linux/drivers/i2c/busses/i2c-xiic.c

820 lines
23 KiB
C
Raw Normal View History

/*
* i2c-xiic.c
* Copyright (c) 2002-2007 Xilinx Inc.
* Copyright (c) 2009-2010 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* This code was implemented by Mocean Laboratories AB when porting linux
* to the automotive development board Russellville. The copyright holder
* as seen in the header is Intel corporation.
* Mocean Laboratories forked off the GNU/Linux platform work into a
* separate company called Pelagicore AB, which committed the code to the
* kernel.
*/
/* Supports:
* Xilinx IIC
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <linux/i2c-xiic.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/of.h>
#define DRIVER_NAME "xiic-i2c"
enum xilinx_i2c_state {
STATE_DONE,
STATE_ERROR,
STATE_START
};
/**
* struct xiic_i2c - Internal representation of the XIIC I2C bus
* @base: Memory base of the HW registers
* @wait: Wait queue for callers
* @adap: Kernel adapter representation
* @tx_msg: Messages from above to be sent
* @lock: Mutual exclusion
* @tx_pos: Current pos in TX message
* @nmsgs: Number of messages in tx_msg
* @state: See STATE_
* @rx_msg: Current RX message
* @rx_pos: Position within current RX message
*/
struct xiic_i2c {
void __iomem *base;
wait_queue_head_t wait;
struct i2c_adapter adap;
struct i2c_msg *tx_msg;
spinlock_t lock;
unsigned int tx_pos;
unsigned int nmsgs;
enum xilinx_i2c_state state;
struct i2c_msg *rx_msg;
int rx_pos;
};
#define XIIC_MSB_OFFSET 0
#define XIIC_REG_OFFSET (0x100+XIIC_MSB_OFFSET)
/*
* Register offsets in bytes from RegisterBase. Three is added to the
* base offset to access LSB (IBM style) of the word
*/
#define XIIC_CR_REG_OFFSET (0x00+XIIC_REG_OFFSET) /* Control Register */
#define XIIC_SR_REG_OFFSET (0x04+XIIC_REG_OFFSET) /* Status Register */
#define XIIC_DTR_REG_OFFSET (0x08+XIIC_REG_OFFSET) /* Data Tx Register */
#define XIIC_DRR_REG_OFFSET (0x0C+XIIC_REG_OFFSET) /* Data Rx Register */
#define XIIC_ADR_REG_OFFSET (0x10+XIIC_REG_OFFSET) /* Address Register */
#define XIIC_TFO_REG_OFFSET (0x14+XIIC_REG_OFFSET) /* Tx FIFO Occupancy */
#define XIIC_RFO_REG_OFFSET (0x18+XIIC_REG_OFFSET) /* Rx FIFO Occupancy */
#define XIIC_TBA_REG_OFFSET (0x1C+XIIC_REG_OFFSET) /* 10 Bit Address reg */
#define XIIC_RFD_REG_OFFSET (0x20+XIIC_REG_OFFSET) /* Rx FIFO Depth reg */
#define XIIC_GPO_REG_OFFSET (0x24+XIIC_REG_OFFSET) /* Output Register */
/* Control Register masks */
#define XIIC_CR_ENABLE_DEVICE_MASK 0x01 /* Device enable = 1 */
#define XIIC_CR_TX_FIFO_RESET_MASK 0x02 /* Transmit FIFO reset=1 */
#define XIIC_CR_MSMS_MASK 0x04 /* Master starts Txing=1 */
#define XIIC_CR_DIR_IS_TX_MASK 0x08 /* Dir of tx. Txing=1 */
#define XIIC_CR_NO_ACK_MASK 0x10 /* Tx Ack. NO ack = 1 */
#define XIIC_CR_REPEATED_START_MASK 0x20 /* Repeated start = 1 */
#define XIIC_CR_GENERAL_CALL_MASK 0x40 /* Gen Call enabled = 1 */
/* Status Register masks */
