linux/drivers/thunderbolt/tunnel.c

692 lines
17 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Thunderbolt driver - Tunneling support
*
* Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
* Copyright (C) 2019, Intel Corporation
*/
#include <linux/slab.h>
#include <linux/list.h>
#include "tunnel.h"
#include "tb.h"
/* PCIe adapters use always HopID of 8 for both directions */
#define TB_PCI_HOPID 8
#define TB_PCI_PATH_DOWN 0
#define TB_PCI_PATH_UP 1
/* DP adapters use HopID 8 for AUX and 9 for Video */
#define TB_DP_AUX_TX_HOPID 8
#define TB_DP_AUX_RX_HOPID 8
#define TB_DP_VIDEO_HOPID 9
#define TB_DP_VIDEO_PATH_OUT 0
#define TB_DP_AUX_PATH_OUT 1
#define TB_DP_AUX_PATH_IN 2
#define TB_DMA_PATH_OUT 0
#define TB_DMA_PATH_IN 1
static const char * const tb_tunnel_names[] = { "PCI", "DP", "DMA" };
#define __TB_TUNNEL_PRINT(level, tunnel, fmt, arg...) \
do { \
struct tb_tunnel *__tunnel = (tunnel); \
level(__tunnel->tb, "%llx:%x <-> %llx:%x (%s): " fmt, \
tb_route(__tunnel->src_port->sw), \
__tunnel->src_port->port, \
tb_route(__tunnel->dst_port->sw), \
__tunnel->dst_port->port, \
tb_tunnel_names[__tunnel->type], \
## arg); \
} while (0)
#define tb_tunnel_WARN(tunnel, fmt, arg...) \
__TB_TUNNEL_PRINT(tb_WARN, tunnel, fmt, ##arg)
#define tb_tunnel_warn(tunnel, fmt, arg...) \
__TB_TUNNEL_PRINT(tb_warn, tunnel, fmt, ##arg)
#define tb_tunnel_info(tunnel, fmt, arg...) \
__TB_TUNNEL_PRINT(tb_info, tunnel, fmt, ##arg)
#define tb_tunnel_dbg(tunnel, fmt, arg...) \
__TB_TUNNEL_PRINT(tb_dbg, tunnel, fmt, ##arg)
static struct tb_tunnel *tb_tunnel_alloc(struct tb *tb, size_t npaths,
enum tb_tunnel_type type)
{
struct tb_tunnel *tunnel;
tunnel = kzalloc(sizeof(*tunnel), GFP_KERNEL);
if (!tunnel)
return NULL;
tunnel->paths = kcalloc(npaths, sizeof(tunnel->paths[0]), GFP_KERNEL);
if (!tunnel->paths) {
tb_tunnel_free(tunnel);
return NULL;
}
INIT_LIST_HEAD(&tunnel->list);
tunnel->tb = tb;
tunnel->npaths = npaths;
tunnel->type = type;
return tunnel;
}
static int tb_pci_activate(struct tb_tunnel *tunnel, bool activate)
{
int res;
res = tb_pci_port_enable(tunnel->src_port, activate);
if (res)
return res;
if (tb_port_is_pcie_up(tunnel->dst_port))
return tb_pci_port_enable(tunnel->dst_port, activate);
return 0;
}
static void tb_pci_init_path(struct tb_path *path)
{
path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL;
path->egress_shared_buffer = TB_PATH_NONE;
path->ingress_fc_enable = TB_PATH_ALL;
path->ingress_shared_buffer = TB_PATH_NONE;
path->priority = 3;
path->weight = 1;
path->drop_packages = 0;
path->nfc_credits = 0;
path->hops[0].initial_credits = 7;
path->hops[1].initial_credits = 16;
}
/**
* tb_tunnel_discover_pci() - Discover existing PCIe tunnels
* @tb: Pointer to the domain structure
* @down: PCIe downstream adapter
*
* If @down adapter is active, follows the tunnel to the PCIe upstream
* adapter and back. Returns the discovered tunnel or %NULL if there was
* no tunnel.
*/
struct tb_tunnel *tb_tunnel_discover_pci(struct tb *tb, struct tb_port *down)
{
struct tb_tunnel *tunnel;
struct tb_path *path;
if (!tb_pci_port_is_enabled(down))
return NULL;
tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI);
if (!tunnel)
return NULL;
tunnel->activate = tb_pci_activate;
tunnel->src_port = down;
/*
* Discover both paths even if they are not complete. We will
* clean them up by calling tb_tunnel_deactivate() below in that
* case.
