linux/mm/sparse.c

907 lines
23 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
/*
* sparse memory mappings.
*/
#include <linux/mm.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
#include <linux/mmzone.h>
#include <linux/bootmem.h>
#include <linux/compiler.h>
#include <linux/highmem.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include "internal.h"
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
#include <asm/dma.h>
Generic Virtual Memmap support for SPARSEMEM SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all the arches. It would be great if it could be the default so that we can get rid of various forms of DISCONTIG and other variations on memory maps. So far what has hindered this are the additional lookups that SPARSEMEM introduces for virt_to_page and page_address. This goes so far that the code to do this has to be kept in a separate function and cannot be used inline. This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap is mapped into a virtually contigious area, only the active sections are physically backed. This allows virt_to_page page_address and cohorts become simple shift/add operations. No page flag fields, no table lookups, nothing involving memory is required. The two key operations pfn_to_page and page_to_page become: #define __pfn_to_page(pfn) (vmemmap + (pfn)) #define __page_to_pfn(page) ((page) - vmemmap) By having a virtual mapping for the memmap we allow simple access without wasting physical memory. As kernel memory is typically already mapped 1:1 this introduces no additional overhead. The virtual mapping must be big enough to allow a struct page to be allocated and mapped for all valid physical pages. This vill make a virtual memmap difficult to use on 32 bit platforms that support 36 address bits. However, if there is enough virtual space available and the arch already maps its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM. FLATMEM needs to read the contents of the mem_map variable to get the start of the memmap and then add the offset to the required entry. vmemmap is a constant to which we can simply add the offset. This patch has the potential to allow us to make SPARSMEM the default (and even the only) option for most systems. It should be optimal on UP, SMP and NUMA on most platforms. Then we may even be able to remove the other memory models: FLATMEM, DISCONTIG etc. [apw@shadowen.org: config cleanups, resplit code etc] [kamezawa.hiroyu@jp.fujitsu.com: Fix sparsemem_vmemmap init] [apw@shadowen.org: vmemmap: remove excess debugging] [apw@shadowen.org: simplify initialisation code and reduce duplication] [apw@shadowen.org: pull out the vmemmap code into its own file] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:13 +08:00
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
/*
* Permanent SPARSEMEM data:
*
* 1) mem_section - memory sections, mem_map's for valid memory
*/
#ifdef CONFIG_SPARSEMEM_EXTREME
struct mem_section **mem_section;
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
____cacheline_internodealigned_in_smp;
#endif
EXPORT_SYMBOL(mem_section);
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
* If we did not store the node number in the page then we have to
* do a lookup in the section_to_node_table in order to find which
* node the page belongs to.
*/
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif
int page_to_nid(const struct page *page)
{
return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
static void set_section_nid(unsigned long section_nr, int nid)
{
section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
#endif
#ifdef CONFIG_SPARSEMEM_EXTREME
static noinline struct mem_section __ref *sparse_index_alloc(int nid)
{
struct mem_section *section = NULL;
unsigned long array_size = SECTIONS_PER_ROOT *
sizeof(struct mem_section);
if (slab_is_available())
section = kzalloc_node(array_size, GFP_KERNEL, nid);
else
section = memblock_virt_alloc_node(array_size, nid);
return section;
}
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
{
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
struct mem_section *section;
if (mem_section[root])
return -EEXIST;
section = sparse_index_alloc(nid);
if (!section)
return -ENOMEM;
mem_section[root] = section;
return 0;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
return 0;
}
#endif
#ifdef CONFIG_SPARSEMEM_EXTREME
int __section_nr(struct mem_section* ms)
{
unsigned long root_nr;
struct mem_section *root = NULL;
for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
if (!root)
continue;
if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
break;
}
VM_BUG_ON(!root);
return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}
#else
int __section_nr(struct mem_section* ms)
{
return (int)(ms - mem_section[0]);
}
#endif
/*
* During early boot, before section_mem_map is used for an actual
* mem_map, we use section_mem_map to store the section's NUMA
* node. This keeps us from having to use another data structure. The
* node information is cleared just before we store the real mem_map.
*/
static inline unsigned long sparse_encode_early_nid(int nid)
{
return (nid << SECTION_NID_SHIFT);
}
static inline int sparse_early_nid(struct mem_section *section)
{
return (section->section_mem_map >> SECTION_NID_SHIFT);
}
/* Validate the physical addressing limitations of the model */
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
unsigned long *end_pfn)
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
{
unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
mm: sparsemem memory_present() fix Fix memory corruption and crash on 32-bit x86 systems. If a !PAE x86 kernel is booted on a 32-bit system with more than 4GB of RAM, then we call memory_present() with a start/end that goes outside the scope of MAX_PHYSMEM_BITS. That causes this loop to happily walk over the limit of the sparse memory section map: for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { unsigned long section = pfn_to_section_nr(pfn); struct mem_section *ms; sparse_index_init(section, nid); set_section_nid(section, nid); ms = __nr_to_section(section); if (!ms->section_mem_map) ms->section_mem_map = sparse_encode_early_nid(nid) | SECTION_MARKED_PRESENT; 'ms' will be out of bounds and we'll corrupt a small amount of memory by encoding the node ID and writing SECTION_MARKED_PRESENT (==0x1) over it. The corruption might happen when encoding a non-zero node ID, or due to the SECTION_MARKED_PRESENT which is 0x1: mmzone.h:#define SECTION_MARKED_PRESENT (1UL<<0) The fix is to sanity check anything the architecture passes to sparsemem. This bug seems to be rather old (as old as sparsemem support itself), but the exact incarnation depended on random details like configs, which made this bug more prominent in v2.6.25-to-be. An additional enhancement might be to print a warning about ignored or trimmed memory ranges. Signed-off-by: Ingo Molnar <mingo@elte.hu> Tested-by: Christoph Lameter <clameter@sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Nick Piggin <npiggin@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Yinghai Lu <Yinghai.Lu@sun.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-16 07:40:00 +08:00
/*
* Sanity checks - do not allow an architecture to pass
* in larger pfns than the maximum scope of sparsemem:
*/
if (*start_pfn > max_sparsemem_pfn) {
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
*start_pfn, *end_pfn, max_sparsemem_pfn);
WARN_ON_ONCE(1);
*start_pfn = max_sparsemem_pfn;
*end_pfn = max_sparsemem_pfn;
} else if (*end_pfn > max_sparsemem_pfn) {
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
*start_pfn, *end_pfn, max_sparsemem_pfn);
WARN_ON_ONCE(1);
*end_pfn = max_sparsemem_pfn;
}
}
mm, sparsemem: break out of loops early There are a number of times that we loop over NR_MEM_SECTIONS, looking for section_present() on each section. But, when we have very large physical address spaces (large MAX_PHYSMEM_BITS), NR_MEM_SECTIONS becomes very large, making the loops quite long. With MAX_PHYSMEM_BITS=46 and a section size of 128MB, the current loops are 512k iterations, which we barely notice on modern hardware. But, raising MAX_PHYSMEM_BITS higher (like we will see on systems that support 5-level paging) makes this 64x longer and we start to notice, especially on slower systems like simulators. A 10-second delay for 512k iterations is annoying. But, a 640- second delay is crippling. This does not help if we have extremely sparse physical address spaces, but those are quite rare. We expect that most of the "slow" systems where this matters will also be quite small and non-sparse. To fix this, we track the highest section we've ever encountered. This lets us know when we will *never* see another section_present(), and lets us break out of the loops earlier. Doing the whole for_each_present_section_nr() macro is probably overkill, but it will ensure that any future loop iterations that we grow are more likely to be correct. Kirrill said "It shaved almost 40 seconds from boot time in qemu with 5-level paging enabled for me". Link: http://lkml.kernel.org/r/20170504174434.C45A4735@viggo.jf.intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:36:44 +08:00
/*
* There are a number of times that we loop over NR_MEM_SECTIONS,
* looking for section_present() on each. But, when we have very
* large physical address spaces, NR_MEM_SECTIONS can also be
* very large which makes the loops quite long.
*
* Keeping track of this gives us an easy way to break out of
* those loops early.