#define XIIC_SR_GEN_CALL_MASK 0x01 /* 1=a mstr issued a GC */
#define XIIC_SR_ADDR_AS_SLAVE_MASK 0x02 /* 1=when addr as slave */
#define XIIC_SR_BUS_BUSY_MASK 0x04 /* 1 = bus is busy */
#define XIIC_SR_MSTR_RDING_SLAVE_MASK 0x08 /* 1=Dir: mstr <-- slave */
#define XIIC_SR_TX_FIFO_FULL_MASK 0x10 /* 1 = Tx FIFO full */
#define XIIC_SR_RX_FIFO_FULL_MASK 0x20 /* 1 = Rx FIFO full */
#define XIIC_SR_RX_FIFO_EMPTY_MASK 0x40 /* 1 = Rx FIFO empty */
#define XIIC_SR_TX_FIFO_EMPTY_MASK 0x80 /* 1 = Tx FIFO empty */
/* Interrupt Status Register masks Interrupt occurs when... */
#define XIIC_INTR_ARB_LOST_MASK 0x01 /* 1 = arbitration lost */
#define XIIC_INTR_TX_ERROR_MASK 0x02 /* 1=Tx error/msg complete */
#define XIIC_INTR_TX_EMPTY_MASK 0x04 /* 1 = Tx FIFO/reg empty */
#define XIIC_INTR_RX_FULL_MASK 0x08 /* 1=Rx FIFO/reg=OCY level */
#define XIIC_INTR_BNB_MASK 0x10 /* 1 = Bus not busy */
#define XIIC_INTR_AAS_MASK 0x20 /* 1 = when addr as slave */
#define XIIC_INTR_NAAS_MASK 0x40 /* 1 = not addr as slave */
#define XIIC_INTR_TX_HALF_MASK 0x80 /* 1 = TX FIFO half empty */
/* The following constants specify the depth of the FIFOs */
#define IIC_RX_FIFO_DEPTH 16 /* Rx fifo capacity */
#define IIC_TX_FIFO_DEPTH 16 /* Tx fifo capacity */
/* The following constants specify groups of interrupts that are typically
* enabled or disables at the same time
*/
#define XIIC_TX_INTERRUPTS \
(XIIC_INTR_TX_ERROR_MASK | XIIC_INTR_TX_EMPTY_MASK | XIIC_INTR_TX_HALF_MASK)
#define XIIC_TX_RX_INTERRUPTS (XIIC_INTR_RX_FULL_MASK | XIIC_TX_INTERRUPTS)
/* The following constants are used with the following macros to specify the
* operation, a read or write operation.
*/
#define XIIC_READ_OPERATION 1
#define XIIC_WRITE_OPERATION 0
/*
* Tx Fifo upper bit masks.
*/
#define XIIC_TX_DYN_START_MASK 0x0100 /* 1 = Set dynamic start */
#define XIIC_TX_DYN_STOP_MASK 0x0200 /* 1 = Set dynamic stop */
/*
* The following constants define the register offsets for the Interrupt
* registers. There are some holes in the memory map for reserved addresses
* to allow other registers to be added and still match the memory map of the
* interrupt controller registers
*/
#define XIIC_DGIER_OFFSET 0x1C /* Device Global Interrupt Enable Register */
#define XIIC_IISR_OFFSET 0x20 /* Interrupt Status Register */
#define XIIC_IIER_OFFSET 0x28 /* Interrupt Enable Register */
#define XIIC_RESETR_OFFSET 0x40 /* Reset Register */
#define XIIC_RESET_MASK 0xAUL
/*
* The following constant is used for the device global interrupt enable
* register, to enable all interrupts for the device, this is the only bit
* in the register
*/
#define XIIC_GINTR_ENABLE_MASK 0x80000000UL
#define xiic_tx_space(i2c) ((i2c)->tx_msg->len - (i2c)->tx_pos)
#define xiic_rx_space(i2c) ((i2c)->rx_msg->len - (i2c)->rx_pos)
static void xiic_start_xfer(struct xiic_i2c *i2c);
static void __xiic_start_xfer(struct xiic_i2c *i2c);
static inline void xiic_setreg8(struct xiic_i2c *i2c, int reg, u8 value)