*/
path = tb_path_discover(down, TB_PCI_HOPID, NULL, -1,
&tunnel->dst_port, "PCIe Up");
if (!path) {
/* Just disable the downstream port */
tb_pci_port_enable(down, false);
goto err_free;
}
tunnel->paths[TB_PCI_PATH_UP] = path;
tb_pci_init_path(tunnel->paths[TB_PCI_PATH_UP]);
path = tb_path_discover(tunnel->dst_port, -1, down, TB_PCI_HOPID, NULL,
"PCIe Down");
if (!path)
goto err_deactivate;
tunnel->paths[TB_PCI_PATH_DOWN] = path;
tb_pci_init_path(tunnel->paths[TB_PCI_PATH_DOWN]);
/* Validate that the tunnel is complete */
if (!tb_port_is_pcie_up(tunnel->dst_port)) {
tb_port_warn(tunnel->dst_port,
"path does not end on a PCIe adapter, cleaning up\n");
goto err_deactivate;
}
if (down != tunnel->src_port) {
tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n");
goto err_deactivate;
}
if (!tb_pci_port_is_enabled(tunnel->dst_port)) {
tb_tunnel_warn(tunnel,
"tunnel is not fully activated, cleaning up\n");
goto err_deactivate;
}
tb_tunnel_dbg(tunnel, "discovered\n");
return tunnel;
err_deactivate:
tb_tunnel_deactivate(tunnel);
err_free:
tb_tunnel_free(tunnel);
return NULL;
}
/**
* tb_tunnel_alloc_pci() - allocate a pci tunnel
* @tb: Pointer to the domain structure
* @up: PCIe upstream adapter port
* @down: PCIe downstream adapter port
*
* Allocate a PCI tunnel. The ports must be of type TB_TYPE_PCIE_UP and
* TB_TYPE_PCIE_DOWN.
*
* Return: Returns a tb_tunnel on success or NULL on failure.
*/
struct tb_tunnel *tb_tunnel_alloc_pci(struct tb *tb, struct tb_port *up,
struct tb_port *down)
{
struct tb_tunnel *tunnel;
struct tb_path *path;
tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_PCI);
if (!tunnel)
return NULL;
tunnel->activate = tb_pci_activate;
tunnel->src_port = down;
tunnel->dst_port = up;
path = tb_path_alloc(tb, down, TB_PCI_HOPID, up, TB_PCI_HOPID, 0,
"PCIe Down");
if (!path) {
tb_tunnel_free(tunnel);
return NULL;
}
tb_pci_init_path(path);
tunnel->paths[TB_PCI_PATH_UP] = path;
path = tb_path_alloc(tb, up, TB_PCI_HOPID, down, TB_PCI_HOPID, 0,
"PCIe Up");
if (!path) {
tb_tunnel_free(tunnel);
return NULL;
}
tb_pci_init_path(path);
tunnel->paths[TB_PCI_PATH_DOWN] = path;
return tunnel;
}
static int tb_dp_xchg_caps(struct tb_tunnel *tunnel)
{
struct tb_port *out = tunnel->dst_port;
struct tb_port *in = tunnel->src_port;
u32 in_dp_cap, out_dp_cap;
int ret;
/*
* Copy DP_LOCAL_CAP register to DP_REMOTE_CAP register for
* newer generation hardware.
*/
if (in->sw->generation < 2 || out->sw->generation < 2)
return 0;
/* Read both DP_LOCAL_CAP registers */
ret = tb_port_read(in, &in_dp_cap, TB_CFG_PORT,
in->cap_adap + TB_DP_LOCAL_CAP, 1);
if (ret)
return ret;
ret = tb_port_read(out, &out_dp_cap, TB_CFG_PORT,
out->cap_adap + TB_DP_LOCAL_CAP, 1);
if (ret)
return ret;
/* Write IN local caps to OUT remote caps */
ret = tb_port_write(out, &in_dp_cap, TB_CFG_PORT,
out->cap_adap + TB_DP_REMOTE_CAP, 1);
if (ret)
return ret;
return tb_port_write(in, &out_dp_cap, TB_CFG_PORT,
in->cap_adap + TB_DP_REMOTE_CAP, 1);
}
static int tb_dp_activate(struct tb_tunnel *tunnel, bool active)
{
int ret;
if (active) {
struct tb_path **paths;
int last;
paths = tunnel->paths;
last = paths[TB_DP_VIDEO_PATH_OUT]->path_length - 1;
tb_dp_port_set_hops(tunnel->src_port,
paths[TB_DP_VIDEO_PATH_OUT]->hops[0].in_hop_index,
paths[TB_DP_AUX_PATH_OUT]->hops[0].in_hop_index,
paths[TB_DP_AUX_PATH_IN]->hops[last].next_hop_index);
tb_dp_port_set_hops(tunnel->dst_port,
paths[TB_DP_VIDEO_PATH_OUT]->hops[last].next_hop_index,
paths[TB_DP_AUX_PATH_IN]->hops[0].in_hop_index,
paths[TB_DP_AUX_PATH_OUT]->hops[last].next_hop_index);
} else {