*/
int __highest_present_section_nr;
static void section_mark_present(struct mem_section *ms)
{
int section_nr = __section_nr(ms);
if (section_nr > __highest_present_section_nr)
__highest_present_section_nr = section_nr;
ms->section_mem_map |= SECTION_MARKED_PRESENT;
}
static inline int next_present_section_nr(int section_nr)
{
do {
section_nr++;
if (present_section_nr(section_nr))
return section_nr;
} while ((section_nr < NR_MEM_SECTIONS) &&
(section_nr <= __highest_present_section_nr));
return -1;
}
#define for_each_present_section_nr(start, section_nr) \
for (section_nr = next_present_section_nr(start-1); \
((section_nr >= 0) && \
(section_nr < NR_MEM_SECTIONS) && \
(section_nr <= __highest_present_section_nr)); \
section_nr = next_present_section_nr(section_nr))
/* Record a memory area against a node. */
void __init memory_present(int nid, unsigned long start, unsigned long end)
{
unsigned long pfn;
mm: sparsemem memory_present() fix Fix memory corruption and crash on 32-bit x86 systems. If a !PAE x86 kernel is booted on a 32-bit system with more than 4GB of RAM, then we call memory_present() with a start/end that goes outside the scope of MAX_PHYSMEM_BITS. That causes this loop to happily walk over the limit of the sparse memory section map: for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { unsigned long section = pfn_to_section_nr(pfn); struct mem_section *ms; sparse_index_init(section, nid); set_section_nid(section, nid); ms = __nr_to_section(section); if (!ms->section_mem_map) ms->section_mem_map = sparse_encode_early_nid(nid) | SECTION_MARKED_PRESENT; 'ms' will be out of bounds and we'll corrupt a small amount of memory by encoding the node ID and writing SECTION_MARKED_PRESENT (==0x1) over it. The corruption might happen when encoding a non-zero node ID, or due to the SECTION_MARKED_PRESENT which is 0x1: mmzone.h:#define SECTION_MARKED_PRESENT (1UL<<0) The fix is to sanity check anything the architecture passes to sparsemem. This bug seems to be rather old (as old as sparsemem support itself), but the exact incarnation depended on random details like configs, which made this bug more prominent in v2.6.25-to-be. An additional enhancement might be to print a warning about ignored or trimmed memory ranges. Signed-off-by: Ingo Molnar <mingo@elte.hu> Tested-by: Christoph Lameter <clameter@sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Nick Piggin <npiggin@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Yinghai Lu <Yinghai.Lu@sun.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-16 07:40:00 +08:00
#ifdef CONFIG_SPARSEMEM_EXTREME
if (unlikely(!mem_section)) {
unsigned long size, align;
size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
align = 1 << (INTERNODE_CACHE_SHIFT);
mem_section = memblock_virt_alloc(size, align);
}
#endif
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
start &= PAGE_SECTION_MASK;
mminit_validate_memmodel_limits(&start, &end);
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
unsigned long section = pfn_to_section_nr(pfn);
struct mem_section *ms;
sparse_index_init(section, nid);
set_section_nid(section, nid);
ms = __nr_to_section(section);
mm, sparsemem: break out of loops early There are a number of times that we loop over NR_MEM_SECTIONS, looking for section_present() on each section. But, when we have very large physical address spaces (large MAX_PHYSMEM_BITS), NR_MEM_SECTIONS becomes very large, making the loops quite long. With MAX_PHYSMEM_BITS=46 and a section size of 128MB, the current loops are 512k iterations, which we barely notice on modern hardware. But, raising MAX_PHYSMEM_BITS higher (like we will see on systems that support 5-level paging) makes this 64x longer and we start to notice, especially on slower systems like simulators. A 10-second delay for 512k iterations is annoying. But, a 640- second delay is crippling. This does not help if we have extremely sparse physical address spaces, but those are quite rare. We expect that most of the "slow" systems where this matters will also be quite small and non-sparse. To fix this, we track the highest section we've ever encountered. This lets us know when we will *never* see another section_present(), and lets us break out of the loops earlier. Doing the whole for_each_present_section_nr() macro is probably overkill, but it will ensure that any future loop iterations that we grow are more likely to be correct. Kirrill said "It shaved almost 40 seconds from boot time in qemu with 5-level paging enabled for me". Link: http://lkml.kernel.org/r/20170504174434.C45A4735@viggo.jf.intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:36:44 +08:00
if (!ms->section_mem_map) {
mm: consider zone which is not fully populated to have holes __pageblock_pfn_to_page has two users currently, set_zone_contiguous which checks whether the given zone contains holes and pageblock_pfn_to_page which then carefully returns a first valid page from the given pfn range for the given zone. This doesn't handle zones which are not fully populated though. Memory pageblocks can be offlined or might not have been onlined yet. In such a case the zone should be considered to have holes otherwise pfn walkers can touch and play with offline pages. Current callers of pageblock_pfn_to_page in compaction seem to work properly right now because they only isolate PageBuddy (isolate_freepages_block) or PageLRU resp. __PageMovable (isolate_migratepages_block) which will be always false for these pages. It would be safer to skip these pages altogether, though. In order to do this patch adds a new memory section state (SECTION_IS_ONLINE) which is set in memory_present (during boot time) or in online_pages_range during the memory hotplug. Similarly offline_mem_sections clears the bit and it is called when the memory range is offlined. pfn_to_online_page helper is then added which check the mem section and only returns a page if it is onlined already. Use the new helper in __pageblock_pfn_to_page and skip the whole page block in such a case. [mhocko@suse.com: check valid section number in pfn_to_online_page (Vlastimil), mark sections online after all struct pages are initialized in online_pages_range (Vlastimil)] Link: http://lkml.kernel.org/r/20170518164210.GD18333@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170515085827.16474-8-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:56 +08:00
ms->section_mem_map = sparse_encode_early_nid(nid) |
SECTION_IS_ONLINE;
mm, sparsemem: break out of loops early There are a number of times that we loop over NR_MEM_SECTIONS, looking for section_present() on each section. But, when we have very large physical address spaces (large MAX_PHYSMEM_BITS), NR_MEM_SECTIONS becomes very large, making the loops quite long. With MAX_PHYSMEM_BITS=46 and a section size of 128MB, the current loops are 512k iterations, which we barely notice on modern hardware. But, raising MAX_PHYSMEM_BITS higher (like we will see on systems that support 5-level paging) makes this 64x longer and we start to notice, especially on slower systems like simulators. A 10-second delay for 512k iterations is annoying. But, a 640- second delay is crippling. This does not help if we have extremely sparse physical address spaces, but those are quite rare. We expect that most of the "slow" systems where this matters will also be quite small and non-sparse. To fix this, we track the highest section we've ever encountered. This lets us know when we will *never* see another section_present(), and lets us break out of the loops earlier. Doing the whole for_each_present_section_nr() macro is probably overkill, but it will ensure that any future loop iterations that we grow are more likely to be correct. Kirrill said "It shaved almost 40 seconds from boot time in qemu with 5-level paging enabled for me". Link: http://lkml.kernel.org/r/20170504174434.C45A4735@viggo.jf.intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:36:44 +08:00
section_mark_present(ms);
}
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
}
}
/*
* Only used by the i386 NUMA architecures, but relatively
* generic code.
*/
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn;
unsigned long nr_pages = 0;
mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
if (nid != early_pfn_to_nid(pfn))
continue;
if (pfn_present(pfn))
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
nr_pages += PAGES_PER_SECTION;
}
return nr_pages * sizeof(struct page);
}
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
/*
* Subtle, we encode the real pfn into the mem_map such that
* the identity pfn - section_mem_map will return the actual
* physical page frame number.
*/
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
include/linux/mmzone.h: fix explanation of lower bits in the SPARSEMEM mem_map pointer The comment is confusing. On the one hand, it refers to 32-bit alignment (struct page alignment on 32-bit platforms), but this would only guarantee that the 2 lowest bits must be zero. On the other hand, it claims that at least 3 bits are available, and 3 bits are actually used. This is not broken, because there is a stronger alignment guarantee, just less obvious. Let's fix the comment to make it clear how many bits are available and why. Although memmap arrays are allocated in various places, the resulting pointer is encoded eventually, so I am adding a BUG_ON() here to enforce at runtime that all expected bits are indeed available. I have also added a BUILD_BUG_ON to check that PFN_SECTION_SHIFT is sufficient, because this part of the calculation can be easily checked at build time. [ptesarik@suse.com: v2] Link: http://lkml.kernel.org/r/20180125100516.589ea6af@ezekiel.suse.cz Link: http://lkml.kernel.org/r/20180119080908.3a662e6f@ezekiel.suse.cz Signed-off-by: Petr Tesarik <ptesarik@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kemi Wang <kemi.wang@intel.com> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-01 08:20:26 +08:00
unsigned long coded_mem_map =
(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
return coded_mem_map;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
}
/*
* Decode mem_map from the coded memmap
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
*/
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
/* mask off the extra low bits of information */
coded_mem_map &= SECTION_MAP_MASK;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}
static int __meminit sparse_init_one_section(struct mem_section *ms,
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
unsigned long pnum, struct page *mem_map,
unsigned long *pageblock_bitmap)
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
{
if (!present_section(ms))
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
return -EINVAL;
ms->section_mem_map &= ~SECTION_MAP_MASK;
ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
SECTION_HAS_MEM_MAP;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
ms->pageblock_flags = pageblock_bitmap;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
return 1;
}
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:31 +08:00
unsigned long usemap_size(void)
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
{
return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
}
#ifdef CONFIG_MEMORY_HOTPLUG
static unsigned long *__kmalloc_section_usemap(void)
{
return kmalloc(usemap_size(), GFP_KERNEL);
}
#endif /* CONFIG_MEMORY_HOTPLUG */
#ifdef CONFIG_MEMORY_HOTREMOVE
static unsigned long * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
unsigned long size)
{
unsigned long goal, limit;
unsigned long *p;
int nid;
/*
* A page may contain usemaps for other sections preventing the
* page being freed and making a section unremovable while
* other sections referencing the usemap remain active. Similarly,
* a pgdat can prevent a section being removed. If section A
* contains a pgdat and section B contains the usemap, both
* sections become inter-dependent. This allocates usemaps
* from the same section as the pgdat where possible to avoid
* this problem.
*/
goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
limit = goal + (1UL << PA_SECTION_SHIFT);
nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
again:
p = memblock_virt_alloc_try_nid_nopanic(size,
SMP_CACHE_BYTES, goal, limit,
nid);
if (!p && limit) {
limit = 0;
goto again;
}
return p;
}
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
{
unsigned long usemap_snr, pgdat_snr;
static unsigned long old_usemap_snr;
static unsigned long old_pgdat_snr;
struct pglist_data *pgdat = NODE_DATA(nid);
int usemap_nid;
/* First call */
if (!old_usemap_snr) {
old_usemap_snr = NR_MEM_SECTIONS;
old_pgdat_snr = NR_MEM_SECTIONS;
}
usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
if (usemap_snr == pgdat_snr)
return;
if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
/* skip redundant message */
return;
old_usemap_snr = usemap_snr;
old_pgdat_snr = pgdat_snr;
usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
if (usemap_nid != nid) {
pr_info("node %d must be removed before remove section %ld\n",
nid, usemap_snr);
return;
}
/*
* There is a circular dependency.
* Some platforms allow un-removable section because they will just
* gather other removable sections for dynamic partitioning.
* Just notify un-removable section's number here.
