
/* if buf_type is either TYPE_NETSEC_SKB or
* TYPE_NETSEC_XDP_NDO we mapped it
*/
if (desc->buf_type != TYPE_NETSEC_XDP_TX)
dma_unmap_single(priv->dev, desc->dma_addr, desc->len,
DMA_TO_DEVICE);
if (!eop)
goto next;
if (desc->buf_type == TYPE_NETSEC_SKB) {
bytes += desc->skb->len;
dev_kfree_skb(desc->skb);
} else {
xdp_return_frame(desc->xdpf);
}
next:
/* clean up so netsec_uninit_pkt_dring() won't free the skb
* again
*/
*desc = (struct netsec_desc){};
/* entry->attr is not going to be accessed by the NIC until
* netsec_set_tx_de() is called. No need for a dma_wmb() here
*/
entry->attr = 1U << NETSEC_TX_SHIFT_OWN_FIELD;
/* move tail ahead */
dring->tail = (tail + 1) % DESC_NUM;
tail = dring->tail;
entry = dring->vaddr + DESC_SZ * tail;
cnt++;
}
if (dring->is_xdp)
spin_unlock(&dring->lock);
if (!cnt)
return false;
/* reading the register clears the irq */
netsec_read(priv, NETSEC_REG_NRM_TX_DONE_PKTCNT);
priv->ndev->stats.tx_packets += cnt;
priv->ndev->stats.tx_bytes += bytes;
netdev_completed_queue(priv->ndev, cnt, bytes);
return true;
}
static void netsec_process_tx(struct netsec_priv *priv)
{
struct net_device *ndev = priv->ndev;
bool cleaned;
cleaned = netsec_clean_tx_dring(priv);
if (cleaned && netif_queue_stopped(ndev)) {
/* Make sure we update the value, anyone stopping the queue
* after this will read the proper consumer idx
*/
smp_wmb();
netif_wake_queue(ndev);
}
}
static void *netsec_alloc_rx_data(struct netsec_priv *priv,
dma_addr_t *dma_handle, u16 *desc_len)
{
struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_RX];
enum dma_data_direction dma_dir;
struct page *page;
page = page_pool_dev_alloc_pages(dring->page_pool);
if (!page)
return NULL;
/* We allocate the same buffer length for XDP and non-XDP cases.
* page_pool API will map the whole page, skip what's needed for
* network payloads and/or XDP
*/
*dma_handle = page_pool_get_dma_addr(page) + NETSEC_RXBUF_HEADROOM;
/* Make sure the incoming payload fits in the page for XDP and non-XDP
* cases and reserve enough space for headroom + skb_shared_info
*/
*desc_len = PAGE_SIZE - NETSEC_RX_BUF_NON_DATA;
dma_dir = page_pool_get_dma_dir(dring->page_pool);
dma_sync_single_for_device(priv->dev, *dma_handle, *desc_len, dma_dir);
return page_address(page);
}
static void netsec_rx_fill(struct netsec_priv *priv, u16 from, u16 num)
{
struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_RX];
u16 idx = from;
while (num) {
netsec_set_rx_de(priv, dring, idx, &dring->desc[idx]);
idx++;
if (idx >= DESC_NUM)
idx = 0;
num--;
}
}
static void netsec_xdp_ring_tx_db(struct netsec_priv *priv, u16 pkts)
{
if (likely(pkts))
netsec_write(priv, NETSEC_REG_NRM_TX_PKTCNT, pkts);
}
static void netsec_finalize_xdp_rx(struct netsec_priv *priv, u32 xdp_res,
u16 pkts)
{
if (xdp_res & NETSEC_XDP_REDIR)
xdp_do_flush_map();
if (xdp_res & NETSEC_XDP_TX)
netsec_xdp_ring_tx_db(priv, pkts);
}
static void netsec_set_tx_de(struct netsec_priv *priv,
struct netsec_desc_ring *dring,
const struct netsec_tx_pkt_ctrl *tx_ctrl,
const struct netsec_desc *desc, void *buf)
{
int idx = dring->head;
struct netsec_de *de;
u32 attr;
de = dring->vaddr + (DESC_SZ * idx);
attr = (1 << NETSEC_TX_SHIFT_OWN_FIELD) |
(1 << NETSEC_TX_SHIFT_PT_FIELD) |
(NETSEC_RING_GMAC << NETSEC_TX_SHIFT_TDRID_FIELD) |
(1 << NETSEC_TX_SHIFT_FS_FIELD) |
(1 << NETSEC_TX_LAST) |
(tx_ctrl->cksum_offload_flag << NETSEC_TX_SHIFT_CO) |
(tx_ctrl->tcp_seg_offload_flag << NETSEC_TX_SHIFT_SO) |
(1 << NETSEC_TX_SHIFT_TRS_FIELD);
if (idx == DESC_NUM - 1)
attr |= (1 << NETSEC_TX_SHIFT_LD_FIELD);
de->data_buf_addr_up = upper_32_bits(desc->dma_addr);
de->data_buf_addr_lw = lower_32_bits(desc->dma_addr);
de->buf_len_info = (tx_ctrl->tcp_seg_len << 16) | desc->len;
de->attr = attr;
/* under spin_lock if using XDP */
if (!dring->is_xdp)
dma_wmb();
dring->desc[idx] = *desc;
if (desc->buf_type == TYPE_NETSEC_SKB)
dring->desc[idx].skb = buf;
else if (desc->buf_type == TYPE_NETSEC_XDP_TX ||
desc->buf_type == TYPE_NETSEC_XDP_NDO)
dring->desc[idx].xdpf = buf;
/* move head ahead */
dring->head = (dring->head + 1) % DESC_NUM;
}
/* The current driver only supports 1 Txq, this should run under spin_lock() */