{
iowrite8(value, i2c->base + reg);
}
static inline u8 xiic_getreg8(struct xiic_i2c *i2c, int reg)
{
return ioread8(i2c->base + reg);
}
static inline void xiic_setreg16(struct xiic_i2c *i2c, int reg, u16 value)
{
iowrite16(value, i2c->base + reg);
}
static inline void xiic_setreg32(struct xiic_i2c *i2c, int reg, int value)
{
iowrite32(value, i2c->base + reg);
}
static inline int xiic_getreg32(struct xiic_i2c *i2c, int reg)
{
return ioread32(i2c->base + reg);
}
static inline void xiic_irq_dis(struct xiic_i2c *i2c, u32 mask)
{
u32 ier = xiic_getreg32(i2c, XIIC_IIER_OFFSET);
xiic_setreg32(i2c, XIIC_IIER_OFFSET, ier & ~mask);
}
static inline void xiic_irq_en(struct xiic_i2c *i2c, u32 mask)
{
u32 ier = xiic_getreg32(i2c, XIIC_IIER_OFFSET);
xiic_setreg32(i2c, XIIC_IIER_OFFSET, ier | mask);
}
static inline void xiic_irq_clr(struct xiic_i2c *i2c, u32 mask)
{
u32 isr = xiic_getreg32(i2c, XIIC_IISR_OFFSET);
xiic_setreg32(i2c, XIIC_IISR_OFFSET, isr & mask);
}
static inline void xiic_irq_clr_en(struct xiic_i2c *i2c, u32 mask)
{
xiic_irq_clr(i2c, mask);
xiic_irq_en(i2c, mask);
}
static void xiic_clear_rx_fifo(struct xiic_i2c *i2c)
{
u8 sr;
for (sr = xiic_getreg8(i2c, XIIC_SR_REG_OFFSET);
!(sr & XIIC_SR_RX_FIFO_EMPTY_MASK);
sr = xiic_getreg8(i2c, XIIC_SR_REG_OFFSET))
xiic_getreg8(i2c, XIIC_DRR_REG_OFFSET);
}
static void xiic_reinit(struct xiic_i2c *i2c)
{
xiic_setreg32(i2c, XIIC_RESETR_OFFSET, XIIC_RESET_MASK);
/* Set receive Fifo depth to maximum (zero based). */
xiic_setreg8(i2c, XIIC_RFD_REG_OFFSET, IIC_RX_FIFO_DEPTH - 1);
/* Reset Tx Fifo. */
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, XIIC_CR_TX_FIFO_RESET_MASK);
/* Enable IIC Device, remove Tx Fifo reset & disable general call. */
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, XIIC_CR_ENABLE_DEVICE_MASK);
/* make sure RX fifo is empty */
xiic_clear_rx_fifo(i2c);
/* Enable interrupts */
xiic_setreg32(i2c, XIIC_DGIER_OFFSET, XIIC_GINTR_ENABLE_MASK);
xiic_irq_clr_en(i2c, XIIC_INTR_AAS_MASK | XIIC_INTR_ARB_LOST_MASK);
}
static void xiic_deinit(struct xiic_i2c *i2c)
{
u8 cr;
xiic_setreg32(i2c, XIIC_RESETR_OFFSET, XIIC_RESET_MASK);
/* Disable IIC Device. */
cr = xiic_getreg8(i2c, XIIC_CR_REG_OFFSET);
xiic_setreg8(i2c, XIIC_CR_REG_OFFSET, cr & ~XIIC_CR_ENABLE_DEVICE_MASK);
}
static void xiic_read_rx(struct xiic_i2c *i2c)
{
u8 bytes_in_fifo;
int i;
bytes_in_fifo = xiic_getreg8(i2c, XIIC_RFO_REG_OFFSET) + 1;
dev_dbg(i2c->adap.dev.parent, "%s entry, bytes in fifo: %d, msg: %d"
", SR: 0x%x, CR: 0x%x\n",
__func__, bytes_in_fifo, xiic_rx_space(i2c),
xiic_getreg8(i2c, XIIC_SR_REG_OFFSET),
xiic_getreg8(i2c, XIIC_CR_REG_OFFSET));
if (bytes_in_fifo > xiic_rx_space(i2c))
bytes_in_fifo = xiic_rx_space(i2c);
for (i = 0; i < bytes_in_fifo; i++)
i2c->rx_msg->buf[i2c->rx_pos++] =
xiic_getreg8(i2c, XIIC_DRR_REG_OFFSET);
xiic_setreg8(i2c, XIIC_RFD_REG_OFFSET,
(xiic_rx_space(i2c) > IIC_RX_FIFO_DEPTH) ?