*/
pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
usemap_snr, pgdat_snr, nid);
}
#else
static unsigned long * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
unsigned long size)
{
return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
}
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
{
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
static void __init sparse_early_usemaps_alloc_node(void *data,
unsigned long pnum_begin,
unsigned long pnum_end,
unsigned long usemap_count, int nodeid)
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
{
void *usemap;
unsigned long pnum;
unsigned long **usemap_map = (unsigned long **)data;
int size = usemap_size();
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
size * usemap_count);
bootmem/sparsemem: remove limit constraint in alloc_bootmem_section While testing AMS (Active Memory Sharing) / CMO (Cooperative Memory Overcommit) on powerpc, we tripped the following: kernel BUG at mm/bootmem.c:483! cpu 0x0: Vector: 700 (Program Check) at [c000000000c03940] pc: c000000000a62bd8: .alloc_bootmem_core+0x90/0x39c lr: c000000000a64bcc: .sparse_early_usemaps_alloc_node+0x84/0x29c sp: c000000000c03bc0 msr: 8000000000021032 current = 0xc000000000b0cce0 paca = 0xc000000001d80000 pid = 0, comm = swapper kernel BUG at mm/bootmem.c:483! enter ? for help [c000000000c03c80] c000000000a64bcc .sparse_early_usemaps_alloc_node+0x84/0x29c [c000000000c03d50] c000000000a64f10 .sparse_init+0x12c/0x28c [c000000000c03e20] c000000000a474f4 .setup_arch+0x20c/0x294 [c000000000c03ee0] c000000000a4079c .start_kernel+0xb4/0x460 [c000000000c03f90] c000000000009670 .start_here_common+0x1c/0x2c This is BUG_ON(limit && goal + size > limit); and after some debugging, it seems that goal = 0x7ffff000000 limit = 0x80000000000 and sparse_early_usemaps_alloc_node -> sparse_early_usemaps_alloc_pgdat_section calls return alloc_bootmem_section(usemap_size() * count, section_nr); This is on a system with 8TB available via the AMS pool, and as a quirk of AMS in firmware, all of that memory shows up in node 0. So, we end up with an allocation that will fail the goal/limit constraints. In theory, we could "fall-back" to alloc_bootmem_node() in sparse_early_usemaps_alloc_node(), but since we actually have HOTREMOVE defined, we'll BUG_ON() instead. A simple solution appears to be to unconditionally remove the limit condition in alloc_bootmem_section, meaning allocations are allowed to cross section boundaries (necessary for systems of this size). Johannes Weiner pointed out that if alloc_bootmem_section() no longer guarantees section-locality, we need check_usemap_section_nr() to print possible cross-dependencies between node descriptors and the usemaps allocated through it. That makes the two loops in sparse_early_usemaps_alloc_node() identical, so re-factor the code a bit. [akpm@linux-foundation.org: code simplification] Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Anton Blanchard <anton@au1.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Ben Herrenschmidt <benh@kernel.crashing.org> Cc: Robert Jennings <rcj@linux.vnet.ibm.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> [3.3.1] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:07 +08:00
if (!usemap) {
pr_warn("%s: allocation failed\n", __func__);
return;
}
bootmem/sparsemem: remove limit constraint in alloc_bootmem_section While testing AMS (Active Memory Sharing) / CMO (Cooperative Memory Overcommit) on powerpc, we tripped the following: kernel BUG at mm/bootmem.c:483! cpu 0x0: Vector: 700 (Program Check) at [c000000000c03940] pc: c000000000a62bd8: .alloc_bootmem_core+0x90/0x39c lr: c000000000a64bcc: .sparse_early_usemaps_alloc_node+0x84/0x29c sp: c000000000c03bc0 msr: 8000000000021032 current = 0xc000000000b0cce0 paca = 0xc000000001d80000 pid = 0, comm = swapper kernel BUG at mm/bootmem.c:483! enter ? for help [c000000000c03c80] c000000000a64bcc .sparse_early_usemaps_alloc_node+0x84/0x29c [c000000000c03d50] c000000000a64f10 .sparse_init+0x12c/0x28c [c000000000c03e20] c000000000a474f4 .setup_arch+0x20c/0x294 [c000000000c03ee0] c000000000a4079c .start_kernel+0xb4/0x460 [c000000000c03f90] c000000000009670 .start_here_common+0x1c/0x2c This is BUG_ON(limit && goal + size > limit); and after some debugging, it seems that goal = 0x7ffff000000 limit = 0x80000000000 and sparse_early_usemaps_alloc_node -> sparse_early_usemaps_alloc_pgdat_section calls return alloc_bootmem_section(usemap_size() * count, section_nr); This is on a system with 8TB available via the AMS pool, and as a quirk of AMS in firmware, all of that memory shows up in node 0. So, we end up with an allocation that will fail the goal/limit constraints. In theory, we could "fall-back" to alloc_bootmem_node() in sparse_early_usemaps_alloc_node(), but since we actually have HOTREMOVE defined, we'll BUG_ON() instead. A simple solution appears to be to unconditionally remove the limit condition in alloc_bootmem_section, meaning allocations are allowed to cross section boundaries (necessary for systems of this size). Johannes Weiner pointed out that if alloc_bootmem_section() no longer guarantees section-locality, we need check_usemap_section_nr() to print possible cross-dependencies between node descriptors and the usemaps allocated through it. That makes the two loops in sparse_early_usemaps_alloc_node() identical, so re-factor the code a bit. [akpm@linux-foundation.org: code simplification] Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Anton Blanchard <anton@au1.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Ben Herrenschmidt <benh@kernel.crashing.org> Cc: Robert Jennings <rcj@linux.vnet.ibm.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> [3.3.1] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22 07:34:07 +08:00
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
if (!present_section_nr(pnum))
continue;
usemap_map[pnum] = usemap;
usemap += size;
check_usemap_section_nr(nodeid, usemap_map[pnum]);
}
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
}
Generic Virtual Memmap support for SPARSEMEM SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all the arches. It would be great if it could be the default so that we can get rid of various forms of DISCONTIG and other variations on memory maps. So far what has hindered this are the additional lookups that SPARSEMEM introduces for virt_to_page and page_address. This goes so far that the code to do this has to be kept in a separate function and cannot be used inline. This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap is mapped into a virtually contigious area, only the active sections are physically backed. This allows virt_to_page page_address and cohorts become simple shift/add operations. No page flag fields, no table lookups, nothing involving memory is required. The two key operations pfn_to_page and page_to_page become: #define __pfn_to_page(pfn) (vmemmap + (pfn)) #define __page_to_pfn(page) ((page) - vmemmap) By having a virtual mapping for the memmap we allow simple access without wasting physical memory. As kernel memory is typically already mapped 1:1 this introduces no additional overhead. The virtual mapping must be big enough to allow a struct page to be allocated and mapped for all valid physical pages. This vill make a virtual memmap difficult to use on 32 bit platforms that support 36 address bits. However, if there is enough virtual space available and the arch already maps its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM. FLATMEM needs to read the contents of the mem_map variable to get the start of the memmap and then add the offset to the required entry. vmemmap is a constant to which we can simply add the offset. This patch has the potential to allow us to make SPARSMEM the default (and even the only) option for most systems. It should be optimal on UP, SMP and NUMA on most platforms. Then we may even be able to remove the other memory models: FLATMEM, DISCONTIG etc. [apw@shadowen.org: config cleanups, resplit code etc] [kamezawa.hiroyu@jp.fujitsu.com: Fix sparsemem_vmemmap init] [apw@shadowen.org: vmemmap: remove excess debugging] [apw@shadowen.org: simplify initialisation code and reduce duplication] [apw@shadowen.org: pull out the vmemmap code into its own file] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:13 +08:00
#ifndef CONFIG_SPARSEMEM_VMEMMAP
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
struct vmem_altmap *altmap)
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
{
struct page *map;
sparsemem: on no vmemmap path put mem_map on node high too We need to put mem_map high when virtual memmap is not used. before this patch free mem pfn range on first node: [ 0.000000] 19 - 1f [ 0.000000] 28 40 - 80 95 [ 0.000000] 702 740 - 1000 1000 [ 0.000000] 347c - 347e [ 0.000000] 34e7 3500 - 3b80 3b8b [ 0.000000] 73b8b 73bc0 - 73c00 73c00 [ 0.000000] 73ddd - 73e00 [ 0.000000] 73fdd - 74000 [ 0.000000] 741dd - 74200 [ 0.000000] 743dd - 74400 [ 0.000000] 745dd - 74600 [ 0.000000] 747dd - 74800 [ 0.000000] 749dd - 74a00 [ 0.000000] 74bdd - 74c00 [ 0.000000] 74ddd - 74e00 [ 0.000000] 74fdd - 75000 [ 0.000000] 751dd - 75200 [ 0.000000] 753dd - 75400 [ 0.000000] 755dd - 75600 [ 0.000000] 757dd - 75800 [ 0.000000] 759dd - 75a00 [ 0.000000] 79bdd 79c00 - 7d540 7d550 [ 0.000000] 7f745 - 7f750 [ 0.000000] 10000b 100040 - 2080000 2080000 so only 79c00 - 7d540 are major free block under 4g... after this patch, we will get [ 0.000000] 19 - 1f [ 0.000000] 28 40 - 80 95 [ 0.000000] 702 740 - 1000 1000 [ 0.000000] 347c - 347e [ 0.000000] 34e7 3500 - 3600 3600 [ 0.000000] 37dd - 3800 [ 0.000000] 39dd - 3a00 [ 0.000000] 3bdd - 3c00 [ 0.000000] 3ddd - 3e00 [ 0.000000] 3fdd - 4000 [ 0.000000] 41dd - 4200 [ 0.000000] 43dd - 4400 [ 0.000000] 45dd - 4600 [ 0.000000] 47dd - 4800 [ 0.000000] 49dd - 4a00 [ 0.000000] 4bdd - 4c00 [ 0.000000] 4ddd - 4e00 [ 0.000000] 4fdd - 5000 [ 0.000000] 51dd - 5200 [ 0.000000] 53dd - 5400 [ 0.000000] 95dd 9600 - 7d540 7d550 [ 0.000000] 7f745 - 7f750 [ 0.000000] 17000b 170040 - 2080000 2080000 we will have 9600 - 7d540 for major free block... sparse-vmemmap path already used __alloc_bootmem_node_high() Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Jiri Slaby <jirislaby@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:31:57 +08:00
unsigned long size;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
if (map)
return map;