static u32 netsec_xdp_queue_one(struct netsec_priv *priv,
struct xdp_frame *xdpf, bool is_ndo)
{
struct netsec_desc_ring *tx_ring = &priv->desc_ring[NETSEC_RING_TX];
struct page *page = virt_to_page(xdpf->data);
struct netsec_tx_pkt_ctrl tx_ctrl = {};
struct netsec_desc tx_desc;
dma_addr_t dma_handle;
u16 filled;
if (tx_ring->head >= tx_ring->tail)
filled = tx_ring->head - tx_ring->tail;
else
filled = tx_ring->head + DESC_NUM - tx_ring->tail;
if (DESC_NUM - filled <= 1)
return NETSEC_XDP_CONSUMED;
if (is_ndo) {
/* this is for ndo_xdp_xmit, the buffer needs mapping before
* sending
*/
dma_handle = dma_map_single(priv->dev, xdpf->data, xdpf->len,
DMA_TO_DEVICE);
if (dma_mapping_error(priv->dev, dma_handle))
return NETSEC_XDP_CONSUMED;
tx_desc.buf_type = TYPE_NETSEC_XDP_NDO;
} else {
/* This is the device Rx buffer from page_pool. No need to remap
* just sync and send it
*/
struct netsec_desc_ring *rx_ring =
&priv->desc_ring[NETSEC_RING_RX];
enum dma_data_direction dma_dir =
page_pool_get_dma_dir(rx_ring->page_pool);
dma_handle = page_pool_get_dma_addr(page) +
NETSEC_RXBUF_HEADROOM;
dma_sync_single_for_device(priv->dev, dma_handle, xdpf->len,
dma_dir);
tx_desc.buf_type = TYPE_NETSEC_XDP_TX;
}
tx_desc.dma_addr = dma_handle;
tx_desc.addr = xdpf->data;
tx_desc.len = xdpf->len;
netsec_set_tx_de(priv, tx_ring, &tx_ctrl, &tx_desc, xdpf);
return NETSEC_XDP_TX;
}
static u32 netsec_xdp_xmit_back(struct netsec_priv *priv, struct xdp_buff *xdp)
{
struct netsec_desc_ring *tx_ring = &priv->desc_ring[NETSEC_RING_TX];
struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);
u32 ret;
if (unlikely(!xdpf))
return NETSEC_XDP_CONSUMED;
spin_lock(&tx_ring->lock);
ret = netsec_xdp_queue_one(priv, xdpf, false);
spin_unlock(&tx_ring->lock);
return ret;
}
static u32 netsec_run_xdp(struct netsec_priv *priv, struct bpf_prog *prog,
struct xdp_buff *xdp)
{
u32 ret = NETSEC_XDP_PASS;
int err;
u32 act;
act = bpf_prog_run_xdp(prog, xdp);
switch (act) {
case XDP_PASS:
ret = NETSEC_XDP_PASS;
break;
case XDP_TX:
ret = netsec_xdp_xmit_back(priv, xdp);
if (ret != NETSEC_XDP_TX)
xdp_return_buff(xdp);
break;
case XDP_REDIRECT:
err = xdp_do_redirect(priv->ndev, xdp, prog);
if (!err) {
ret = NETSEC_XDP_REDIR;
} else {
ret = NETSEC_XDP_CONSUMED;
xdp_return_buff(xdp);
}
break;
default:
bpf_warn_invalid_xdp_action(act);
/* fall through */
case XDP_ABORTED:
trace_xdp_exception(priv->ndev, prog, act);
/* fall through -- handle aborts by dropping packet */
case XDP_DROP:
ret = NETSEC_XDP_CONSUMED;
xdp_return_buff(xdp);
break;
}
return ret;
}
static int netsec_process_rx(struct netsec_priv *priv, int budget)
{
struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_RX];
struct net_device *ndev = priv->ndev;
struct netsec_rx_pkt_info rx_info;
enum dma_data_direction dma_dir;
struct bpf_prog *xdp_prog;
struct sk_buff *skb = NULL;
u16 xdp_xmit = 0;
u32 xdp_act = 0;
int done = 0;
rcu_read_lock();
xdp_prog = READ_ONCE(priv->xdp_prog);
dma_dir = page_pool_get_dma_dir(dring->page_pool);
while (done < budget) {
u16 idx = dring->tail;
struct netsec_de *de = dring->vaddr + (DESC_SZ * idx);
struct netsec_desc *desc = &dring->desc[idx];
struct page *page = virt_to_page(desc->addr);
u32 xdp_result = XDP_PASS;
u16 pkt_len, desc_len;
dma_addr_t dma_handle;
struct xdp_buff xdp;
void *buf_addr;
if (de->attr & (1U << NETSEC_RX_PKT_OWN_FIELD)) {
/* reading the register clears the irq */
netsec_read(priv, NETSEC_REG_NRM_RX_PKTCNT);
break;
}
/* This barrier is needed to keep us from reading
* any other fields out of the netsec_de until we have
* verified the descriptor has been written back
*/
dma_rmb();
done++;
pkt_len = de->buf_len_info >> 16;
rx_info.err_code = (de->attr >> NETSEC_RX_PKT_ERR_FIELD) &
NETSEC_RX_PKT_ERR_MASK;
rx_info.err_flag = (de->attr >> NETSEC_RX_PKT_ER_FIELD) & 1;
if (rx_info.err_flag) {
netif_err(priv, drv, priv->ndev,
"%s: rx fail err(%d)\n", __func__,
rx_info.err_code);
ndev->stats.rx_dropped++;
dring->tail = (dring->tail + 1) % DESC_NUM;
/* reuse buffer page frag */
netsec_rx_fill(priv, idx, 1);
continue;
}
rx_info.rx_cksum_result =
(de->attr >> NETSEC_RX_PKT_CO_FIELD) & 3;
/* allocate a fresh buffer and map it to the hardware.
