linux/fs/notify/fanotify/fanotify.c

291 lines
7.6 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/fanotify.h>
#include <linux/fdtable.h>
#include <linux/fsnotify_backend.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/kernel.h> /* UINT_MAX */
#include <linux/mount.h>
#include <linux/sched.h>
#include <linux/sched/user.h>
#include <linux/sched/signal.h>
#include <linux/types.h>
#include <linux/wait.h>
audit: Record fanotify access control decisions The fanotify interface allows user space daemons to make access control decisions. Under common criteria requirements, we need to optionally record decisions based on policy. This patch adds a bit mask, FAN_AUDIT, that a user space daemon can 'or' into the response decision which will tell the kernel that it made a decision and record it. It would be used something like this in user space code: response.response = FAN_DENY | FAN_AUDIT; write(fd, &response, sizeof(struct fanotify_response)); When the syscall ends, the audit system will record the decision as a AUDIT_FANOTIFY auxiliary record to denote that the reason this event occurred is the result of an access control decision from fanotify rather than DAC or MAC policy. A sample event looks like this: type=PATH msg=audit(1504310584.332:290): item=0 name="./evil-ls" inode=1319561 dev=fc:03 mode=0100755 ouid=1000 ogid=1000 rdev=00:00 obj=unconfined_u:object_r:user_home_t:s0 nametype=NORMAL type=CWD msg=audit(1504310584.332:290): cwd="/home/sgrubb" type=SYSCALL msg=audit(1504310584.332:290): arch=c000003e syscall=2 success=no exit=-1 a0=32cb3fca90 a1=0 a2=43 a3=8 items=1 ppid=901 pid=959 auid=1000 uid=1000 gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts1 ses=3 comm="bash" exe="/usr/bin/bash" subj=unconfined_u:unconfined_r:unconfined_t: s0-s0:c0.c1023 key=(null) type=FANOTIFY msg=audit(1504310584.332:290): resp=2 Prior to using the audit flag, the developer needs to call fanotify_init or'ing in FAN_ENABLE_AUDIT to ensure that the kernel supports auditing. The calling process must also have the CAP_AUDIT_WRITE capability. Signed-off-by: sgrubb <sgrubb@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-10-03 08:21:39 +08:00
#include <linux/audit.h>
fs: fsnotify: account fsnotify metadata to kmemcg Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:46:39 +08:00
#include <linux/sched/mm.h>
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
#include "fanotify.h"
static bool should_merge(struct fsnotify_event *old_fsn,
struct fsnotify_event *new_fsn)
{
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
struct fanotify_event_info *old, *new;
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
pr_debug("%s: old=%p new=%p\n", __func__, old_fsn, new_fsn);
old = FANOTIFY_E(old_fsn);
new = FANOTIFY_E(new_fsn);
if (old_fsn->inode == new_fsn->inode && old->tgid == new->tgid &&
old->path.mnt == new->path.mnt &&
old->path.dentry == new->path.dentry)
return true;
return false;
}
/* and the list better be locked by something too! */
static int fanotify_merge(struct list_head *list, struct fsnotify_event *event)
{
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
struct fsnotify_event *test_event;
pr_debug("%s: list=%p event=%p\n", __func__, list, event);
/*
* Don't merge a permission event with any other event so that we know
* the event structure we have created in fanotify_handle_event() is the
* one we should check for permission response.