sparsemem: on no vmemmap path put mem_map on node high too We need to put mem_map high when virtual memmap is not used. before this patch free mem pfn range on first node: [ 0.000000] 19 - 1f [ 0.000000] 28 40 - 80 95 [ 0.000000] 702 740 - 1000 1000 [ 0.000000] 347c - 347e [ 0.000000] 34e7 3500 - 3b80 3b8b [ 0.000000] 73b8b 73bc0 - 73c00 73c00 [ 0.000000] 73ddd - 73e00 [ 0.000000] 73fdd - 74000 [ 0.000000] 741dd - 74200 [ 0.000000] 743dd - 74400 [ 0.000000] 745dd - 74600 [ 0.000000] 747dd - 74800 [ 0.000000] 749dd - 74a00 [ 0.000000] 74bdd - 74c00 [ 0.000000] 74ddd - 74e00 [ 0.000000] 74fdd - 75000 [ 0.000000] 751dd - 75200 [ 0.000000] 753dd - 75400 [ 0.000000] 755dd - 75600 [ 0.000000] 757dd - 75800 [ 0.000000] 759dd - 75a00 [ 0.000000] 79bdd 79c00 - 7d540 7d550 [ 0.000000] 7f745 - 7f750 [ 0.000000] 10000b 100040 - 2080000 2080000 so only 79c00 - 7d540 are major free block under 4g... after this patch, we will get [ 0.000000] 19 - 1f [ 0.000000] 28 40 - 80 95 [ 0.000000] 702 740 - 1000 1000 [ 0.000000] 347c - 347e [ 0.000000] 34e7 3500 - 3600 3600 [ 0.000000] 37dd - 3800 [ 0.000000] 39dd - 3a00 [ 0.000000] 3bdd - 3c00 [ 0.000000] 3ddd - 3e00 [ 0.000000] 3fdd - 4000 [ 0.000000] 41dd - 4200 [ 0.000000] 43dd - 4400 [ 0.000000] 45dd - 4600 [ 0.000000] 47dd - 4800 [ 0.000000] 49dd - 4a00 [ 0.000000] 4bdd - 4c00 [ 0.000000] 4ddd - 4e00 [ 0.000000] 4fdd - 5000 [ 0.000000] 51dd - 5200 [ 0.000000] 53dd - 5400 [ 0.000000] 95dd 9600 - 7d540 7d550 [ 0.000000] 7f745 - 7f750 [ 0.000000] 17000b 170040 - 2080000 2080000 we will have 9600 - 7d540 for major free block... sparse-vmemmap path already used __alloc_bootmem_node_high() Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Jiri Slaby <jirislaby@gmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 05:31:57 +08:00
size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
map = memblock_virt_alloc_try_nid(size,
PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
BOOTMEM_ALLOC_ACCESSIBLE, nid);
Generic Virtual Memmap support for SPARSEMEM SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all the arches. It would be great if it could be the default so that we can get rid of various forms of DISCONTIG and other variations on memory maps. So far what has hindered this are the additional lookups that SPARSEMEM introduces for virt_to_page and page_address. This goes so far that the code to do this has to be kept in a separate function and cannot be used inline. This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap is mapped into a virtually contigious area, only the active sections are physically backed. This allows virt_to_page page_address and cohorts become simple shift/add operations. No page flag fields, no table lookups, nothing involving memory is required. The two key operations pfn_to_page and page_to_page become: #define __pfn_to_page(pfn) (vmemmap + (pfn)) #define __page_to_pfn(page) ((page) - vmemmap) By having a virtual mapping for the memmap we allow simple access without wasting physical memory. As kernel memory is typically already mapped 1:1 this introduces no additional overhead. The virtual mapping must be big enough to allow a struct page to be allocated and mapped for all valid physical pages. This vill make a virtual memmap difficult to use on 32 bit platforms that support 36 address bits. However, if there is enough virtual space available and the arch already maps its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM. FLATMEM needs to read the contents of the mem_map variable to get the start of the memmap and then add the offset to the required entry. vmemmap is a constant to which we can simply add the offset. This patch has the potential to allow us to make SPARSMEM the default (and even the only) option for most systems. It should be optimal on UP, SMP and NUMA on most platforms. Then we may even be able to remove the other memory models: FLATMEM, DISCONTIG etc. [apw@shadowen.org: config cleanups, resplit code etc] [kamezawa.hiroyu@jp.fujitsu.com: Fix sparsemem_vmemmap init] [apw@shadowen.org: vmemmap: remove excess debugging] [apw@shadowen.org: simplify initialisation code and reduce duplication] [apw@shadowen.org: pull out the vmemmap code into its own file] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:13 +08:00
return map;
}
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
void __init sparse_mem_maps_populate_node(struct page **map_map,
unsigned long pnum_begin,
unsigned long pnum_end,
unsigned long map_count, int nodeid)
{
void *map;
unsigned long pnum;
unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
map = alloc_remap(nodeid, size * map_count);
if (map) {
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
if (!present_section_nr(pnum))
continue;
map_map[pnum] = map;
map += size;
}
return;
}
size = PAGE_ALIGN(size);
mm: stop zeroing memory during allocation in vmemmap vmemmap_alloc_block() will no longer zero the block, so zero memory at its call sites for everything except struct pages. Struct page memory is zero'd by struct page initialization. Replace allocators in sparse-vmemmap to use the non-zeroing version. So, we will get the performance improvement by zeroing the memory in parallel when struct pages are zeroed. Add struct page zeroing as a part of initialization of other fields in __init_single_page(). This single thread performance collected on: Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60GHz with 1T of memory (268400646 pages in 8 nodes): BASE FIX sparse_init 11.244671836s 0.007199623s zone_sizes_init 4.879775891s 8.355182299s -------------------------- Total 16.124447727s 8.362381922s sparse_init is where memory for struct pages is zeroed, and the zeroing part is moved later in this patch into __init_single_page(), which is called from zone_sizes_init(). [akpm@linux-foundation.org: make vmemmap_alloc_block_zero() private to sparse-vmemmap.c] Link: http://lkml.kernel.org/r/20171013173214.27300-10-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Tested-by: Bob Picco <bob.picco@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: David S. Miller <davem@davemloft.net> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-16 09:36:44 +08:00
map = memblock_virt_alloc_try_nid_raw(size * map_count,
PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
if (map) {
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
if (!present_section_nr(pnum))
continue;
map_map[pnum] = map;
map += size;
}
return;
}
/* fallback */
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
struct mem_section *ms;
if (!present_section_nr(pnum))
continue;
map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
if (map_map[pnum])
continue;
ms = __nr_to_section(pnum);
pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
__func__);
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
ms->section_mem_map = 0;
}
}
Generic Virtual Memmap support for SPARSEMEM SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all the arches. It would be great if it could be the default so that we can get rid of various forms of DISCONTIG and other variations on memory maps. So far what has hindered this are the additional lookups that SPARSEMEM introduces for virt_to_page and page_address. This goes so far that the code to do this has to be kept in a separate function and cannot be used inline. This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap is mapped into a virtually contigious area, only the active sections are physically backed. This allows virt_to_page page_address and cohorts become simple shift/add operations. No page flag fields, no table lookups, nothing involving memory is required. The two key operations pfn_to_page and page_to_page become: #define __pfn_to_page(pfn) (vmemmap + (pfn)) #define __page_to_pfn(page) ((page) - vmemmap) By having a virtual mapping for the memmap we allow simple access without wasting physical memory. As kernel memory is typically already mapped 1:1 this introduces no additional overhead. The virtual mapping must be big enough to allow a struct page to be allocated and mapped for all valid physical pages. This vill make a virtual memmap difficult to use on 32 bit platforms that support 36 address bits. However, if there is enough virtual space available and the arch already maps its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM. FLATMEM needs to read the contents of the mem_map variable to get the start of the memmap and then add the offset to the required entry. vmemmap is a constant to which we can simply add the offset. This patch has the potential to allow us to make SPARSMEM the default (and even the only) option for most systems. It should be optimal on UP, SMP and NUMA on most platforms. Then we may even be able to remove the other memory models: FLATMEM, DISCONTIG etc. [apw@shadowen.org: config cleanups, resplit code etc] [kamezawa.hiroyu@jp.fujitsu.com: Fix sparsemem_vmemmap init] [apw@shadowen.org: vmemmap: remove excess debugging] [apw@shadowen.org: simplify initialisation code and reduce duplication] [apw@shadowen.org: pull out the vmemmap code into its own file] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:13 +08:00
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
static void __init sparse_early_mem_maps_alloc_node(void *data,
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
unsigned long pnum_begin,
unsigned long pnum_end,
unsigned long map_count, int nodeid)
{
struct page **map_map = (struct page **)data;
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
map_count, nodeid);
}
#else
static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