* This will eventually replace the old buffer in the hardware
*/
buf_addr = netsec_alloc_rx_data(priv, &dma_handle, &desc_len);
if (unlikely(!buf_addr))
break;
dma_sync_single_for_cpu(priv->dev, desc->dma_addr, pkt_len,
dma_dir);
prefetch(desc->addr);
xdp.data_hard_start = desc->addr;
xdp.data = desc->addr + NETSEC_RXBUF_HEADROOM;
xdp_set_data_meta_invalid(&xdp);
xdp.data_end = xdp.data + pkt_len;
xdp.rxq = &dring->xdp_rxq;
if (xdp_prog) {
xdp_result = netsec_run_xdp(priv, xdp_prog, &xdp);
if (xdp_result != NETSEC_XDP_PASS) {
xdp_act |= xdp_result;
if (xdp_result == NETSEC_XDP_TX)
xdp_xmit++;
goto next;
}
}
skb = build_skb(desc->addr, desc->len + NETSEC_RX_BUF_NON_DATA);
if (unlikely(!skb)) {
/* If skb fails recycle_direct will either unmap and
* free the page or refill the cache depending on the
* cache state. Since we paid the allocation cost if
* building an skb fails try to put the page into cache
*/
page_pool_recycle_direct(dring->page_pool, page);
netif_err(priv, drv, priv->ndev,
"rx failed to build skb\n");
break;
}
page_pool_release_page(dring->page_pool, page);
skb_reserve(skb, xdp.data - xdp.data_hard_start);
skb_put(skb, xdp.data_end - xdp.data);
skb->protocol = eth_type_trans(skb, priv->ndev);
if (priv->rx_cksum_offload_flag &&
rx_info.rx_cksum_result == NETSEC_RX_CKSUM_OK)
skb->ip_summed = CHECKSUM_UNNECESSARY;
next:
if ((skb && napi_gro_receive(&priv->napi, skb) != GRO_DROP) ||
xdp_result & NETSEC_XDP_RX_OK) {
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += xdp.data_end - xdp.data;
}
/* Update the descriptor with fresh buffers */
desc->len = desc_len;
desc->dma_addr = dma_handle;
desc->addr = buf_addr;
netsec_rx_fill(priv, idx, 1);
dring->tail = (dring->tail + 1) % DESC_NUM;
}
netsec_finalize_xdp_rx(priv, xdp_act, xdp_xmit);
rcu_read_unlock();
return done;
}
static int netsec_napi_poll(struct napi_struct *napi, int budget)
{
struct netsec_priv *priv;
int done;
priv = container_of(napi, struct netsec_priv, napi);
netsec_process_tx(priv);
done = netsec_process_rx(priv, budget);
if (done < budget && napi_complete_done(napi, done)) {
unsigned long flags;
spin_lock_irqsave(&priv->reglock, flags);
netsec_write(priv, NETSEC_REG_INTEN_SET,
NETSEC_IRQ_RX | NETSEC_IRQ_TX);
spin_unlock_irqrestore(&priv->reglock, flags);
}
return done;
}
static int netsec_desc_used(struct netsec_desc_ring *dring)
{
int used;
if (dring->head >= dring->tail)
used = dring->head - dring->tail;
else
used = dring->head + DESC_NUM - dring->tail;
return used;
}
static int netsec_check_stop_tx(struct netsec_priv *priv, int used)
{
struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_TX];
/* keep tail from touching the queue */
if (DESC_NUM - used < 2) {
netif_stop_queue(priv->ndev);
/* Make sure we read the updated value in case
* descriptors got freed
*/
smp_rmb();
used = netsec_desc_used(dring);
if (DESC_NUM - used < 2)
return NETDEV_TX_BUSY;
netif_wake_queue(priv->ndev);
}
return 0;
}
static netdev_tx_t netsec_netdev_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct netsec_priv *priv = netdev_priv(ndev);
struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_TX];
struct netsec_tx_pkt_ctrl tx_ctrl = {};
struct netsec_desc tx_desc;
u16 tso_seg_len = 0;
int filled;
if (dring->is_xdp)
spin_lock_bh(&dring->lock);
filled = netsec_desc_used(dring);
if (netsec_check_stop_tx(priv, filled)) {
if (dring->is_xdp)
spin_unlock_bh(&dring->lock);
net_warn_ratelimited("%s %s Tx queue full\n",
dev_name(priv->dev), ndev->name);
return NETDEV_TX_BUSY;
}
if (skb->ip_summed == CHECKSUM_PARTIAL)
tx_ctrl.cksum_offload_flag = true;
if (skb_is_gso(skb))
tso_seg_len = skb_shinfo(skb)->gso_size;
if (tso_seg_len > 0) {
if (skb->protocol == htons(ETH_P_IP)) {
ip_hdr(skb)->tot_len = 0;
tcp_hdr(skb)->check =
~tcp_v4_check(0, ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, 0);
} else {
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check =
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
}
tx_ctrl.tcp_seg_offload_flag = true;
tx_ctrl.tcp_seg_len = tso_seg_len;
}
tx_desc.dma_addr = dma_map_single(priv->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (dma_mapping_error(priv->dev, tx_desc.dma_addr)) {
if (dring->is_xdp)
spin_unlock_bh(&dring->lock);
netif_err(priv, drv, priv->ndev,
"%s: DMA mapping failed\n", __func__);
ndev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
tx_desc.addr = skb->data;
tx_desc.len = skb_headlen(skb);
tx_desc.buf_type = TYPE_NETSEC_SKB;
skb_tx_timestamp(skb);
netdev_sent_queue(priv->ndev, skb->len);
netsec_set_tx_de(priv, dring, &tx_ctrl, &tx_desc, skb);
if (dring->is_xdp)
spin_unlock_bh(&dring->lock);
netsec_write(priv, NETSEC_REG_NRM_TX_PKTCNT, 1); /* submit another tx */
return NETDEV_TX_OK;
}
static void netsec_uninit_pkt_dring(struct netsec_priv *priv, int id)
{
struct netsec_desc_ring *dring = &priv->desc_ring[id];
struct netsec_desc *desc;
u16 idx;
if (!dring->vaddr || !dring->desc)
return;
for (idx = 0; idx < DESC_NUM; idx++) {
desc = &dring->desc[idx];
if (!desc->addr)
continue;
if (id == NETSEC_RING_RX) {
struct page *page = virt_to_page(desc->addr);
page_pool_put_page(dring->page_pool, page, false);
} else if (id == NETSEC_RING_TX) {
dma_unmap_single(priv->dev, desc->dma_addr, desc->len,
DMA_TO_DEVICE);
dev_kfree_skb(desc->skb);
}
}
2019-07-09 05:34:28 +08:00
/* Rx is currently using page_pool */
if (id == NETSEC_RING_RX) {
if (xdp_rxq_info_is_reg(&dring->xdp_rxq))
xdp_rxq_info_unreg(&dring->xdp_rxq);
2019-07-09 05:34:28 +08:00
page_pool_destroy(dring->page_pool);
}
memset(dring->desc, 0, sizeof(struct netsec_desc) * DESC_NUM);
memset(dring->vaddr, 0, DESC_SZ * DESC_NUM);
dring->head = 0;
dring->tail = 0;
if (id == NETSEC_RING_TX)
netdev_reset_queue(priv->ndev);
}
static void netsec_free_dring(struct netsec_priv *priv, int id)
{
struct netsec_desc_ring *dring = &priv->desc_ring[id];
if (dring->vaddr) {
dma_free_coherent(priv->dev, DESC_SZ * DESC_NUM,
dring->vaddr, dring->desc_dma);
dring->vaddr = NULL;
}
kfree(dring->desc);
dring->desc = NULL;
}
static int netsec_alloc_dring(struct netsec_priv *priv, enum ring_id id)
{
struct netsec_desc_ring *dring = &priv->desc_ring[id];
dring->vaddr = dma_alloc_coherent(priv->dev, DESC_SZ * DESC_NUM,
&dring->desc_dma, GFP_KERNEL);
if (!dring->vaddr)
goto err;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
dring->desc = kcalloc(DESC_NUM, sizeof(*dring->desc), GFP_KERNEL);
if (!dring->desc)
goto err;
return 0;
err:
netsec_free_dring(priv, id);
return -ENOMEM;
}
static void netsec_setup_tx_dring(struct netsec_priv *priv)
{
struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_TX];
struct bpf_prog *xdp_prog = READ_ONCE(priv->xdp_prog);
int i;
for (i = 0; i < DESC_NUM; i++) {
struct netsec_de *de;
de = dring->vaddr + (DESC_SZ * i);
/* de->attr is not going to be accessed by the NIC
* until netsec_set_tx_de() is called.