*/
if (fanotify_is_perm_event(event->mask))
return 0;
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
list_for_each_entry_reverse(test_event, list, list) {
if (should_merge(test_event, event)) {
test_event->mask |= event->mask;
return 1;
}
}
return 0;
}
static int fanotify_get_response(struct fsnotify_group *group,
struct fanotify_perm_event_info *event,
struct fsnotify_iter_info *iter_info)
{
int ret;
pr_debug("%s: group=%p event=%p\n", __func__, group, event);
wait_event(group->fanotify_data.access_waitq, event->response);
/* userspace responded, convert to something usable */
audit: Record fanotify access control decisions The fanotify interface allows user space daemons to make access control decisions. Under common criteria requirements, we need to optionally record decisions based on policy. This patch adds a bit mask, FAN_AUDIT, that a user space daemon can 'or' into the response decision which will tell the kernel that it made a decision and record it. It would be used something like this in user space code: response.response = FAN_DENY | FAN_AUDIT; write(fd, &response, sizeof(struct fanotify_response)); When the syscall ends, the audit system will record the decision as a AUDIT_FANOTIFY auxiliary record to denote that the reason this event occurred is the result of an access control decision from fanotify rather than DAC or MAC policy. A sample event looks like this: type=PATH msg=audit(1504310584.332:290): item=0 name="./evil-ls" inode=1319561 dev=fc:03 mode=0100755 ouid=1000 ogid=1000 rdev=00:00 obj=unconfined_u:object_r:user_home_t:s0 nametype=NORMAL type=CWD msg=audit(1504310584.332:290): cwd="/home/sgrubb" type=SYSCALL msg=audit(1504310584.332:290): arch=c000003e syscall=2 success=no exit=-1 a0=32cb3fca90 a1=0 a2=43 a3=8 items=1 ppid=901 pid=959 auid=1000 uid=1000 gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts1 ses=3 comm="bash" exe="/usr/bin/bash" subj=unconfined_u:unconfined_r:unconfined_t: s0-s0:c0.c1023 key=(null) type=FANOTIFY msg=audit(1504310584.332:290): resp=2 Prior to using the audit flag, the developer needs to call fanotify_init or'ing in FAN_ENABLE_AUDIT to ensure that the kernel supports auditing. The calling process must also have the CAP_AUDIT_WRITE capability. Signed-off-by: sgrubb <sgrubb@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-10-03 08:21:39 +08:00
switch (event->response & ~FAN_AUDIT) {
case FAN_ALLOW:
ret = 0;
break;
case FAN_DENY:
default:
ret = -EPERM;
}
audit: Record fanotify access control decisions The fanotify interface allows user space daemons to make access control decisions. Under common criteria requirements, we need to optionally record decisions based on policy. This patch adds a bit mask, FAN_AUDIT, that a user space daemon can 'or' into the response decision which will tell the kernel that it made a decision and record it. It would be used something like this in user space code: response.response = FAN_DENY | FAN_AUDIT; write(fd, &response, sizeof(struct fanotify_response)); When the syscall ends, the audit system will record the decision as a AUDIT_FANOTIFY auxiliary record to denote that the reason this event occurred is the result of an access control decision from fanotify rather than DAC or MAC policy. A sample event looks like this: type=PATH msg=audit(1504310584.332:290): item=0 name="./evil-ls" inode=1319561 dev=fc:03 mode=0100755 ouid=1000 ogid=1000 rdev=00:00 obj=unconfined_u:object_r:user_home_t:s0 nametype=NORMAL type=CWD msg=audit(1504310584.332:290): cwd="/home/sgrubb" type=SYSCALL msg=audit(1504310584.332:290): arch=c000003e syscall=2 success=no exit=-1 a0=32cb3fca90 a1=0 a2=43 a3=8 items=1 ppid=901 pid=959 auid=1000 uid=1000 gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts1 ses=3 comm="bash" exe="/usr/bin/bash" subj=unconfined_u:unconfined_r:unconfined_t: s0-s0:c0.c1023 key=(null) type=FANOTIFY msg=audit(1504310584.332:290): resp=2 Prior to using the audit flag, the developer needs to call fanotify_init or'ing in FAN_ENABLE_AUDIT to ensure that the kernel supports auditing. The calling process must also have the CAP_AUDIT_WRITE capability. Signed-off-by: sgrubb <sgrubb@redhat.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2017-10-03 08:21:39 +08:00