Generic Virtual Memmap support for SPARSEMEM SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all the arches. It would be great if it could be the default so that we can get rid of various forms of DISCONTIG and other variations on memory maps. So far what has hindered this are the additional lookups that SPARSEMEM introduces for virt_to_page and page_address. This goes so far that the code to do this has to be kept in a separate function and cannot be used inline. This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap is mapped into a virtually contigious area, only the active sections are physically backed. This allows virt_to_page page_address and cohorts become simple shift/add operations. No page flag fields, no table lookups, nothing involving memory is required. The two key operations pfn_to_page and page_to_page become: #define __pfn_to_page(pfn) (vmemmap + (pfn)) #define __page_to_pfn(page) ((page) - vmemmap) By having a virtual mapping for the memmap we allow simple access without wasting physical memory. As kernel memory is typically already mapped 1:1 this introduces no additional overhead. The virtual mapping must be big enough to allow a struct page to be allocated and mapped for all valid physical pages. This vill make a virtual memmap difficult to use on 32 bit platforms that support 36 address bits. However, if there is enough virtual space available and the arch already maps its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM. FLATMEM needs to read the contents of the mem_map variable to get the start of the memmap and then add the offset to the required entry. vmemmap is a constant to which we can simply add the offset. This patch has the potential to allow us to make SPARSMEM the default (and even the only) option for most systems. It should be optimal on UP, SMP and NUMA on most platforms. Then we may even be able to remove the other memory models: FLATMEM, DISCONTIG etc. [apw@shadowen.org: config cleanups, resplit code etc] [kamezawa.hiroyu@jp.fujitsu.com: Fix sparsemem_vmemmap init] [apw@shadowen.org: vmemmap: remove excess debugging] [apw@shadowen.org: simplify initialisation code and reduce duplication] [apw@shadowen.org: pull out the vmemmap code into its own file] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:13 +08:00
{
struct page *map;
struct mem_section *ms = __nr_to_section(pnum);
int nid = sparse_early_nid(ms);
map = sparse_mem_map_populate(pnum, nid, NULL);
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
if (map)
return map;
pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
__func__);
ms->section_mem_map = 0;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
return NULL;
}
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
#endif
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
void __weak __meminit vmemmap_populate_print_last(void)
x86_64/mm: check and print vmemmap allocation continuous On big systems with lots of memory, don't print out too much during bootup, and make it easy to find if it is continuous. on 256G 8 sockets system will get [ffffe20000000000-ffffe20002bfffff] PMD -> [ffff810001400000-ffff810003ffffff] on node 0 [ffffe2001c700000-ffffe2001c7fffff] potential offnode page_structs [ffffe20002c00000-ffffe2001c7fffff] PMD -> [ffff81000c000000-ffff8100255fffff] on node 0 [ffffe20038700000-ffffe200387fffff] potential offnode page_structs [ffffe2001c800000-ffffe200387fffff] PMD -> [ffff810820200000-ffff81083c1fffff] on node 1 [ffffe20040000000-ffffe2007fffffff] PUD ->ffff811027a00000 on node 2 [ffffe20038800000-ffffe2003fffffff] PMD -> [ffff811020200000-ffff8110279fffff] on node 2 [ffffe20054700000-ffffe200547fffff] potential offnode page_structs [ffffe20040000000-ffffe200547fffff] PMD -> [ffff811027c00000-ffff81103c3fffff] on node 2 [ffffe20070700000-ffffe200707fffff] potential offnode page_structs [ffffe20054800000-ffffe200707fffff] PMD -> [ffff811820200000-ffff81183c1fffff] on node 3 [ffffe20080000000-ffffe200bfffffff] PUD ->ffff81202fa00000 on node 4 [ffffe20070800000-ffffe2007fffffff] PMD -> [ffff812020200000-ffff81202f9fffff] on node 4 [ffffe2008c700000-ffffe2008c7fffff] potential offnode page_structs [ffffe20080000000-ffffe2008c7fffff] PMD -> [ffff81202fc00000-ffff81203c3fffff] on node 4 [ffffe200a8700000-ffffe200a87fffff] potential offnode page_structs [ffffe2008c800000-ffffe200a87fffff] PMD -> [ffff812820200000-ffff81283c1fffff] on node 5 [ffffe200c0000000-ffffe200ffffffff] PUD ->ffff813037a00000 on node 6 [ffffe200a8800000-ffffe200bfffffff] PMD -> [ffff813020200000-ffff8130379fffff] on node 6 [ffffe200c4700000-ffffe200c47fffff] potential offnode page_structs [ffffe200c0000000-ffffe200c47fffff] PMD -> [ffff813037c00000-ffff81303c3fffff] on node 6 [ffffe200c4800000-ffffe200e07fffff] PMD -> [ffff813820200000-ffff81383c1fffff] on node 7 instead of a very long print out... Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-12 16:19:24 +08:00
{
}
/**
* alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
* @map: usemap_map for pageblock flags or mmap_map for vmemmap
*/
static void __init alloc_usemap_and_memmap(void (*alloc_func)
(void *, unsigned long, unsigned long,
unsigned long, int), void *data)
{
unsigned long pnum;
unsigned long map_count;
int nodeid_begin = 0;
unsigned long pnum_begin = 0;
mm, sparsemem: break out of loops early There are a number of times that we loop over NR_MEM_SECTIONS, looking for section_present() on each section. But, when we have very large physical address spaces (large MAX_PHYSMEM_BITS), NR_MEM_SECTIONS becomes very large, making the loops quite long. With MAX_PHYSMEM_BITS=46 and a section size of 128MB, the current loops are 512k iterations, which we barely notice on modern hardware. But, raising MAX_PHYSMEM_BITS higher (like we will see on systems that support 5-level paging) makes this 64x longer and we start to notice, especially on slower systems like simulators. A 10-second delay for 512k iterations is annoying. But, a 640- second delay is crippling. This does not help if we have extremely sparse physical address spaces, but those are quite rare. We expect that most of the "slow" systems where this matters will also be quite small and non-sparse. To fix this, we track the highest section we've ever encountered. This lets us know when we will *never* see another section_present(), and lets us break out of the loops earlier. Doing the whole for_each_present_section_nr() macro is probably overkill, but it will ensure that any future loop iterations that we grow are more likely to be correct. Kirrill said "It shaved almost 40 seconds from boot time in qemu with 5-level paging enabled for me". Link: http://lkml.kernel.org/r/20170504174434.C45A4735@viggo.jf.intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:36:44 +08:00
for_each_present_section_nr(0, pnum) {
struct mem_section *ms;
ms = __nr_to_section(pnum);
nodeid_begin = sparse_early_nid(ms);
pnum_begin = pnum;
break;
}
map_count = 1;
mm, sparsemem: break out of loops early There are a number of times that we loop over NR_MEM_SECTIONS, looking for section_present() on each section. But, when we have very large physical address spaces (large MAX_PHYSMEM_BITS), NR_MEM_SECTIONS becomes very large, making the loops quite long. With MAX_PHYSMEM_BITS=46 and a section size of 128MB, the current loops are 512k iterations, which we barely notice on modern hardware. But, raising MAX_PHYSMEM_BITS higher (like we will see on systems that support 5-level paging) makes this 64x longer and we start to notice, especially on slower systems like simulators. A 10-second delay for 512k iterations is annoying. But, a 640- second delay is crippling. This does not help if we have extremely sparse physical address spaces, but those are quite rare. We expect that most of the "slow" systems where this matters will also be quite small and non-sparse. To fix this, we track the highest section we've ever encountered. This lets us know when we will *never* see another section_present(), and lets us break out of the loops earlier. Doing the whole for_each_present_section_nr() macro is probably overkill, but it will ensure that any future loop iterations that we grow are more likely to be correct. Kirrill said "It shaved almost 40 seconds from boot time in qemu with 5-level paging enabled for me". Link: http://lkml.kernel.org/r/20170504174434.C45A4735@viggo.jf.intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:36:44 +08:00
for_each_present_section_nr(pnum_begin + 1, pnum) {
struct mem_section *ms;
int nodeid;
ms = __nr_to_section(pnum);
nodeid = sparse_early_nid(ms);
if (nodeid == nodeid_begin) {
map_count++;
continue;
}
/* ok, we need to take cake of from pnum_begin to pnum - 1*/
alloc_func(data, pnum_begin, pnum,
map_count, nodeid_begin);
/* new start, update count etc*/
nodeid_begin = nodeid;
pnum_begin = pnum;
map_count = 1;
}
/* ok, last chunk */
alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
map_count, nodeid_begin);
}
/*
* Allocate the accumulated non-linear sections, allocate a mem_map
* for each and record the physical to section mapping.
*/
void __init sparse_init(void)
{
unsigned long pnum;
struct page *map;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
unsigned long *usemap;
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
unsigned long **usemap_map;
int size;
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
int size2;
struct page **map_map;
#endif
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
/* see include/linux/mmzone.h 'struct mem_section' definition */
BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
mm: setup pageblock_order before it's used by sparsemem On architectures with CONFIG_HUGETLB_PAGE_SIZE_VARIABLE set, such as Itanium, pageblock_order is a variable with default value of 0. It's set to the right value by set_pageblock_order() in function free_area_init_core(). But pageblock_order may be used by sparse_init() before free_area_init_core() is called along path: sparse_init() ->sparse_early_usemaps_alloc_node() ->usemap_size() ->SECTION_BLOCKFLAGS_BITS ->((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) The uninitialized pageblock_size will cause memory wasting because usemap_size() returns a much bigger value then it's really needed. For example, on an Itanium platform, sparse_init() pageblock_order=0 usemap_size=24576 free_area_init_core() before pageblock_order=0, usemap_size=24576 free_area_init_core() after pageblock_order=12, usemap_size=8 That means 24K memory has been wasted for each section, so fix it by calling set_pageblock_order() from sparse_init(). Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Jiang Liu <liuj97@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Keping Chen <chenkeping@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01 07:43:19 +08:00
/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
set_pageblock_order();
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
/*
* map is using big page (aka 2M in x86 64 bit)
* usemap is less one page (aka 24 bytes)
* so alloc 2M (with 2M align) and 24 bytes in turn will
* make next 2M slip to one more 2M later.
* then in big system, the memory will have a lot of holes...
* here try to allocate 2M pages continuously.
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
*
* powerpc need to call sparse_init_one_section right after each
* sparse_early_mem_map_alloc, so allocate usemap_map at first.