* No need for a dma_wmb() here
*/
de->attr = 1U << NETSEC_TX_SHIFT_OWN_FIELD;
}
if (xdp_prog)
dring->is_xdp = true;
else
dring->is_xdp = false;
}
static int netsec_setup_rx_dring(struct netsec_priv *priv)
{
struct netsec_desc_ring *dring = &priv->desc_ring[NETSEC_RING_RX];
struct bpf_prog *xdp_prog = READ_ONCE(priv->xdp_prog);
struct page_pool_params pp_params = { 0 };
int i, err;
pp_params.order = 0;
/* internal DMA mapping in page_pool */
pp_params.flags = PP_FLAG_DMA_MAP;
pp_params.pool_size = DESC_NUM;
pp_params.nid = cpu_to_node(0);
pp_params.dev = priv->dev;
pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
dring->page_pool = page_pool_create(&pp_params);
if (IS_ERR(dring->page_pool)) {
err = PTR_ERR(dring->page_pool);
dring->page_pool = NULL;
goto err_out;
}
err = xdp_rxq_info_reg(&dring->xdp_rxq, priv->ndev, 0);
if (err)
goto err_out;
err = xdp_rxq_info_reg_mem_model(&dring->xdp_rxq, MEM_TYPE_PAGE_POOL,
dring->page_pool);
if (err)
goto err_out;
for (i = 0; i < DESC_NUM; i++) {
struct netsec_desc *desc = &dring->desc[i];
dma_addr_t dma_handle;
void *buf;
u16 len;
buf = netsec_alloc_rx_data(priv, &dma_handle, &len);
if (!buf) {
err = -ENOMEM;
goto err_out;
}
desc->dma_addr = dma_handle;
desc->addr = buf;
desc->len = len;
}
netsec_rx_fill(priv, 0, DESC_NUM);
return 0;
err_out:
netsec_uninit_pkt_dring(priv, NETSEC_RING_RX);
return err;
}
static int netsec_netdev_load_ucode_region(struct netsec_priv *priv, u32 reg,
u32 addr_h, u32 addr_l, u32 size)
{
u64 base = (u64)addr_h << 32 | addr_l;
void __iomem *ucode;
u32 i;
ucode = ioremap(base, size * sizeof(u32));
if (!ucode)
return -ENOMEM;
for (i = 0; i < size; i++)
netsec_write(priv, reg, readl(ucode + i * 4));
iounmap(ucode);
return 0;
}
static int netsec_netdev_load_microcode(struct netsec_priv *priv)
{
u32 addr_h, addr_l, size;
int err;
addr_h = readl(priv->eeprom_base + NETSEC_EEPROM_HM_ME_ADDRESS_H);
addr_l = readl(priv->eeprom_base + NETSEC_EEPROM_HM_ME_ADDRESS_L);
size = readl(priv->eeprom_base + NETSEC_EEPROM_HM_ME_SIZE);
err = netsec_netdev_load_ucode_region(priv, NETSEC_REG_DMAC_HM_CMD_BUF,
addr_h, addr_l, size);
if (err)
return err;
addr_h = readl(priv->eeprom_base + NETSEC_EEPROM_MH_ME_ADDRESS_H);
addr_l = readl(priv->eeprom_base + NETSEC_EEPROM_MH_ME_ADDRESS_L);
size = readl(priv->eeprom_base + NETSEC_EEPROM_MH_ME_SIZE);
err = netsec_netdev_load_ucode_region(priv, NETSEC_REG_DMAC_MH_CMD_BUF,
addr_h, addr_l, size);
if (err)
return err;
addr_h = 0;
addr_l = readl(priv->eeprom_base + NETSEC_EEPROM_PKT_ME_ADDRESS);
size = readl(priv->eeprom_base + NETSEC_EEPROM_PKT_ME_SIZE);
err = netsec_netdev_load_ucode_region(priv, NETSEC_REG_PKT_CMD_BUF,
addr_h, addr_l, size);
if (err)
return err;
return 0;
}
static int netsec_reset_hardware(struct netsec_priv *priv,
bool load_ucode)
{
u32 value;
int err;
/* stop DMA engines */
if (!netsec_read(priv, NETSEC_REG_ADDR_DIS_CORE)) {
netsec_write(priv, NETSEC_REG_DMA_HM_CTRL,
NETSEC_DMA_CTRL_REG_STOP);
netsec_write(priv, NETSEC_REG_DMA_MH_CTRL,
NETSEC_DMA_CTRL_REG_STOP);
while (netsec_read(priv, NETSEC_REG_DMA_HM_CTRL) &
NETSEC_DMA_CTRL_REG_STOP)
cpu_relax();
while (netsec_read(priv, NETSEC_REG_DMA_MH_CTRL) &
NETSEC_DMA_CTRL_REG_STOP)
cpu_relax();
}
netsec_write(priv, NETSEC_REG_SOFT_RST, NETSEC_SOFT_RST_REG_RESET);
netsec_write(priv, NETSEC_REG_SOFT_RST, NETSEC_SOFT_RST_REG_RUN);
netsec_write(priv, NETSEC_REG_COM_INIT, NETSEC_COM_INIT_REG_ALL);
while (netsec_read(priv, NETSEC_REG_COM_INIT) != 0)
cpu_relax();
/* set desc_start addr */
netsec_write(priv, NETSEC_REG_NRM_RX_DESC_START_UP,
upper_32_bits(priv->desc_ring[NETSEC_RING_RX].desc_dma));
netsec_write(priv, NETSEC_REG_NRM_RX_DESC_START_LW,
lower_32_bits(priv->desc_ring[NETSEC_RING_RX].desc_dma));
netsec_write(priv, NETSEC_REG_NRM_TX_DESC_START_UP,
upper_32_bits(priv->desc_ring[NETSEC_RING_TX].desc_dma));
netsec_write(priv, NETSEC_REG_NRM_TX_DESC_START_LW,
lower_32_bits(priv->desc_ring[NETSEC_RING_TX].desc_dma));
/* set normal tx dring ring config */
netsec_write(priv, NETSEC_REG_NRM_TX_CONFIG,
1 << NETSEC_REG_DESC_ENDIAN);
netsec_write(priv, NETSEC_REG_NRM_RX_CONFIG,
1 << NETSEC_REG_DESC_ENDIAN);
if (load_ucode) {
err = netsec_netdev_load_microcode(priv);
if (err) {
netif_err(priv, probe, priv->ndev,
"%s: failed to load microcode (%d)\n",
__func__, err);
return err;
}
}
/* start DMA engines */
netsec_write(priv, NETSEC_REG_DMA_TMR_CTRL, priv->freq / 1000000 - 1);
netsec_write(priv, NETSEC_REG_ADDR_DIS_CORE, 0);
usleep_range(1000, 2000);
if (!(netsec_read(priv, NETSEC_REG_TOP_STATUS) &
NETSEC_TOP_IRQ_REG_CODE_LOAD_END)) {
netif_err(priv, probe, priv->ndev,
"microengine start failed\n");
return -ENXIO;
}
netsec_write(priv, NETSEC_REG_TOP_STATUS,
NETSEC_TOP_IRQ_REG_CODE_LOAD_END);
value = NETSEC_PKT_CTRL_REG_MODE_NRM;
if (priv->ndev->mtu > ETH_DATA_LEN)
value |= NETSEC_PKT_CTRL_REG_EN_JUMBO;