IIC_RX_FIFO_DEPTH - 1 : xiic_rx_space(i2c) - 1);
}
static int xiic_tx_fifo_space(struct xiic_i2c *i2c)
{
/* return the actual space left in the FIFO */
return IIC_TX_FIFO_DEPTH - xiic_getreg8(i2c, XIIC_TFO_REG_OFFSET) - 1;
}
static void xiic_fill_tx_fifo(struct xiic_i2c *i2c)
{
u8 fifo_space = xiic_tx_fifo_space(i2c);
int len = xiic_tx_space(i2c);
len = (len > fifo_space) ? fifo_space : len;
dev_dbg(i2c->adap.dev.parent, "%s entry, len: %d, fifo space: %d\n",
__func__, len, fifo_space);
while (len--) {
u16 data = i2c->tx_msg->buf[i2c->tx_pos++];
if ((xiic_tx_space(i2c) == 0) && (i2c->nmsgs == 1)) {
/* last message in transfer -> STOP */
data |= XIIC_TX_DYN_STOP_MASK;
dev_dbg(i2c->adap.dev.parent, "%s TX STOP\n", __func__);
}
xiic_setreg16(i2c, XIIC_DTR_REG_OFFSET, data);
}
}
static void xiic_wakeup(struct xiic_i2c *i2c, int code)
{
i2c->tx_msg = NULL;
i2c->rx_msg = NULL;
i2c->nmsgs = 0;
i2c->state = code;
wake_up(&i2c->wait);
}
static void xiic_process(struct xiic_i2c *i2c)
{
u32 pend, isr, ier;
u32 clr = 0;
/* Get the interrupt Status from the IPIF. There is no clearing of
* interrupts in the IPIF. Interrupts must be cleared at the source.
* To find which interrupts are pending; AND interrupts pending with
* interrupts masked.
*/
isr = xiic_getreg32(i2c, XIIC_IISR_OFFSET);
ier = xiic_getreg32(i2c, XIIC_IIER_OFFSET);
pend = isr & ier;
dev_dbg(i2c->adap.dev.parent, "%s entry, IER: 0x%x, ISR: 0x%x, "
"pend: 0x%x, SR: 0x%x, msg: %p, nmsgs: %d\n",
__func__, ier, isr, pend, xiic_getreg8(i2c, XIIC_SR_REG_OFFSET),
i2c->tx_msg, i2c->nmsgs);
/* Do not processes a devices interrupts if the device has no
* interrupts pending
*/
if (!pend)
return;
/* Service requesting interrupt */
if ((pend & XIIC_INTR_ARB_LOST_MASK) ||
((pend & XIIC_INTR_TX_ERROR_MASK) &&
!(pend & XIIC_INTR_RX_FULL_MASK))) {
/* bus arbritration lost, or...
* Transmit error _OR_ RX completed
* if this happens when RX_FULL is not set
* this is probably a TX error
*/
dev_dbg(i2c->adap.dev.parent, "%s error\n", __func__);
/* dynamic mode seem to suffer from problems if we just flushes
* fifos and the next message is a TX with len 0 (only addr)
* reset the IP instead of just flush fifos
*/
xiic_reinit(i2c);
if (i2c->tx_msg)
xiic_wakeup(i2c, STATE_ERROR);
} else if (pend & XIIC_INTR_RX_FULL_MASK) {
/* Receive register/FIFO is full */
clr = XIIC_INTR_RX_FULL_MASK;
if (!i2c->rx_msg) {
dev_dbg(i2c->adap.dev.parent,
"%s unexpexted RX IRQ\n", __func__);
xiic_clear_rx_fifo(i2c);
goto out;
}
xiic_read_rx(i2c);
if (xiic_rx_space(i2c) == 0) {
/* this is the last part of the message */
i2c->rx_msg = NULL;
/* also clear TX error if there (RX complete) */
clr |= (isr & XIIC_INTR_TX_ERROR_MASK);
dev_dbg(i2c->adap.dev.parent,
"%s end of message, nmsgs: %d\n",