tb_dp_port_hpd_clear(tunnel->src_port);
tb_dp_port_set_hops(tunnel->src_port, 0, 0, 0);
if (tb_port_is_dpout(tunnel->dst_port))
tb_dp_port_set_hops(tunnel->dst_port, 0, 0, 0);
}
ret = tb_dp_port_enable(tunnel->src_port, active);
if (ret)
return ret;
if (tb_port_is_dpout(tunnel->dst_port))
return tb_dp_port_enable(tunnel->dst_port, active);
return 0;
}
static void tb_dp_init_aux_path(struct tb_path *path)
{
int i;
path->egress_fc_enable = TB_PATH_SOURCE | TB_PATH_INTERNAL;
path->egress_shared_buffer = TB_PATH_NONE;
path->ingress_fc_enable = TB_PATH_ALL;
path->ingress_shared_buffer = TB_PATH_NONE;
path->priority = 2;
path->weight = 1;
for (i = 0; i < path->path_length; i++)
path->hops[i].initial_credits = 1;
}
static void tb_dp_init_video_path(struct tb_path *path, bool discover)
{
u32 nfc_credits = path->hops[0].in_port->config.nfc_credits;
path->egress_fc_enable = TB_PATH_NONE;
path->egress_shared_buffer = TB_PATH_NONE;
path->ingress_fc_enable = TB_PATH_NONE;
path->ingress_shared_buffer = TB_PATH_NONE;
path->priority = 1;
path->weight = 1;
if (discover) {
path->nfc_credits = nfc_credits & TB_PORT_NFC_CREDITS_MASK;
} else {
u32 max_credits;
max_credits = (nfc_credits & TB_PORT_MAX_CREDITS_MASK) >>
TB_PORT_MAX_CREDITS_SHIFT;
/* Leave some credits for AUX path */
path->nfc_credits = min(max_credits - 2, 12U);
}
}
/**
* tb_tunnel_discover_dp() - Discover existing Display Port tunnels
* @tb: Pointer to the domain structure
* @in: DP in adapter
*
* If @in adapter is active, follows the tunnel to the DP out adapter
* and back. Returns the discovered tunnel or %NULL if there was no
* tunnel.
*
* Return: DP tunnel or %NULL if no tunnel found.
*/
struct tb_tunnel *tb_tunnel_discover_dp(struct tb *tb, struct tb_port *in)
{
struct tb_tunnel *tunnel;
struct tb_port *port;
struct tb_path *path;
if (!tb_dp_port_is_enabled(in))
return NULL;
tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP);
if (!tunnel)
return NULL;
tunnel->init = tb_dp_xchg_caps;
tunnel->activate = tb_dp_activate;
tunnel->src_port = in;
path = tb_path_discover(in, TB_DP_VIDEO_HOPID, NULL, -1,
&tunnel->dst_port, "Video");
if (!path) {
/* Just disable the DP IN port */
tb_dp_port_enable(in, false);
goto err_free;
}
tunnel->paths[TB_DP_VIDEO_PATH_OUT] = path;
tb_dp_init_video_path(tunnel->paths[TB_DP_VIDEO_PATH_OUT], true);
path = tb_path_discover(in, TB_DP_AUX_TX_HOPID, NULL, -1, NULL, "AUX TX");
if (!path)
goto err_deactivate;
tunnel->paths[TB_DP_AUX_PATH_OUT] = path;
tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_OUT]);
path = tb_path_discover(tunnel->dst_port, -1, in, TB_DP_AUX_RX_HOPID,
&port, "AUX RX");
if (!path)
goto err_deactivate;
tunnel->paths[TB_DP_AUX_PATH_IN] = path;
tb_dp_init_aux_path(tunnel->paths[TB_DP_AUX_PATH_IN]);
/* Validate that the tunnel is complete */
if (!tb_port_is_dpout(tunnel->dst_port)) {
tb_port_warn(in, "path does not end on a DP adapter, cleaning up\n");
goto err_deactivate;
}
if (!tb_dp_port_is_enabled(tunnel->dst_port))
goto err_deactivate;
if (!tb_dp_port_hpd_is_active(tunnel->dst_port))
goto err_deactivate;
if (port != tunnel->src_port) {
tb_tunnel_warn(tunnel, "path is not complete, cleaning up\n");
goto err_deactivate;
}
tb_tunnel_dbg(tunnel, "discovered\n");
return tunnel;
err_deactivate:
tb_tunnel_deactivate(tunnel);
err_free:
tb_tunnel_free(tunnel);
return NULL;
}
/**
* tb_tunnel_alloc_dp() - allocate a Display Port tunnel
* @tb: Pointer to the domain structure
* @in: DP in adapter port
* @out: DP out adapter port
*
* Allocates a tunnel between @in and @out that is capable of tunneling
* Display Port traffic.