/* change to normal mode */
netsec_write(priv, NETSEC_REG_DMA_MH_CTRL, MH_CTRL__MODE_TRANS);
netsec_write(priv, NETSEC_REG_PKT_CTRL, value);
while ((netsec_read(priv, NETSEC_REG_MODE_TRANS_COMP_STATUS) &
NETSEC_MODE_TRANS_COMP_IRQ_T2N) == 0)
cpu_relax();
/* clear any pending EMPTY/ERR irq status */
netsec_write(priv, NETSEC_REG_NRM_TX_STATUS, ~0);
/* Disable TX & RX intr */
netsec_write(priv, NETSEC_REG_INTEN_CLR, ~0);
return 0;
}
static int netsec_start_gmac(struct netsec_priv *priv)
{
struct phy_device *phydev = priv->ndev->phydev;
u32 value = 0;
int ret;
if (phydev->speed != SPEED_1000)
value = (NETSEC_GMAC_MCR_REG_CST |
NETSEC_GMAC_MCR_REG_HALF_DUPLEX_COMMON);
if (netsec_mac_write(priv, GMAC_REG_MCR, value))
return -ETIMEDOUT;
if (netsec_mac_write(priv, GMAC_REG_BMR,
NETSEC_GMAC_BMR_REG_RESET))
return -ETIMEDOUT;
/* Wait soft reset */
usleep_range(1000, 5000);
ret = netsec_mac_read(priv, GMAC_REG_BMR, &value);
if (ret)
return ret;
if (value & NETSEC_GMAC_BMR_REG_SWR)
return -EAGAIN;
netsec_write(priv, MAC_REG_DESC_SOFT_RST, 1);
if (netsec_wait_while_busy(priv, MAC_REG_DESC_SOFT_RST, 1))
return -ETIMEDOUT;
netsec_write(priv, MAC_REG_DESC_INIT, 1);
if (netsec_wait_while_busy(priv, MAC_REG_DESC_INIT, 1))
return -ETIMEDOUT;
if (netsec_mac_write(priv, GMAC_REG_BMR,
NETSEC_GMAC_BMR_REG_COMMON))
return -ETIMEDOUT;
if (netsec_mac_write(priv, GMAC_REG_RDLAR,
NETSEC_GMAC_RDLAR_REG_COMMON))
return -ETIMEDOUT;
if (netsec_mac_write(priv, GMAC_REG_TDLAR,
NETSEC_GMAC_TDLAR_REG_COMMON))
return -ETIMEDOUT;
if (netsec_mac_write(priv, GMAC_REG_MFFR, 0x80000001))
return -ETIMEDOUT;
ret = netsec_mac_update_to_phy_state(priv);
if (ret)
return ret;
ret = netsec_mac_read(priv, GMAC_REG_OMR, &value);
if (ret)
return ret;
value |= NETSEC_GMAC_OMR_REG_SR;
value |= NETSEC_GMAC_OMR_REG_ST;
netsec_write(priv, NETSEC_REG_NRM_RX_INTEN_CLR, ~0);
netsec_write(priv, NETSEC_REG_NRM_TX_INTEN_CLR, ~0);
netsec_et_set_coalesce(priv->ndev, &priv->et_coalesce);
if (netsec_mac_write(priv, GMAC_REG_OMR, value))
return -ETIMEDOUT;
return 0;
}
static int netsec_stop_gmac(struct netsec_priv *priv)
{
u32 value;
int ret;
ret = netsec_mac_read(priv, GMAC_REG_OMR, &value);
if (ret)
return ret;
value &= ~NETSEC_GMAC_OMR_REG_SR;
value &= ~NETSEC_GMAC_OMR_REG_ST;
/* disable all interrupts */
netsec_write(priv, NETSEC_REG_NRM_RX_INTEN_CLR, ~0);
netsec_write(priv, NETSEC_REG_NRM_TX_INTEN_CLR, ~0);
return netsec_mac_write(priv, GMAC_REG_OMR, value);
}
static void netsec_phy_adjust_link(struct net_device *ndev)
{
struct netsec_priv *priv = netdev_priv(ndev);
if (ndev->phydev->link)
netsec_start_gmac(priv);
else
netsec_stop_gmac(priv);
phy_print_status(ndev->phydev);
}
static irqreturn_t netsec_irq_handler(int irq, void *dev_id)
{
struct netsec_priv *priv = dev_id;
u32 val, status = netsec_read(priv, NETSEC_REG_TOP_STATUS);
unsigned long flags;
/* Disable interrupts */
if (status & NETSEC_IRQ_TX) {
val = netsec_read(priv, NETSEC_REG_NRM_TX_STATUS);
netsec_write(priv, NETSEC_REG_NRM_TX_STATUS, val);
}
if (status & NETSEC_IRQ_RX) {
val = netsec_read(priv, NETSEC_REG_NRM_RX_STATUS);
netsec_write(priv, NETSEC_REG_NRM_RX_STATUS, val);
}
spin_lock_irqsave(&priv->reglock, flags);
netsec_write(priv, NETSEC_REG_INTEN_CLR, NETSEC_IRQ_RX | NETSEC_IRQ_TX);
spin_unlock_irqrestore(&priv->reglock, flags);
napi_schedule(&priv->napi);
return IRQ_HANDLED;
}
static int netsec_netdev_open(struct net_device *ndev)
{
struct netsec_priv *priv = netdev_priv(ndev);
int ret;
pm_runtime_get_sync(priv->dev);
netsec_setup_tx_dring(priv);
ret = netsec_setup_rx_dring(priv);
if (ret) {
netif_err(priv, probe, priv->ndev,
"%s: fail setup ring\n", __func__);
goto err1;
}
ret = request_irq(priv->ndev->irq, netsec_irq_handler,
IRQF_SHARED, "netsec", priv);
if (ret) {
netif_err(priv, drv, priv->ndev, "request_irq failed\n");
goto err2;
}
if (dev_of_node(priv->dev)) {
if (!of_phy_connect(priv->ndev, priv->phy_np,
netsec_phy_adjust_link, 0,
priv->phy_interface)) {
netif_err(priv, link, priv->ndev, "missing PHY\n");
ret = -ENODEV;
goto err3;
}
} else {
ret = phy_connect_direct(priv->ndev, priv->phydev,
netsec_phy_adjust_link,
priv->phy_interface);
if (ret) {
netif_err(priv, link, priv->ndev,
"phy_connect_direct() failed (%d)\n", ret);
goto err3;
}
}
phy_start(ndev->phydev);
netsec_start_gmac(priv);
napi_enable(&priv->napi);
netif_start_queue(ndev);
/* Enable TX+RX intr. */
netsec_write(priv, NETSEC_REG_INTEN_SET, NETSEC_IRQ_RX | NETSEC_IRQ_TX);
return 0;
err3:
free_irq(priv->ndev->irq, priv);
err2:
netsec_uninit_pkt_dring(priv, NETSEC_RING_RX);
err1:
pm_runtime_put_sync(priv->dev);
return ret;
}
static int netsec_netdev_stop(struct net_device *ndev)
{
int ret;
struct netsec_priv *priv = netdev_priv(ndev);
netif_stop_queue(priv->ndev);
dma_wmb();
napi_disable(&priv->napi);
netsec_write(priv, NETSEC_REG_INTEN_CLR, ~0);