*/
size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
usemap_map = memblock_virt_alloc(size, 0);
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
if (!usemap_map)
panic("can not allocate usemap_map\n");
alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
(void *)usemap_map);
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
map_map = memblock_virt_alloc(size2, 0);
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
if (!map_map)
panic("can not allocate map_map\n");
alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
(void *)map_map);
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
#endif
mm, sparsemem: break out of loops early There are a number of times that we loop over NR_MEM_SECTIONS, looking for section_present() on each section. But, when we have very large physical address spaces (large MAX_PHYSMEM_BITS), NR_MEM_SECTIONS becomes very large, making the loops quite long. With MAX_PHYSMEM_BITS=46 and a section size of 128MB, the current loops are 512k iterations, which we barely notice on modern hardware. But, raising MAX_PHYSMEM_BITS higher (like we will see on systems that support 5-level paging) makes this 64x longer and we start to notice, especially on slower systems like simulators. A 10-second delay for 512k iterations is annoying. But, a 640- second delay is crippling. This does not help if we have extremely sparse physical address spaces, but those are quite rare. We expect that most of the "slow" systems where this matters will also be quite small and non-sparse. To fix this, we track the highest section we've ever encountered. This lets us know when we will *never* see another section_present(), and lets us break out of the loops earlier. Doing the whole for_each_present_section_nr() macro is probably overkill, but it will ensure that any future loop iterations that we grow are more likely to be correct. Kirrill said "It shaved almost 40 seconds from boot time in qemu with 5-level paging enabled for me". Link: http://lkml.kernel.org/r/20170504174434.C45A4735@viggo.jf.intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:36:44 +08:00
for_each_present_section_nr(0, pnum) {
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
usemap = usemap_map[pnum];
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
if (!usemap)
continue;
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
map = map_map[pnum];
#else
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
map = sparse_early_mem_map_alloc(pnum);
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
#endif
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
if (!map)
continue;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
sparse_init_one_section(__nr_to_section(pnum), pnum, map,
usemap);
}
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
x86_64/mm: check and print vmemmap allocation continuous On big systems with lots of memory, don't print out too much during bootup, and make it easy to find if it is continuous. on 256G 8 sockets system will get [ffffe20000000000-ffffe20002bfffff] PMD -> [ffff810001400000-ffff810003ffffff] on node 0 [ffffe2001c700000-ffffe2001c7fffff] potential offnode page_structs [ffffe20002c00000-ffffe2001c7fffff] PMD -> [ffff81000c000000-ffff8100255fffff] on node 0 [ffffe20038700000-ffffe200387fffff] potential offnode page_structs [ffffe2001c800000-ffffe200387fffff] PMD -> [ffff810820200000-ffff81083c1fffff] on node 1 [ffffe20040000000-ffffe2007fffffff] PUD ->ffff811027a00000 on node 2 [ffffe20038800000-ffffe2003fffffff] PMD -> [ffff811020200000-ffff8110279fffff] on node 2 [ffffe20054700000-ffffe200547fffff] potential offnode page_structs [ffffe20040000000-ffffe200547fffff] PMD -> [ffff811027c00000-ffff81103c3fffff] on node 2 [ffffe20070700000-ffffe200707fffff] potential offnode page_structs [ffffe20054800000-ffffe200707fffff] PMD -> [ffff811820200000-ffff81183c1fffff] on node 3 [ffffe20080000000-ffffe200bfffffff] PUD ->ffff81202fa00000 on node 4 [ffffe20070800000-ffffe2007fffffff] PMD -> [ffff812020200000-ffff81202f9fffff] on node 4 [ffffe2008c700000-ffffe2008c7fffff] potential offnode page_structs [ffffe20080000000-ffffe2008c7fffff] PMD -> [ffff81202fc00000-ffff81203c3fffff] on node 4 [ffffe200a8700000-ffffe200a87fffff] potential offnode page_structs [ffffe2008c800000-ffffe200a87fffff] PMD -> [ffff812820200000-ffff81283c1fffff] on node 5 [ffffe200c0000000-ffffe200ffffffff] PUD ->ffff813037a00000 on node 6 [ffffe200a8800000-ffffe200bfffffff] PMD -> [ffff813020200000-ffff8130379fffff] on node 6 [ffffe200c4700000-ffffe200c47fffff] potential offnode page_structs [ffffe200c0000000-ffffe200c47fffff] PMD -> [ffff813037c00000-ffff81303c3fffff] on node 6 [ffffe200c4800000-ffffe200e07fffff] PMD -> [ffff813820200000-ffff81383c1fffff] on node 7 instead of a very long print out... Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-12 16:19:24 +08:00
vmemmap_populate_print_last();
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
memblock_free_early(__pa(map_map), size2);
sparsemem: Put mem map for one node together. Add vmemmap_alloc_block_buf for mem map only. It will fallback to the old way if it cannot get a block that big. Before this patch, when a node have 128g ram installed, memmap are split into two parts or more. [ 0.000000] [ffffea0000000000-ffffea003fffffff] PMD -> [ffff880100600000-ffff88013e9fffff] on node 1 [ 0.000000] [ffffea0040000000-ffffea006fffffff] PMD -> [ffff88013ec00000-ffff88016ebfffff] on node 1 [ 0.000000] [ffffea0070000000-ffffea007fffffff] PMD -> [ffff882000600000-ffff8820105fffff] on node 0 [ 0.000000] [ffffea0080000000-ffffea00bfffffff] PMD -> [ffff882010800000-ffff8820507fffff] on node 0 [ 0.000000] [ffffea00c0000000-ffffea00dfffffff] PMD -> [ffff882050a00000-ffff8820709fffff] on node 0 [ 0.000000] [ffffea00e0000000-ffffea00ffffffff] PMD -> [ffff884000600000-ffff8840205fffff] on node 2 [ 0.000000] [ffffea0100000000-ffffea013fffffff] PMD -> [ffff884020800000-ffff8840607fffff] on node 2 [ 0.000000] [ffffea0140000000-ffffea014fffffff] PMD -> [ffff884060a00000-ffff8840709fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea017fffffff] PMD -> [ffff886000600000-ffff8860305fffff] on node 3 [ 0.000000] [ffffea0180000000-ffffea01bfffffff] PMD -> [ffff886030800000-ffff8860707fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea01ffffffff] PMD -> [ffff888000600000-ffff8880405fffff] on node 4 [ 0.000000] [ffffea0200000000-ffffea022fffffff] PMD -> [ffff888040800000-ffff8880707fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea023fffffff] PMD -> [ffff88a000600000-ffff88a0105fffff] on node 5 [ 0.000000] [ffffea0240000000-ffffea027fffffff] PMD -> [ffff88a010800000-ffff88a0507fffff] on node 5 [ 0.000000] [ffffea0280000000-ffffea029fffffff] PMD -> [ffff88a050a00000-ffff88a0709fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea02bfffffff] PMD -> [ffff88c000600000-ffff88c0205fffff] on node 6 [ 0.000000] [ffffea02c0000000-ffffea02ffffffff] PMD -> [ffff88c020800000-ffff88c0607fffff] on node 6 [ 0.000000] [ffffea0300000000-ffffea030fffffff] PMD -> [ffff88c060a00000-ffff88c0709fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea033fffffff] PMD -> [ffff88e000600000-ffff88e0305fffff] on node 7 [ 0.000000] [ffffea0340000000-ffffea037fffffff] PMD -> [ffff88e030800000-ffff88e0707fffff] on node 7 after patch will get [ 0.000000] [ffffea0000000000-ffffea006fffffff] PMD -> [ffff880100200000-ffff88016e5fffff] on node 0 [ 0.000000] [ffffea0070000000-ffffea00dfffffff] PMD -> [ffff882000200000-ffff8820701fffff] on node 1 [ 0.000000] [ffffea00e0000000-ffffea014fffffff] PMD -> [ffff884000200000-ffff8840701fffff] on node 2 [ 0.000000] [ffffea0150000000-ffffea01bfffffff] PMD -> [ffff886000200000-ffff8860701fffff] on node 3 [ 0.000000] [ffffea01c0000000-ffffea022fffffff] PMD -> [ffff888000200000-ffff8880701fffff] on node 4 [ 0.000000] [ffffea0230000000-ffffea029fffffff] PMD -> [ffff88a000200000-ffff88a0701fffff] on node 5 [ 0.000000] [ffffea02a0000000-ffffea030fffffff] PMD -> [ffff88c000200000-ffff88c0701fffff] on node 6 [ 0.000000] [ffffea0310000000-ffffea037fffffff] PMD -> [ffff88e000200000-ffff88e0701fffff] on node 7 -v2: change buf to vmemmap_buf instead according to Ingo also add CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER according to Ingo -v3: according to Andrew, use sizeof(name) instead of hard coded 15 Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <1265793639-15071-19-git-send-email-yinghai@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-10 17:20:22 +08:00
#endif
memblock_free_early(__pa(usemap_map), size);
}
#ifdef CONFIG_MEMORY_HOTPLUG
mm: consider zone which is not fully populated to have holes __pageblock_pfn_to_page has two users currently, set_zone_contiguous which checks whether the given zone contains holes and pageblock_pfn_to_page which then carefully returns a first valid page from the given pfn range for the given zone. This doesn't handle zones which are not fully populated though. Memory pageblocks can be offlined or might not have been onlined yet. In such a case the zone should be considered to have holes otherwise pfn walkers can touch and play with offline pages. Current callers of pageblock_pfn_to_page in compaction seem to work properly right now because they only isolate PageBuddy (isolate_freepages_block) or PageLRU resp. __PageMovable (isolate_migratepages_block) which will be always false for these pages. It would be safer to skip these pages altogether, though. In order to do this patch adds a new memory section state (SECTION_IS_ONLINE) which is set in memory_present (during boot time) or in online_pages_range during the memory hotplug. Similarly offline_mem_sections clears the bit and it is called when the memory range is offlined. pfn_to_online_page helper is then added which check the mem section and only returns a page if it is onlined already. Use the new helper in __pageblock_pfn_to_page and skip the whole page block in such a case. [mhocko@suse.com: check valid section number in pfn_to_online_page (Vlastimil), mark sections online after all struct pages are initialized in online_pages_range (Vlastimil)] Link: http://lkml.kernel.org/r/20170518164210.GD18333@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170515085827.16474-8-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:56 +08:00