__func__, i2c->nmsgs);
/* send next message if this wasn't the last,
* otherwise the transfer will be finialise when
* receiving the bus not busy interrupt
*/
if (i2c->nmsgs > 1) {
i2c->nmsgs--;
i2c->tx_msg++;
dev_dbg(i2c->adap.dev.parent,
"%s will start next...\n", __func__);
__xiic_start_xfer(i2c);
}
}
} else if (pend & XIIC_INTR_BNB_MASK) {
/* IIC bus has transitioned to not busy */
clr = XIIC_INTR_BNB_MASK;
/* The bus is not busy, disable BusNotBusy interrupt */
xiic_irq_dis(i2c, XIIC_INTR_BNB_MASK);
if (!i2c->tx_msg)
goto out;
if ((i2c->nmsgs == 1) && !i2c->rx_msg &&
xiic_tx_space(i2c) == 0)
xiic_wakeup(i2c, STATE_DONE);
else
xiic_wakeup(i2c, STATE_ERROR);
} else if (pend & (XIIC_INTR_TX_EMPTY_MASK | XIIC_INTR_TX_HALF_MASK)) {
/* Transmit register/FIFO is empty or ½ empty */
clr = pend &
(XIIC_INTR_TX_EMPTY_MASK | XIIC_INTR_TX_HALF_MASK);
if (!i2c->tx_msg) {
dev_dbg(i2c->adap.dev.parent,
"%s unexpexted TX IRQ\n", __func__);
goto out;
}
xiic_fill_tx_fifo(i2c);
/* current message sent and there is space in the fifo */
if (!xiic_tx_space(i2c) && xiic_tx_fifo_space(i2c) >= 2) {
dev_dbg(i2c->adap.dev.parent,
"%s end of message sent, nmsgs: %d\n",
__func__, i2c->nmsgs);
if (i2c->nmsgs > 1) {
i2c->nmsgs--;
i2c->tx_msg++;
__xiic_start_xfer(i2c);
} else {
xiic_irq_dis(i2c, XIIC_INTR_TX_HALF_MASK);
dev_dbg(i2c->adap.dev.parent,
"%s Got TX IRQ but no more to do...\n",
__func__);
}
} else if (!xiic_tx_space(i2c) && (i2c->nmsgs == 1))
/* current frame is sent and is last,
* make sure to disable tx half
*/
xiic_irq_dis(i2c, XIIC_INTR_TX_HALF_MASK);
} else {
/* got IRQ which is not acked */
dev_err(i2c->adap.dev.parent, "%s Got unexpected IRQ\n",
__func__);
clr = pend;
}
out:
dev_dbg(i2c->adap.dev.parent, "%s clr: 0x%x\n", __func__, clr);
xiic_setreg32(i2c, XIIC_IISR_OFFSET, clr);
}
static int xiic_bus_busy(struct xiic_i2c *i2c)
{
u8 sr = xiic_getreg8(i2c, XIIC_SR_REG_OFFSET);
return (sr & XIIC_SR_BUS_BUSY_MASK) ? -EBUSY : 0;
}
static int xiic_busy(struct xiic_i2c *i2c)
{
int tries = 3;
int err;
if (i2c->tx_msg)
return -EBUSY;
/* for instance if previous transfer was terminated due to TX error
* it might be that the bus is on it's way to become available
* give it at most 3 ms to wake
*/
err = xiic_bus_busy(i2c);
while (err && tries--) {
mdelay(1);
err = xiic_bus_busy(i2c);
}
return err;
}
static void xiic_start_recv(struct xiic_i2c *i2c)
{
u8 rx_watermark;
struct i2c_msg *msg = i2c->rx_msg = i2c->tx_msg;
/* Clear and enable Rx full interrupt. */
xiic_irq_clr_en(i2c, XIIC_INTR_RX_FULL_MASK | XIIC_INTR_TX_ERROR_MASK);
/* we want to get all but last byte, because the TX_ERROR IRQ is used
* to inidicate error ACK on the address, and negative ack on the last
* received byte, so to not mix them receive all but last.