netsec_stop_gmac(priv);
free_irq(priv->ndev->irq, priv);
netsec_uninit_pkt_dring(priv, NETSEC_RING_TX);
netsec_uninit_pkt_dring(priv, NETSEC_RING_RX);
phy_stop(ndev->phydev);
phy_disconnect(ndev->phydev);
ret = netsec_reset_hardware(priv, false);
pm_runtime_put_sync(priv->dev);
return ret;
}
static int netsec_netdev_init(struct net_device *ndev)
{
struct netsec_priv *priv = netdev_priv(ndev);
int ret;
u16 data;
BUILD_BUG_ON_NOT_POWER_OF_2(DESC_NUM);
ret = netsec_alloc_dring(priv, NETSEC_RING_TX);
if (ret)
return ret;
ret = netsec_alloc_dring(priv, NETSEC_RING_RX);
if (ret)
goto err1;
/* set phy power down */
data = netsec_phy_read(priv->mii_bus, priv->phy_addr, MII_BMCR) |
BMCR_PDOWN;
netsec_phy_write(priv->mii_bus, priv->phy_addr, MII_BMCR, data);
ret = netsec_reset_hardware(priv, true);
if (ret)
goto err2;
spin_lock_init(&priv->desc_ring[NETSEC_RING_TX].lock);
spin_lock_init(&priv->desc_ring[NETSEC_RING_RX].lock);
return 0;
err2:
netsec_free_dring(priv, NETSEC_RING_RX);
err1:
netsec_free_dring(priv, NETSEC_RING_TX);
return ret;
}
static void netsec_netdev_uninit(struct net_device *ndev)
{
struct netsec_priv *priv = netdev_priv(ndev);
netsec_free_dring(priv, NETSEC_RING_RX);
netsec_free_dring(priv, NETSEC_RING_TX);
}
static int netsec_netdev_set_features(struct net_device *ndev,
netdev_features_t features)
{
struct netsec_priv *priv = netdev_priv(ndev);
priv->rx_cksum_offload_flag = !!(features & NETIF_F_RXCSUM);
return 0;
}
static int netsec_netdev_ioctl(struct net_device *ndev, struct ifreq *ifr,
int cmd)
{
return phy_mii_ioctl(ndev->phydev, ifr, cmd);
}
static int netsec_xdp_xmit(struct net_device *ndev, int n,
struct xdp_frame **frames, u32 flags)
{
struct netsec_priv *priv = netdev_priv(ndev);
struct netsec_desc_ring *tx_ring = &priv->desc_ring[NETSEC_RING_TX];
int drops = 0;
int i;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
spin_lock(&tx_ring->lock);
for (i = 0; i < n; i++) {
struct xdp_frame *xdpf = frames[i];
int err;
err = netsec_xdp_queue_one(priv, xdpf, true);
if (err != NETSEC_XDP_TX) {
xdp_return_frame_rx_napi(xdpf);
drops++;
} else {
tx_ring->xdp_xmit++;
}
}
spin_unlock(&tx_ring->lock);
if (unlikely(flags & XDP_XMIT_FLUSH)) {
netsec_xdp_ring_tx_db(priv, tx_ring->xdp_xmit);
tx_ring->xdp_xmit = 0;
}
return n - drops;
}
static int netsec_xdp_setup(struct netsec_priv *priv, struct bpf_prog *prog,
struct netlink_ext_ack *extack)
{
struct net_device *dev = priv->ndev;
struct bpf_prog *old_prog;
/* For now just support only the usual MTU sized frames */
if (prog && dev->mtu > 1500) {
NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
return -EOPNOTSUPP;
}
if (netif_running(dev))
netsec_netdev_stop(dev);
/* Detach old prog, if any */
old_prog = xchg(&priv->xdp_prog, prog);
if (old_prog)
bpf_prog_put(old_prog);
if (netif_running(dev))
netsec_netdev_open(dev);
return 0;
}
static int netsec_xdp(struct net_device *ndev, struct netdev_bpf *xdp)
{
struct netsec_priv *priv = netdev_priv(ndev);
switch (xdp->command) {
case XDP_SETUP_PROG:
return netsec_xdp_setup(priv, xdp->prog, xdp->extack);
case XDP_QUERY_PROG:
xdp->prog_id = priv->xdp_prog ? priv->xdp_prog->aux->id : 0;
return 0;
default:
return -EINVAL;
}
}
static const struct net_device_ops netsec_netdev_ops = {
.ndo_init = netsec_netdev_init,
.ndo_uninit = netsec_netdev_uninit,
.ndo_open = netsec_netdev_open,
.ndo_stop = netsec_netdev_stop,
.ndo_start_xmit = netsec_netdev_start_xmit,
.ndo_set_features = netsec_netdev_set_features,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = netsec_netdev_ioctl,
.ndo_xdp_xmit = netsec_xdp_xmit,
.ndo_bpf = netsec_xdp,
};
static int netsec_of_probe(struct platform_device *pdev,
struct netsec_priv *priv, u32 *phy_addr)
{
priv->phy_np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
if (!priv->phy_np) {
dev_err(&pdev->dev, "missing required property 'phy-handle'\n");
return -EINVAL;
}
*phy_addr = of_mdio_parse_addr(&pdev->dev, priv->phy_np);
priv->clk = devm_clk_get(&pdev->dev, NULL); /* get by 'phy_ref_clk' */
if (IS_ERR(priv->clk)) {
dev_err(&pdev->dev, "phy_ref_clk not found\n");
return PTR_ERR(priv->clk);
}
priv->freq = clk_get_rate(priv->clk);
return 0;
}
static int netsec_acpi_probe(struct platform_device *pdev,
struct netsec_priv *priv, u32 *phy_addr)
{
int ret;
if (!IS_ENABLED(CONFIG_ACPI))
return -ENODEV;
ret = device_property_read_u32(&pdev->dev, "phy-channel", phy_addr);
if (ret) {
dev_err(&pdev->dev,
"missing required property 'phy-channel'\n");
return ret;
}
ret = device_property_read_u32(&pdev->dev,
"socionext,phy-clock-frequency",
&priv->freq);
if (ret)
dev_err(&pdev->dev,
"missing required property 'socionext,phy-clock-frequency'\n");
return ret;
}
static void netsec_unregister_mdio(struct netsec_priv *priv)
{
struct phy_device *phydev = priv->phydev;
if (!dev_of_node(priv->dev) && phydev) {