/* Mark all memory sections within the pfn range as online */
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
mm: consider zone which is not fully populated to have holes __pageblock_pfn_to_page has two users currently, set_zone_contiguous which checks whether the given zone contains holes and pageblock_pfn_to_page which then carefully returns a first valid page from the given pfn range for the given zone. This doesn't handle zones which are not fully populated though. Memory pageblocks can be offlined or might not have been onlined yet. In such a case the zone should be considered to have holes otherwise pfn walkers can touch and play with offline pages. Current callers of pageblock_pfn_to_page in compaction seem to work properly right now because they only isolate PageBuddy (isolate_freepages_block) or PageLRU resp. __PageMovable (isolate_migratepages_block) which will be always false for these pages. It would be safer to skip these pages altogether, though. In order to do this patch adds a new memory section state (SECTION_IS_ONLINE) which is set in memory_present (during boot time) or in online_pages_range during the memory hotplug. Similarly offline_mem_sections clears the bit and it is called when the memory range is offlined. pfn_to_online_page helper is then added which check the mem section and only returns a page if it is onlined already. Use the new helper in __pageblock_pfn_to_page and skip the whole page block in such a case. [mhocko@suse.com: check valid section number in pfn_to_online_page (Vlastimil), mark sections online after all struct pages are initialized in online_pages_range (Vlastimil)] Link: http://lkml.kernel.org/r/20170518164210.GD18333@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170515085827.16474-8-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:37:56 +08:00
struct mem_section *ms;
/* onlining code should never touch invalid ranges */
if (WARN_ON(!valid_section_nr(section_nr)))
continue;
ms = __nr_to_section(section_nr);
ms->section_mem_map |= SECTION_IS_ONLINE;
}
}
#ifdef CONFIG_MEMORY_HOTREMOVE
/* Mark all memory sections within the pfn range as online */
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(start_pfn);
struct mem_section *ms;
/*
* TODO this needs some double checking. Offlining code makes
* sure to check pfn_valid but those checks might be just bogus
*/
if (WARN_ON(!valid_section_nr(section_nr)))
continue;
ms = __nr_to_section(section_nr);
ms->section_mem_map &= ~SECTION_IS_ONLINE;
}
}
#endif
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
struct vmem_altmap *altmap)
{
/* This will make the necessary allocations eventually. */
return sparse_mem_map_populate(pnum, nid, altmap);
}
static void __kfree_section_memmap(struct page *memmap,
struct vmem_altmap *altmap)
{
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:07:50 +08:00
unsigned long start = (unsigned long)memmap;
unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:07:50 +08:00
vmemmap_free(start, end, altmap);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
static void free_map_bootmem(struct page *memmap)
{
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:07:50 +08:00
unsigned long start = (unsigned long)memmap;
unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 06:07:50 +08:00
vmemmap_free(start, end, NULL);
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
#else
static struct page *__kmalloc_section_memmap(void)
{
struct page *page, *ret;
unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
if (page)
goto got_map_page;
ret = vmalloc(memmap_size);
if (ret)
goto got_map_ptr;
return NULL;
got_map_page:
ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
got_map_ptr:
return ret;
}
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
struct vmem_altmap *altmap)
{
return __kmalloc_section_memmap();
}
static void __kfree_section_memmap(struct page *memmap,
struct vmem_altmap *altmap)
{
if (is_vmalloc_addr(memmap))
vfree(memmap);
else
free_pages((unsigned long)memmap,
get_order(sizeof(struct page) * PAGES_PER_SECTION));
}
#ifdef CONFIG_MEMORY_HOTREMOVE
static void free_map_bootmem(struct page *memmap)
{
unsigned long maps_section_nr, removing_section_nr, i;
unsigned long magic, nr_pages;
mm/vmemmap: fix wrong use of virt_to_page I enable CONFIG_DEBUG_VIRTUAL and CONFIG_SPARSEMEM_VMEMMAP, when doing memory hotremove, there is a kernel BUG at arch/x86/mm/physaddr.c:20. It is caused by free_section_usemap()->virt_to_page(), virt_to_page() is only used for kernel direct mapping address, but sparse-vmemmap uses vmemmap address, so it is going wrong here. ------------[ cut here ]------------ kernel BUG at arch/x86/mm/physaddr.c:20! invalid opcode: 0000 [#1] SMP Modules linked in: acpihp_drv acpihp_slot edd cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf fuse vfat fat loop dm_mod coretemp kvm crc32c_intel ipv6 ixgbe igb iTCO_wdt i7core_edac edac_core pcspkr iTCO_vendor_support ioatdma microcode joydev sr_mod i2c_i801 dca lpc_ich mfd_core mdio tpm_tis i2c_core hid_generic tpm cdrom sg tpm_bios rtc_cmos button ext3 jbd mbcache usbhid hid uhci_hcd ehci_hcd usbcore usb_common sd_mod crc_t10dif processor thermal_sys hwmon scsi_dh_alua scsi_dh_hp_sw scsi_dh_rdac scsi_dh_emc scsi_dh ata_generic ata_piix libata megaraid_sas scsi_mod CPU 39 Pid: 6454, comm: sh Not tainted 3.7.0-rc1-acpihp-final+ #45 QCI QSSC-S4R/QSSC-S4R RIP: 0010:[<ffffffff8103c908>] [<ffffffff8103c908>] __phys_addr+0x88/0x90 RSP: 0018:ffff8804440d7c08 EFLAGS: 00010006 RAX: 0000000000000006 RBX: ffffea0012000000 RCX: 000000000000002c ... Signed-off-by: Jianguo Wu <wujianguo@huawei.com> Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Reviewd-by: Wen Congyang <wency@cn.fujitsu.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-11-30 05:54:21 +08:00
struct page *page = virt_to_page(memmap);
nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
>> PAGE_SHIFT;
for (i = 0; i < nr_pages; i++, page++) {
mm/memory_hotplug: set magic number to page->freelist instead of page->lru.next To identify that pages of page table are allocated from bootmem allocator, magic number sets to page->lru.next. But page->lru list is initialized in reserve_bootmem_region(). So when calling free_pagetable(), the function cannot find the magic number of pages. And free_pagetable() frees the pages by free_reserved_page() not put_page_bootmem(). But if the pages are allocated from bootmem allocator and used as page table, the pages have private flag. So before freeing the pages, we should clear the private flag by put_page_bootmem(). Before applying the commit 7bfec6f47bb0 ("mm, page_alloc: check multiple page fields with a single branch"), we could find the following visible issue: BUG: Bad page state in process kworker/u1024:1 page:ffffea103cfd8040 count:0 mapcount:0 mappi flags: 0x6fffff80000800(private) page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: 0x800(private) <snip> Call Trace: [...] dump_stack+0x63/0x87 [...] bad_page+0x114/0x130 [...] free_pages_prepare+0x299/0x2d0 [...] free_hot_cold_page+0x31/0x150 [...] __free_pages+0x25/0x30 [...] free_pagetable+0x6f/0xb4 [...] remove_pagetable+0x379/0x7ff [...] vmemmap_free+0x10/0x20 [...] sparse_remove_one_section+0x149/0x180 [...] __remove_pages+0x2e9/0x4f0 [...] arch_remove_memory+0x63/0xc0 [...] remove_memory+0x8c/0xc0 [...] acpi_memory_device_remove+0x79/0xa5 [...] acpi_bus_trim+0x5a/0x8d [...] acpi_bus_trim+0x38/0x8d [...] acpi_device_hotplug+0x1b7/0x418 [...] acpi_hotplug_work_fn+0x1e/0x29 [...] process_one_work+0x152/0x400 [...] worker_thread+0x125/0x4b0 [...] kthread+0xd8/0xf0 [...] ret_from_fork+0x22/0x40 And the issue still silently occurs. Until freeing the pages of page table allocated from bootmem allocator, the page->freelist is never used. So the patch sets magic number to page->freelist instead of page->lru.next. [isimatu.yasuaki@jp.fujitsu.com: fix merge issue] Link: http://lkml.kernel.org/r/722b1cc4-93ac-dd8b-2be2-7a7e313b3b0b@gmail.com Link: http://lkml.kernel.org/r/2c29bd9f-5b67-02d0-18a3-8828e78bbb6f@gmail.com Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23 07:45:13 +08:00
magic = (unsigned long) page->freelist;
BUG_ON(magic == NODE_INFO);
maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
removing_section_nr = page_private(page);
/*
* When this function is called, the removing section is
* logical offlined state. This means all pages are isolated
* from page allocator. If removing section's memmap is placed
* on the same section, it must not be freed.
* If it is freed, page allocator may allocate it which will
* be removed physically soon.
*/
if (maps_section_nr != removing_section_nr)
put_page_bootmem(page);
}
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
/*
* returns the number of sections whose mem_maps were properly
* set. If this is <=0, then that means that the passed-in
* map was not consumed and must be freed.