* In the case where there is only one byte to receive
* we can check if ERROR and RX full is set at the same time
*/
rx_watermark = msg->len;
if (rx_watermark > IIC_RX_FIFO_DEPTH)
rx_watermark = IIC_RX_FIFO_DEPTH;
xiic_setreg8(i2c, XIIC_RFD_REG_OFFSET, rx_watermark - 1);
if (!(msg->flags & I2C_M_NOSTART))
/* write the address */
xiic_setreg16(i2c, XIIC_DTR_REG_OFFSET,
(msg->addr << 1) | XIIC_READ_OPERATION |
XIIC_TX_DYN_START_MASK);
xiic_irq_clr_en(i2c, XIIC_INTR_BNB_MASK);
xiic_setreg16(i2c, XIIC_DTR_REG_OFFSET,
msg->len | ((i2c->nmsgs == 1) ? XIIC_TX_DYN_STOP_MASK : 0));
if (i2c->nmsgs == 1)
/* very last, enable bus not busy as well */
xiic_irq_clr_en(i2c, XIIC_INTR_BNB_MASK);
/* the message is tx:ed */
i2c->tx_pos = msg->len;
}
static void xiic_start_send(struct xiic_i2c *i2c)
{
struct i2c_msg *msg = i2c->tx_msg;
xiic_irq_clr(i2c, XIIC_INTR_TX_ERROR_MASK);
dev_dbg(i2c->adap.dev.parent, "%s entry, msg: %p, len: %d, "
"ISR: 0x%x, CR: 0x%x\n",
__func__, msg, msg->len, xiic_getreg32(i2c, XIIC_IISR_OFFSET),
xiic_getreg8(i2c, XIIC_CR_REG_OFFSET));
if (!(msg->flags & I2C_M_NOSTART)) {
/* write the address */
u16 data = ((msg->addr << 1) & 0xfe) | XIIC_WRITE_OPERATION |
XIIC_TX_DYN_START_MASK;
if ((i2c->nmsgs == 1) && msg->len == 0)
/* no data and last message -> add STOP */
data |= XIIC_TX_DYN_STOP_MASK;
xiic_setreg16(i2c, XIIC_DTR_REG_OFFSET, data);
}
xiic_fill_tx_fifo(i2c);
/* Clear any pending Tx empty, Tx Error and then enable them. */
xiic_irq_clr_en(i2c, XIIC_INTR_TX_EMPTY_MASK | XIIC_INTR_TX_ERROR_MASK |
XIIC_INTR_BNB_MASK);
}
static irqreturn_t xiic_isr(int irq, void *dev_id)
{
struct xiic_i2c *i2c = dev_id;
spin_lock(&i2c->lock);
/* disable interrupts globally */
xiic_setreg32(i2c, XIIC_DGIER_OFFSET, 0);
dev_dbg(i2c->adap.dev.parent, "%s entry\n", __func__);
xiic_process(i2c);
xiic_setreg32(i2c, XIIC_DGIER_OFFSET, XIIC_GINTR_ENABLE_MASK);
spin_unlock(&i2c->lock);
return IRQ_HANDLED;
}
static void __xiic_start_xfer(struct xiic_i2c *i2c)
{
int first = 1;
int fifo_space = xiic_tx_fifo_space(i2c);
dev_dbg(i2c->adap.dev.parent, "%s entry, msg: %p, fifos space: %d\n",
__func__, i2c->tx_msg, fifo_space);
if (!i2c->tx_msg)
return;
i2c->rx_pos = 0;
i2c->tx_pos = 0;
i2c->state = STATE_START;
while ((fifo_space >= 2) && (first || (i2c->nmsgs > 1))) {
if (!first) {
i2c->nmsgs--;
i2c->tx_msg++;
i2c->tx_pos = 0;
} else
first = 0;
if (i2c->tx_msg->flags & I2C_M_RD) {
/* we dont date putting several reads in the FIFO */
xiic_start_recv(i2c);
return;
} else {
xiic_start_send(i2c);
if (xiic_tx_space(i2c) != 0) {
/* the message could not be completely sent */
break;
}
}
fifo_space = xiic_tx_fifo_space(i2c);
}
/* there are more messages or the current one could not be completely
* put into the FIFO, also enable the half empty interrupt
*/
if (i2c->nmsgs > 1 || xiic_tx_space(i2c))
xiic_irq_clr_en(i2c, XIIC_INTR_TX_HALF_MASK);
}
static void xiic_start_xfer(struct xiic_i2c *i2c)
{
unsigned long flags;
spin_lock_irqsave(&i2c->lock, flags);
xiic_reinit(i2c);
/* disable interrupts globally */
xiic_setreg32(i2c, XIIC_DGIER_OFFSET, 0);
spin_unlock_irqrestore(&i2c->lock, flags);
__xiic_start_xfer(i2c);
xiic_setreg32(i2c, XIIC_DGIER_OFFSET, XIIC_GINTR_ENABLE_MASK);
}
static int xiic_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
struct xiic_i2c *i2c = i2c_get_adapdata(adap);
int err;
dev_dbg(adap->dev.parent, "%s entry SR: 0x%x\n", __func__,