phy_device_remove(phydev);
phy_device_free(phydev);
}
mdiobus_unregister(priv->mii_bus);
}
static int netsec_register_mdio(struct netsec_priv *priv, u32 phy_addr)
{
struct mii_bus *bus;
int ret;
bus = devm_mdiobus_alloc(priv->dev);
if (!bus)
return -ENOMEM;
snprintf(bus->id, MII_BUS_ID_SIZE, "%s", dev_name(priv->dev));
bus->priv = priv;
bus->name = "SNI NETSEC MDIO";
bus->read = netsec_phy_read;
bus->write = netsec_phy_write;
bus->parent = priv->dev;
priv->mii_bus = bus;
if (dev_of_node(priv->dev)) {
struct device_node *mdio_node, *parent = dev_of_node(priv->dev);
mdio_node = of_get_child_by_name(parent, "mdio");
if (mdio_node) {
parent = mdio_node;
} else {
/* older f/w doesn't populate the mdio subnode,
* allow relaxed upgrade of f/w in due time.
*/
dev_info(priv->dev, "Upgrade f/w for mdio subnode!\n");
}
ret = of_mdiobus_register(bus, parent);
of_node_put(mdio_node);
if (ret) {
dev_err(priv->dev, "mdiobus register err(%d)\n", ret);
return ret;
}
} else {
/* Mask out all PHYs from auto probing. */
bus->phy_mask = ~0;
ret = mdiobus_register(bus);
if (ret) {
dev_err(priv->dev, "mdiobus register err(%d)\n", ret);
return ret;
}
priv->phydev = get_phy_device(bus, phy_addr, false);
if (IS_ERR(priv->phydev)) {
ret = PTR_ERR(priv->phydev);
dev_err(priv->dev, "get_phy_device err(%d)\n", ret);
priv->phydev = NULL;
return -ENODEV;
}
ret = phy_device_register(priv->phydev);
if (ret) {
mdiobus_unregister(bus);
dev_err(priv->dev,
"phy_device_register err(%d)\n", ret);
}
}
return ret;
}
static int netsec_probe(struct platform_device *pdev)
{
struct resource *mmio_res, *eeprom_res, *irq_res;
u8 *mac, macbuf[ETH_ALEN];
struct netsec_priv *priv;
u32 hw_ver, phy_addr = 0;
struct net_device *ndev;
int ret;
mmio_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mmio_res) {
dev_err(&pdev->dev, "No MMIO resource found.\n");
return -ENODEV;
}
eeprom_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!eeprom_res) {
dev_info(&pdev->dev, "No EEPROM resource found.\n");
return -ENODEV;
}
irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!irq_res) {
dev_err(&pdev->dev, "No IRQ resource found.\n");
return -ENODEV;
}
ndev = alloc_etherdev(sizeof(*priv));
if (!ndev)
return -ENOMEM;
priv = netdev_priv(ndev);
spin_lock_init(&priv->reglock);
SET_NETDEV_DEV(ndev, &pdev->dev);
platform_set_drvdata(pdev, priv);
ndev->irq = irq_res->start;
priv->dev = &pdev->dev;
priv->ndev = ndev;
priv->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV |
NETIF_MSG_LINK | NETIF_MSG_PROBE;
priv->phy_interface = device_get_phy_mode(&pdev->dev);
if (priv->phy_interface < 0) {
dev_err(&pdev->dev, "missing required property 'phy-mode'\n");
ret = -ENODEV;
goto free_ndev;
}
priv->ioaddr = devm_ioremap(&pdev->dev, mmio_res->start,
resource_size(mmio_res));
if (!priv->ioaddr) {
dev_err(&pdev->dev, "devm_ioremap() failed\n");
ret = -ENXIO;
goto free_ndev;
}
priv->eeprom_base = devm_ioremap(&pdev->dev, eeprom_res->start,
resource_size(eeprom_res));
if (!priv->eeprom_base) {
dev_err(&pdev->dev, "devm_ioremap() failed for EEPROM\n");
ret = -ENXIO;
goto free_ndev;
}
mac = device_get_mac_address(&pdev->dev, macbuf, sizeof(macbuf));
if (mac)
ether_addr_copy(ndev->dev_addr, mac);
if (priv->eeprom_base &&
(!mac || !is_valid_ether_addr(ndev->dev_addr))) {
void __iomem *macp = priv->eeprom_base +
NETSEC_EEPROM_MAC_ADDRESS;
ndev->dev_addr[0] = readb(macp + 3);
ndev->dev_addr[1] = readb(macp + 2);
ndev->dev_addr[2] = readb(macp + 1);
ndev->dev_addr[3] = readb(macp + 0);
ndev->dev_addr[4] = readb(macp + 7);
ndev->dev_addr[5] = readb(macp + 6);
}
if (!is_valid_ether_addr(ndev->dev_addr)) {
dev_warn(&pdev->dev, "No MAC address found, using random\n");
eth_hw_addr_random(ndev);
}
if (dev_of_node(&pdev->dev))
ret = netsec_of_probe(pdev, priv, &phy_addr);
else
ret = netsec_acpi_probe(pdev, priv, &phy_addr);
if (ret)
goto free_ndev;
priv->phy_addr = phy_addr;
if (!priv->freq) {
dev_err(&pdev->dev, "missing PHY reference clock frequency\n");
ret = -ENODEV;
goto free_ndev;
}
/* default for throughput */
priv->et_coalesce.rx_coalesce_usecs = 500;
priv->et_coalesce.rx_max_coalesced_frames = 8;
priv->et_coalesce.tx_coalesce_usecs = 500;
priv->et_coalesce.tx_max_coalesced_frames = 8;
ret = device_property_read_u32(&pdev->dev, "max-frame-size",
&ndev->max_mtu);
if (ret < 0)
ndev->max_mtu = ETH_DATA_LEN;
/* runtime_pm coverage just for probe, open/close also cover it */
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);
hw_ver = netsec_read(priv, NETSEC_REG_F_TAIKI_VER);
/* this driver only supports F_TAIKI style NETSEC */
if (NETSEC_F_NETSEC_VER_MAJOR_NUM(hw_ver) !=
NETSEC_F_NETSEC_VER_MAJOR_NUM(NETSEC_REG_NETSEC_VER_F_TAIKI)) {
ret = -ENODEV;
goto pm_disable;
}
dev_info(&pdev->dev, "hardware revision %d.%d\n",
hw_ver >> 16, hw_ver & 0xffff);
netif_napi_add(ndev, &priv->napi, netsec_napi_poll, NAPI_POLL_WEIGHT);