*/
int __meminit sparse_add_one_section(struct pglist_data *pgdat,
unsigned long start_pfn, struct vmem_altmap *altmap)
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
{
unsigned long section_nr = pfn_to_section_nr(start_pfn);
struct mem_section *ms;
struct page *memmap;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
unsigned long *usemap;
unsigned long flags;
int ret;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
/*
* no locking for this, because it does its own
* plus, it does a kmalloc
*/
ret = sparse_index_init(section_nr, pgdat->node_id);
if (ret < 0 && ret != -EEXIST)
return ret;
memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
if (!memmap)
return -ENOMEM;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
usemap = __kmalloc_section_usemap();
if (!usemap) {
__kfree_section_memmap(memmap, altmap);
return -ENOMEM;
}
pgdat_resize_lock(pgdat, &flags);
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
ms = __pfn_to_section(start_pfn);
if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
ret = -EEXIST;
goto out;
}
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
memory-hotplug, mm/sparse.c: clear the memory to store struct page If sparse memory vmemmap is enabled, we can't free the memory to store struct page when a memory device is hotremoved, because we may store struct page in the memory to manage the memory which doesn't belong to this memory device. When we hotadded this memory device again, we will reuse this memory to store struct page, and struct page may contain some obsolete information, and we will get bad-page state: init_memory_mapping: [mem 0x80000000-0x9fffffff] Built 2 zonelists in Node order, mobility grouping on. Total pages: 547617 Policy zone: Normal BUG: Bad page state in process bash pfn:9b6dc page:ffffea0002200020 count:0 mapcount:0 mapping: (null) index:0xfdfdfdfdfdfdfdfd page flags: 0x2fdfdfdfd5df9fd(locked|referenced|uptodate|dirty|lru|active|slab|owner_priv_1|private|private_2|writeback|head|tail|swapcache|reclaim|swapbacked|unevictable|uncached|compound_lock) Modules linked in: netconsole acpiphp pci_hotplug acpi_memhotplug loop kvm_amd kvm microcode tpm_tis tpm tpm_bios evdev psmouse serio_raw i2c_piix4 i2c_core parport_pc parport processor button thermal_sys ext3 jbd mbcache sg sr_mod cdrom ata_generic virtio_net ata_piix virtio_blk libata virtio_pci virtio_ring virtio scsi_mod Pid: 988, comm: bash Not tainted 3.6.0-rc7-guest #12 Call Trace: [<ffffffff810e9b30>] ? bad_page+0xb0/0x100 [<ffffffff810ea4c3>] ? free_pages_prepare+0xb3/0x100 [<ffffffff810ea668>] ? free_hot_cold_page+0x48/0x1a0 [<ffffffff8112cc08>] ? online_pages_range+0x68/0xa0 [<ffffffff8112cba0>] ? __online_page_increment_counters+0x10/0x10 [<ffffffff81045561>] ? walk_system_ram_range+0x101/0x110 [<ffffffff814c4f95>] ? online_pages+0x1a5/0x2b0 [<ffffffff8135663d>] ? __memory_block_change_state+0x20d/0x270 [<ffffffff81356756>] ? store_mem_state+0xb6/0xf0 [<ffffffff8119e482>] ? sysfs_write_file+0xd2/0x160 [<ffffffff8113769a>] ? vfs_write+0xaa/0x160 [<ffffffff81137977>] ? sys_write+0x47/0x90 [<ffffffff814e2f25>] ? async_page_fault+0x25/0x30 [<ffffffff814ea239>] ? system_call_fastpath+0x16/0x1b Disabling lock debugging due to kernel taint This patch clears the memory to store struct page to avoid unexpected error. Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Minchan Kim <minchan.kim@gmail.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Reported-by: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 08:00:59 +08:00
mm, sparsemem: break out of loops early There are a number of times that we loop over NR_MEM_SECTIONS, looking for section_present() on each section. But, when we have very large physical address spaces (large MAX_PHYSMEM_BITS), NR_MEM_SECTIONS becomes very large, making the loops quite long. With MAX_PHYSMEM_BITS=46 and a section size of 128MB, the current loops are 512k iterations, which we barely notice on modern hardware. But, raising MAX_PHYSMEM_BITS higher (like we will see on systems that support 5-level paging) makes this 64x longer and we start to notice, especially on slower systems like simulators. A 10-second delay for 512k iterations is annoying. But, a 640- second delay is crippling. This does not help if we have extremely sparse physical address spaces, but those are quite rare. We expect that most of the "slow" systems where this matters will also be quite small and non-sparse. To fix this, we track the highest section we've ever encountered. This lets us know when we will *never* see another section_present(), and lets us break out of the loops earlier. Doing the whole for_each_present_section_nr() macro is probably overkill, but it will ensure that any future loop iterations that we grow are more likely to be correct. Kirrill said "It shaved almost 40 seconds from boot time in qemu with 5-level paging enabled for me". Link: http://lkml.kernel.org/r/20170504174434.C45A4735@viggo.jf.intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07 06:36:44 +08:00
section_mark_present(ms);
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
out:
pgdat_resize_unlock(pgdat, &flags);
if (ret <= 0) {
kfree(usemap);
__kfree_section_memmap(memmap, altmap);
}
return ret;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
}
#ifdef CONFIG_MEMORY_HOTREMOVE
#ifdef CONFIG_MEMORY_FAILURE
static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
int i;
if (!memmap)
return;
for (i = 0; i < nr_pages; i++) {
if (PageHWPoison(&memmap[i])) {
atomic_long_sub(1, &num_poisoned_pages);
ClearPageHWPoison(&memmap[i]);
}
}
}
#else
static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
}
#endif
static void free_section_usemap(struct page *memmap, unsigned long *usemap,
struct vmem_altmap *altmap)
{
struct page *usemap_page;
if (!usemap)
return;
usemap_page = virt_to_page(usemap);
/*
* Check to see if allocation came from hot-plug-add
*/
if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
kfree(usemap);
if (memmap)
__kfree_section_memmap(memmap, altmap);
return;
}
/*
* The usemap came from bootmem. This is packed with other usemaps
* on the section which has pgdat at boot time. Just keep it as is now.
*/
if (memmap)
free_map_bootmem(memmap);
}
void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
unsigned long map_offset, struct vmem_altmap *altmap)
{
struct page *memmap = NULL;
memory-hotplug: move pgdat_resize_lock into sparse_remove_one_section() In __remove_section(), we locked pgdat_resize_lock when calling sparse_remove_one_section(). This lock will disable irq. But we don't need to lock the whole function. If we do some work to free pagetables in free_section_usemap(), we need to call flush_tlb_all(), which need irq enabled. Otherwise the WARN_ON_ONCE() in smp_call_function_many() will be triggered. If we lock the whole sparse_remove_one_section(), then we come to this call trace: ------------[ cut here ]------------ WARNING: at kernel/smp.c:461 smp_call_function_many+0xbd/0x260() Hardware name: PRIMEQUEST 1800E ...... Call Trace: smp_call_function_many+0xbd/0x260 smp_call_function+0x3b/0x50 on_each_cpu+0x3b/0xc0 flush_tlb_all+0x1c/0x20 remove_pagetable+0x14e/0x1d0 vmemmap_free+0x18/0x20 sparse_remove_one_section+0xf7/0x100 __remove_section+0xa2/0xb0 __remove_pages+0xa0/0xd0 arch_remove_memory+0x6b/0xc0 remove_memory+0xb8/0xf0 acpi_memory_device_remove+0x53/0x96 acpi_device_remove+0x90/0xb2 __device_release_driver+0x7c/0xf0 device_release_driver+0x2f/0x50 acpi_bus_remove+0x32/0x6d acpi_bus_trim+0x91/0x102 acpi_bus_hot_remove_device+0x88/0x16b acpi_os_execute_deferred+0x27/0x34 process_one_work+0x20e/0x5c0 worker_thread+0x12e/0x370 kthread+0xee/0x100 ret_from_fork+0x7c/0xb0 ---[ end trace 25e85300f542aa01 ]--- Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Wu Jianguo <wujianguo@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 08:33:02 +08:00
unsigned long *usemap = NULL, flags;
struct pglist_data *pgdat = zone->zone_pgdat;
memory-hotplug: move pgdat_resize_lock into sparse_remove_one_section() In __remove_section(), we locked pgdat_resize_lock when calling sparse_remove_one_section(). This lock will disable irq. But we don't need to lock the whole function. If we do some work to free pagetables in free_section_usemap(), we need to call flush_tlb_all(), which need irq enabled. Otherwise the WARN_ON_ONCE() in smp_call_function_many() will be triggered. If we lock the whole sparse_remove_one_section(), then we come to this call trace: ------------[ cut here ]------------ WARNING: at kernel/smp.c:461 smp_call_function_many+0xbd/0x260() Hardware name: PRIMEQUEST 1800E ...... Call Trace: smp_call_function_many+0xbd/0x260 smp_call_function+0x3b/0x50 on_each_cpu+0x3b/0xc0 flush_tlb_all+0x1c/0x20 remove_pagetable+0x14e/0x1d0 vmemmap_free+0x18/0x20 sparse_remove_one_section+0xf7/0x100 __remove_section+0xa2/0xb0 __remove_pages+0xa0/0xd0 arch_remove_memory+0x6b/0xc0 remove_memory+0xb8/0xf0 acpi_memory_device_remove+0x53/0x96 acpi_device_remove+0x90/0xb2 __device_release_driver+0x7c/0xf0 device_release_driver+0x2f/0x50 acpi_bus_remove+0x32/0x6d acpi_bus_trim+0x91/0x102 acpi_bus_hot_remove_device+0x88/0x16b acpi_os_execute_deferred+0x27/0x34 process_one_work+0x20e/0x5c0 worker_thread+0x12e/0x370 kthread+0xee/0x100 ret_from_fork+0x7c/0xb0 ---[ end trace 25e85300f542aa01 ]--- Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Wu Jianguo <wujianguo@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 08:33:02 +08:00
pgdat_resize_lock(pgdat, &flags);
if (ms->section_mem_map) {
usemap = ms->pageblock_flags;
memmap = sparse_decode_mem_map(ms->section_mem_map,
__section_nr(ms));
ms->section_mem_map = 0;
ms->pageblock_flags = NULL;
}
memory-hotplug: move pgdat_resize_lock into sparse_remove_one_section() In __remove_section(), we locked pgdat_resize_lock when calling sparse_remove_one_section(). This lock will disable irq. But we don't need to lock the whole function. If we do some work to free pagetables in free_section_usemap(), we need to call flush_tlb_all(), which need irq enabled. Otherwise the WARN_ON_ONCE() in smp_call_function_many() will be triggered. If we lock the whole sparse_remove_one_section(), then we come to this call trace: ------------[ cut here ]------------ WARNING: at kernel/smp.c:461 smp_call_function_many+0xbd/0x260() Hardware name: PRIMEQUEST 1800E ...... Call Trace: smp_call_function_many+0xbd/0x260 smp_call_function+0x3b/0x50 on_each_cpu+0x3b/0xc0 flush_tlb_all+0x1c/0x20 remove_pagetable+0x14e/0x1d0 vmemmap_free+0x18/0x20 sparse_remove_one_section+0xf7/0x100 __remove_section+0xa2/0xb0 __remove_pages+0xa0/0xd0 arch_remove_memory+0x6b/0xc0 remove_memory+0xb8/0xf0 acpi_memory_device_remove+0x53/0x96 acpi_device_remove+0x90/0xb2 __device_release_driver+0x7c/0xf0 device_release_driver+0x2f/0x50 acpi_bus_remove+0x32/0x6d acpi_bus_trim+0x91/0x102 acpi_bus_hot_remove_device+0x88/0x16b acpi_os_execute_deferred+0x27/0x34 process_one_work+0x20e/0x5c0 worker_thread+0x12e/0x370 kthread+0xee/0x100 ret_from_fork+0x7c/0xb0 ---[ end trace 25e85300f542aa01 ]--- Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Wu Jianguo <wujianguo@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 08:33:02 +08:00
pgdat_resize_unlock(pgdat, &flags);
clear_hwpoisoned_pages(memmap + map_offset,
PAGES_PER_SECTION - map_offset);
free_section_usemap(memmap, usemap, altmap);
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
#endif /* CONFIG_MEMORY_HOTPLUG */