xiic_getreg8(i2c, XIIC_SR_REG_OFFSET));
err = xiic_busy(i2c);
if (err)
return err;
i2c->tx_msg = msgs;
i2c->nmsgs = num;
xiic_start_xfer(i2c);
if (wait_event_timeout(i2c->wait, (i2c->state == STATE_ERROR) ||
(i2c->state == STATE_DONE), HZ))
return (i2c->state == STATE_DONE) ? num : -EIO;
else {
i2c->tx_msg = NULL;
i2c->rx_msg = NULL;
i2c->nmsgs = 0;
return -ETIMEDOUT;
}
}
static u32 xiic_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm xiic_algorithm = {
.master_xfer = xiic_xfer,
.functionality = xiic_func,
};
static struct i2c_adapter xiic_adapter = {
.owner = THIS_MODULE,
.name = DRIVER_NAME,
.class = I2C_CLASS_HWMON | I2C_CLASS_SPD,
.algo = &xiic_algorithm,
};
static int xiic_i2c_probe(struct platform_device *pdev)
{
struct xiic_i2c *i2c;
struct xiic_i2c_platform_data *pdata;
struct resource *res;
int ret, irq;
u8 i;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
goto resource_missing;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
goto resource_missing;
pdata = dev_get_platdata(&pdev->dev);
i2c = kzalloc(sizeof(*i2c), GFP_KERNEL);
if (!i2c)
return -ENOMEM;
if (!request_mem_region(res->start, resource_size(res), pdev->name)) {
dev_err(&pdev->dev, "Memory region busy\n");
ret = -EBUSY;
goto request_mem_failed;
}
i2c->base = ioremap(res->start, resource_size(res));
if (!i2c->base) {
dev_err(&pdev->dev, "Unable to map registers\n");
ret = -EIO;
goto map_failed;
}
/* hook up driver to tree */
platform_set_drvdata(pdev, i2c);
i2c->adap = xiic_adapter;
i2c_set_adapdata(&i2c->adap, i2c);
i2c->adap.dev.parent = &pdev->dev;
i2c->adap.dev.of_node = pdev->dev.of_node;
xiic_reinit(i2c);
spin_lock_init(&i2c->lock);
init_waitqueue_head(&i2c->wait);
ret = request_irq(irq, xiic_isr, 0, pdev->name, i2c);
if (ret) {
dev_err(&pdev->dev, "Cannot claim IRQ\n");
goto request_irq_failed;
}
/* add i2c adapter to i2c tree */
ret = i2c_add_adapter(&i2c->adap);
if (ret) {
dev_err(&pdev->dev, "Failed to add adapter\n");
goto add_adapter_failed;
}
if (pdata) {
/* add in known devices to the bus */
for (i = 0; i < pdata->num_devices; i++)
i2c_new_device(&i2c->adap, pdata->devices + i);
}
return 0;
add_adapter_failed:
free_irq(irq, i2c);
request_irq_failed:
xiic_deinit(i2c);
iounmap(i2c->base);
map_failed:
release_mem_region(res->start, resource_size(res));
request_mem_failed:
kfree(i2c);
return ret;
resource_missing:
dev_err(&pdev->dev, "IRQ or Memory resource is missing\n");
return -ENOENT;
}
static int xiic_i2c_remove(struct platform_device *pdev)
{
struct xiic_i2c *i2c = platform_get_drvdata(pdev);
struct resource *res;
/* remove adapter & data */
i2c_del_adapter(&i2c->adap);
xiic_deinit(i2c);
free_irq(platform_get_irq(pdev, 0), i2c);
iounmap(i2c->base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res)
release_mem_region(res->start, resource_size(res));
kfree(i2c);
return 0;
}
#if defined(CONFIG_OF)
static const struct of_device_id xiic_of_match[] = {
{ .compatible = "xlnx,xps-iic-2.00.a", },
{},
};
MODULE_DEVICE_TABLE(of, xiic_of_match);
#endif
static struct platform_driver xiic_i2c_driver = {
.probe = xiic_i2c_probe,
.remove = xiic_i2c_remove,
.driver = {
.owner = THIS_MODULE,
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(xiic_of_match),
},
};
module_platform_driver(xiic_i2c_driver);
MODULE_AUTHOR("info@mocean-labs.com");
MODULE_DESCRIPTION("Xilinx I2C bus driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:"DRIVER_NAME);