ndev->netdev_ops = &netsec_netdev_ops;
ndev->ethtool_ops = &netsec_ethtool_ops;
ndev->features |= NETIF_F_HIGHDMA | NETIF_F_RXCSUM | NETIF_F_GSO |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
ndev->hw_features = ndev->features;
priv->rx_cksum_offload_flag = true;
ret = netsec_register_mdio(priv, phy_addr);
if (ret)
goto unreg_napi;
net: netsec: reduce DMA mask to 40 bits The netsec network controller IP can drive 64 address bits for DMA, and the DMA mask is set accordingly in the driver. However, the SynQuacer SoC, which is the only silicon incorporating this IP at the moment, integrates this IP in a manner that leaves address bits [63:40] unconnected. Up until now, this has not resulted in any problems, given that the DDR controller doesn't decode those bits to begin with. However, recent firmware updates for platforms incorporating this SoC allow the IOMMU to be enabled, which does decode address bits [47:40], and allocates top down from the IOVA space, producing DMA addresses that have bits set that have been left unconnected. Both the DT and ACPI (IORT) descriptions of the platform take this into account, and only describe a DMA address space of 40 bits (using either dma-ranges DT properties, or DMA address limits in IORT named component nodes). However, even though our IOMMU and bus layers may take such limitations into account by setting a narrower DMA mask when creating the platform device, the netsec probe() entrypoint follows the common practice of setting the DMA mask uncondionally, according to the capabilities of the IP block itself rather than to its integration into the chip. It is currently unclear what the correct fix is here. We could hack around it by only setting the DMA mask if it deviates from its default value of DMA_BIT_MASK(32). However, this makes it impossible for the bus layer to use DMA_BIT_MASK(32) as the bus limit, and so it appears that a more comprehensive approach is required to take DMA limits imposed by the SoC as a whole into account. In the mean time, let's limit the DMA mask to 40 bits. Given that there is currently only one SoC that incorporates this IP, this is a reasonable approach that can be backported to -stable and buys us some time to come up with a proper fix going forward. Fixes: 533dd11a12f6 ("net: socionext: Add Synquacer NetSec driver") Cc: Robin Murphy <robin.murphy@arm.com> Cc: Jassi Brar <jaswinder.singh@linaro.org> Cc: Masahisa Kojima <masahisa.kojima@linaro.org> Cc: Ilias Apalodimas <ilias.apalodimas@linaro.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Jassi Brar <jaswinder.singh@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-25 20:50:37 +08:00
if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)))
dev_warn(&pdev->dev, "Failed to set DMA mask\n");
ret = register_netdev(ndev);
if (ret) {
netif_err(priv, probe, ndev, "register_netdev() failed\n");
goto unreg_mii;
}
pm_runtime_put_sync(&pdev->dev);
return 0;
unreg_mii:
netsec_unregister_mdio(priv);
unreg_napi:
netif_napi_del(&priv->napi);
pm_disable:
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
free_ndev:
free_netdev(ndev);
dev_err(&pdev->dev, "init failed\n");
return ret;
}
static int netsec_remove(struct platform_device *pdev)
{
struct netsec_priv *priv = platform_get_drvdata(pdev);
unregister_netdev(priv->ndev);
netsec_unregister_mdio(priv);
netif_napi_del(&priv->napi);
pm_runtime_disable(&pdev->dev);
free_netdev(priv->ndev);
return 0;
}
#ifdef CONFIG_PM
static int netsec_runtime_suspend(struct device *dev)
{
struct netsec_priv *priv = dev_get_drvdata(dev);
netsec_write(priv, NETSEC_REG_CLK_EN, 0);
clk_disable_unprepare(priv->clk);
return 0;
}
static int netsec_runtime_resume(struct device *dev)
{
struct netsec_priv *priv = dev_get_drvdata(dev);
clk_prepare_enable(priv->clk);
netsec_write(priv, NETSEC_REG_CLK_EN, NETSEC_CLK_EN_REG_DOM_D |
NETSEC_CLK_EN_REG_DOM_C |
NETSEC_CLK_EN_REG_DOM_G);
return 0;
}
#endif
static const struct dev_pm_ops netsec_pm_ops = {
SET_RUNTIME_PM_OPS(netsec_runtime_suspend, netsec_runtime_resume, NULL)
};
static const struct of_device_id netsec_dt_ids[] = {
{ .compatible = "socionext,synquacer-netsec" },
{ }
};
MODULE_DEVICE_TABLE(of, netsec_dt_ids);
#ifdef CONFIG_ACPI
static const struct acpi_device_id netsec_acpi_ids[] = {
{ "SCX0001" },
{ }
};
MODULE_DEVICE_TABLE(acpi, netsec_acpi_ids);
#endif
static struct platform_driver netsec_driver = {
.probe = netsec_probe,
.remove = netsec_remove,
.driver = {
.name = "netsec",
.pm = &netsec_pm_ops,
.of_match_table = netsec_dt_ids,
.acpi_match_table = ACPI_PTR(netsec_acpi_ids),
},
};
module_platform_driver(netsec_driver);
MODULE_AUTHOR("Jassi Brar <jaswinder.singh@linaro.org>");
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_DESCRIPTION("NETSEC Ethernet driver");
MODULE_LICENSE("GPL");