/* Check if the response should be audited */
if (event->response & FAN_AUDIT)
audit_fanotify(event->response & ~FAN_AUDIT);
event->response = 0;
pr_debug("%s: group=%p event=%p about to return ret=%d\n", __func__,
group, event, ret);
return ret;
}
static bool fanotify_should_send_event(struct fsnotify_iter_info *iter_info,
u32 event_mask, const void *data,
int data_type)
{
__u32 marks_mask = 0, marks_ignored_mask = 0;
const struct path *path = data;
struct fsnotify_mark *mark;
int type;
pr_debug("%s: report_mask=%x mask=%x data=%p data_type=%d\n",
__func__, iter_info->report_mask, event_mask, data, data_type);
/* if we don't have enough info to send an event to userspace say no */
if (data_type != FSNOTIFY_EVENT_PATH)
return false;
/* sorry, fanotify only gives a damn about files and dirs */
VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry) Convert the following where appropriate: (1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry). (2) S_ISREG(dentry->d_inode) to d_is_reg(dentry). (3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more complicated than it appears as some calls should be converted to d_can_lookup() instead. The difference is whether the directory in question is a real dir with a ->lookup op or whether it's a fake dir with a ->d_automount op. In some circumstances, we can subsume checks for dentry->d_inode not being NULL into this, provided we the code isn't in a filesystem that expects d_inode to be NULL if the dirent really *is* negative (ie. if we're going to use d_inode() rather than d_backing_inode() to get the inode pointer). Note that the dentry type field may be set to something other than DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS manages the fall-through from a negative dentry to a lower layer. In such a case, the dentry type of the negative union dentry is set to the same as the type of the lower dentry. However, if you know d_inode is not NULL at the call site, then you can use the d_is_xxx() functions even in a filesystem. There is one further complication: a 0,0 chardev dentry may be labelled DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was intended for special directory entry types that don't have attached inodes. The following perl+coccinelle script was used: use strict; my @callers; open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') || die "Can't grep for S_ISDIR and co. callers"; @callers = <$fd>; close($fd); unless (@callers) { print "No matches\n"; exit(0); } my @cocci = ( '@@', 'expression E;', '@@', '', '- S_ISLNK(E->d_inode->i_mode)', '+ d_is_symlink(E)', '', '@@', 'expression E;', '@@', '', '- S_ISDIR(E->d_inode->i_mode)', '+ d_is_dir(E)', '', '@@', 'expression E;', '@@', '', '- S_ISREG(E->d_inode->i_mode)', '+ d_is_reg(E)' ); my $coccifile = "tmp.sp.cocci"; open($fd, ">$coccifile") || die $coccifile; print($fd "$_\n") || die $coccifile foreach (@cocci); close($fd); foreach my $file (@callers) { chomp $file; print "Processing ", $file, "\n"; system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 || die "spatch failed"; } [AV: overlayfs parts skipped] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-29 20:02:35 +08:00
if (!d_is_reg(path->dentry) &&
!d_can_lookup(path->dentry))
return false;
fsnotify_foreach_obj_type(type) {
if (!fsnotify_iter_should_report_type(iter_info, type))
continue;
mark = iter_info->marks[type];
/*
* if the event is for a child and this inode doesn't care about
* events on the child, don't send it!
*/
if (type == FSNOTIFY_OBJ_TYPE_INODE &&
(event_mask & FS_EVENT_ON_CHILD) &&
!(mark->mask & FS_EVENT_ON_CHILD))
continue;
marks_mask |= mark->mask;
marks_ignored_mask |= mark->ignored_mask;
}
VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry) Convert the following where appropriate: (1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry). (2) S_ISREG(dentry->d_inode) to d_is_reg(dentry). (3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more complicated than it appears as some calls should be converted to d_can_lookup() instead. The difference is whether the directory in question is a real dir with a ->lookup op or whether it's a fake dir with a ->d_automount op. In some circumstances, we can subsume checks for dentry->d_inode not being NULL into this, provided we the code isn't in a filesystem that expects d_inode to be NULL if the dirent really *is* negative (ie. if we're going to use d_inode() rather than d_backing_inode() to get the inode pointer). Note that the dentry type field may be set to something other than DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS manages the fall-through from a negative dentry to a lower layer. In such a case, the dentry type of the negative union dentry is set to the same as the type of the lower dentry. However, if you know d_inode is not NULL at the call site, then you can use the d_is_xxx() functions even in a filesystem. There is one further complication: a 0,0 chardev dentry may be labelled DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was intended for special directory entry types that don't have attached inodes. The following perl+coccinelle script was used: use strict; my @callers; open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') || die "Can't grep for S_ISDIR and co. callers"; @callers = <$fd>; close($fd); unless (@callers) { print "No matches\n"; exit(0); } my @cocci = ( '@@', 'expression E;', '@@', '', '- S_ISLNK(E->d_inode->i_mode)', '+ d_is_symlink(E)', '', '@@', 'expression E;', '@@', '', '- S_ISDIR(E->d_inode->i_mode)', '+ d_is_dir(E)', '', '@@', 'expression E;', '@@', '', '- S_ISREG(E->d_inode->i_mode)', '+ d_is_reg(E)' ); my $coccifile = "tmp.sp.cocci"; open($fd, ">$coccifile") || die $coccifile; print($fd "$_\n") || die $coccifile foreach (@cocci); close($fd); foreach my $file (@callers) { chomp $file; print "Processing ", $file, "\n"; system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 || die "spatch failed"; } [AV: overlayfs parts skipped] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-01-29 20:02:35 +08:00
if (d_is_dir(path->dentry) &&
!(marks_mask & FS_ISDIR & ~marks_ignored_mask))
return false;
fanotify: fix event filtering with FAN_ONDIR set With FAN_ONDIR set, the user can end up getting events, which it hasn't marked. This was revealed with fanotify04 testcase failure on Linux-4.0-rc1, and is a regression from 3.19, revealed with 66ba93c0d7fe6 ("fanotify: don't set FAN_ONDIR implicitly on a marks ignored mask"). # /opt/ltp/testcases/bin/fanotify04 [ ... ] fanotify04 7 TPASS : event generated properly for type 100000 fanotify04 8 TFAIL : fanotify04.c:147: got unexpected event 30 fanotify04 9 TPASS : No event as expected The testcase sets the adds the following marks : FAN_OPEN | FAN_ONDIR for a fanotify on a dir. Then does an open(), followed by close() of the directory and expects to see an event FAN_OPEN(0x20). However, the fanotify returns (FAN_OPEN|FAN_CLOSE_NOWRITE(0x10)). This happens due to the flaw in the check for event_mask in fanotify_should_send_event() which does: if (event_mask & marks_mask & ~marks_ignored_mask) return true; where, event_mask == (FAN_ONDIR | FAN_CLOSE_NOWRITE), marks_mask == (FAN_ONDIR | FAN_OPEN), marks_ignored_mask == 0 Fix this by masking the outgoing events to the user, as we already take care of FAN_ONDIR and FAN_EVENT_ON_CHILD. Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com> Tested-by: Lino Sanfilippo <LinoSanfilippo@gmx.de> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Eric Paris <eparis@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-13 07:26:08 +08:00
if (event_mask & FAN_ALL_OUTGOING_EVENTS & marks_mask &
~marks_ignored_mask)
return true;
return false;
}
struct fanotify_event_info *fanotify_alloc_event(struct fsnotify_group *group,
struct inode *inode, u32 mask,
const struct path *path)
{
fs: fsnotify: account fsnotify metadata to kmemcg Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:46:39 +08:00
struct fanotify_event_info *event = NULL;
gfp_t gfp = GFP_KERNEL_ACCOUNT;
/*
* For queues with unlimited length lost events are not expected and
* can possibly have security implications. Avoid losing events when
* memory is short.
*/
if (group->max_events == UINT_MAX)
gfp |= __GFP_NOFAIL;
fs: fsnotify: account fsnotify metadata to kmemcg Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:46:39 +08:00
/* Whoever is interested in the event, pays for the allocation. */
memalloc_use_memcg(group->memcg);
if (fanotify_is_perm_event(mask)) {
struct fanotify_perm_event_info *pevent;
pevent = kmem_cache_alloc(fanotify_perm_event_cachep, gfp);
if (!pevent)
fs: fsnotify: account fsnotify metadata to kmemcg Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:46:39 +08:00
goto out;
event = &pevent->fae;
pevent->response = 0;
goto init;
}
event = kmem_cache_alloc(fanotify_event_cachep, gfp);
if (!event)
fs: fsnotify: account fsnotify metadata to kmemcg Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:46:39 +08:00
goto out;
init: __maybe_unused
fsnotify_init_event(&event->fse, inode, mask);
event->tgid = get_pid(task_tgid(current));
if (path) {
event->path = *path;
path_get(&event->path);
} else {
event->path.mnt = NULL;
event->path.dentry = NULL;
}
fs: fsnotify: account fsnotify metadata to kmemcg Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:46:39 +08:00
out:
memalloc_unuse_memcg();
return event;
}
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
static int fanotify_handle_event(struct fsnotify_group *group,
struct inode *inode,
u32 mask, const void *data, int data_type,
const unsigned char *file_name, u32 cookie,
struct fsnotify_iter_info *iter_info)
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
{
int ret = 0;
struct fanotify_event_info *event;
struct fsnotify_event *fsn_event;
BUILD_BUG_ON(FAN_ACCESS != FS_ACCESS);
BUILD_BUG_ON(FAN_MODIFY != FS_MODIFY);
BUILD_BUG_ON(FAN_CLOSE_NOWRITE != FS_CLOSE_NOWRITE);
BUILD_BUG_ON(FAN_CLOSE_WRITE != FS_CLOSE_WRITE);
BUILD_BUG_ON(FAN_OPEN != FS_OPEN);
BUILD_BUG_ON(FAN_EVENT_ON_CHILD != FS_EVENT_ON_CHILD);
BUILD_BUG_ON(FAN_Q_OVERFLOW != FS_Q_OVERFLOW);
BUILD_BUG_ON(FAN_OPEN_PERM != FS_OPEN_PERM);
BUILD_BUG_ON(FAN_ACCESS_PERM != FS_ACCESS_PERM);
BUILD_BUG_ON(FAN_ONDIR != FS_ISDIR);
if (!fanotify_should_send_event(iter_info, mask, data, data_type))
return 0;
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
pr_debug("%s: group=%p inode=%p mask=%x\n", __func__, group, inode,
mask);
if (fanotify_is_perm_event(mask)) {
/*
* fsnotify_prepare_user_wait() fails if we race with mark
* deletion. Just let the operation pass in that case.
*/
if (!fsnotify_prepare_user_wait(iter_info))
return 0;
}
event = fanotify_alloc_event(group, inode, mask, data);
ret = -ENOMEM;
if (unlikely(!event)) {
/*
* We don't queue overflow events for permission events as
* there the access is denied and so no event is in fact lost.
*/
if (!fanotify_is_perm_event(mask))
fsnotify_queue_overflow(group);
goto finish;
}
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
fsn_event = &event->fse;
ret = fsnotify_add_event(group, fsn_event, fanotify_merge);
if (ret) {
/* Permission events shouldn't be merged */
BUG_ON(ret == 1 && mask & FAN_ALL_PERM_EVENTS);
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
/* Our event wasn't used in the end. Free it. */
fsnotify_destroy_event(group, fsn_event);
ret = 0;
} else if (fanotify_is_perm_event(mask)) {
ret = fanotify_get_response(group, FANOTIFY_PE(fsn_event),
iter_info);
fsnotify_destroy_event(group, fsn_event);
}
finish:
if (fanotify_is_perm_event(mask))
fsnotify_finish_user_wait(iter_info);
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
return ret;
}
static void fanotify_free_group_priv(struct fsnotify_group *group)
{
struct user_struct *user;
user = group->fanotify_data.user;
atomic_dec(&user->fanotify_listeners);
free_uid(user);
}
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
static void fanotify_free_event(struct fsnotify_event *fsn_event)
{
struct fanotify_event_info *event;
event = FANOTIFY_E(fsn_event);
path_put(&event->path);
put_pid(event->tgid);
if (fanotify_is_perm_event(fsn_event->mask)) {
kmem_cache_free(fanotify_perm_event_cachep,
FANOTIFY_PE(fsn_event));
return;
}
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
kmem_cache_free(fanotify_event_cachep, event);
}
static void fanotify_free_mark(struct fsnotify_mark *fsn_mark)
{
kmem_cache_free(fanotify_mark_cache, fsn_mark);
}
const struct fsnotify_ops fanotify_fsnotify_ops = {
.handle_event = fanotify_handle_event,
.free_group_priv = fanotify_free_group_priv,
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 07:48:14 +08:00
.free_event = fanotify_free_event,
.free_mark = fanotify_free_mark,
};