*
* Return: Returns a tb_tunnel on success or NULL on failure.
*/
struct tb_tunnel *tb_tunnel_alloc_dp(struct tb *tb, struct tb_port *in,
struct tb_port *out)
{
struct tb_tunnel *tunnel;
struct tb_path **paths;
struct tb_path *path;
if (WARN_ON(!in->cap_adap || !out->cap_adap))
return NULL;
tunnel = tb_tunnel_alloc(tb, 3, TB_TUNNEL_DP);
if (!tunnel)
return NULL;
tunnel->init = tb_dp_xchg_caps;
tunnel->activate = tb_dp_activate;
tunnel->src_port = in;
tunnel->dst_port = out;
paths = tunnel->paths;
path = tb_path_alloc(tb, in, TB_DP_VIDEO_HOPID, out, TB_DP_VIDEO_HOPID,
1, "Video");
if (!path)
goto err_free;
tb_dp_init_video_path(path, false);
paths[TB_DP_VIDEO_PATH_OUT] = path;
path = tb_path_alloc(tb, in, TB_DP_AUX_TX_HOPID, out,
TB_DP_AUX_TX_HOPID, 1, "AUX TX");
if (!path)
goto err_free;
tb_dp_init_aux_path(path);
paths[TB_DP_AUX_PATH_OUT] = path;
path = tb_path_alloc(tb, out, TB_DP_AUX_RX_HOPID, in,
TB_DP_AUX_RX_HOPID, 1, "AUX RX");
if (!path)
goto err_free;
tb_dp_init_aux_path(path);
paths[TB_DP_AUX_PATH_IN] = path;
return tunnel;
err_free:
tb_tunnel_free(tunnel);
return NULL;
}
static u32 tb_dma_credits(struct tb_port *nhi)
{
u32 max_credits;
max_credits = (nhi->config.nfc_credits & TB_PORT_MAX_CREDITS_MASK) >>
TB_PORT_MAX_CREDITS_SHIFT;
return min(max_credits, 13U);
}
static int tb_dma_activate(struct tb_tunnel *tunnel, bool active)
{
struct tb_port *nhi = tunnel->src_port;
u32 credits;
credits = active ? tb_dma_credits(nhi) : 0;
return tb_port_set_initial_credits(nhi, credits);
}
static void tb_dma_init_path(struct tb_path *path, unsigned int isb,
unsigned int efc, u32 credits)
{
int i;
path->egress_fc_enable = efc;
path->ingress_fc_enable = TB_PATH_ALL;
path->egress_shared_buffer = TB_PATH_NONE;
path->ingress_shared_buffer = isb;
path->priority = 5;
path->weight = 1;
path->clear_fc = true;
for (i = 0; i < path->path_length; i++)
path->hops[i].initial_credits = credits;
}
/**
* tb_tunnel_alloc_dma() - allocate a DMA tunnel
* @tb: Pointer to the domain structure
* @nhi: Host controller port
* @dst: Destination null port which the other domain is connected to
* @transmit_ring: NHI ring number used to send packets towards the
* other domain
* @transmit_path: HopID used for transmitting packets
* @receive_ring: NHI ring number used to receive packets from the
* other domain
* @reveive_path: HopID used for receiving packets
*
* Return: Returns a tb_tunnel on success or NULL on failure.
*/
struct tb_tunnel *tb_tunnel_alloc_dma(struct tb *tb, struct tb_port *nhi,
struct tb_port *dst, int transmit_ring,
int transmit_path, int receive_ring,
int receive_path)
{
struct tb_tunnel *tunnel;
struct tb_path *path;
u32 credits;
tunnel = tb_tunnel_alloc(tb, 2, TB_TUNNEL_DMA);
if (!tunnel)
return NULL;
tunnel->activate = tb_dma_activate;
tunnel->src_port = nhi;
tunnel->dst_port = dst;
credits = tb_dma_credits(nhi);
path = tb_path_alloc(tb, dst, receive_path, nhi, receive_ring, 0, "DMA RX");
if (!path) {
tb_tunnel_free(tunnel);
return NULL;
}
tb_dma_init_path(path, TB_PATH_NONE, TB_PATH_SOURCE | TB_PATH_INTERNAL,
credits);
tunnel->paths[TB_DMA_PATH_IN] = path;
path = tb_path_alloc(tb, nhi, transmit_ring, dst, transmit_path, 0, "DMA TX");
if (!path) {
tb_tunnel_free(tunnel);
return NULL;
}
tb_dma_init_path(path, TB_PATH_SOURCE, TB_PATH_ALL, credits);
tunnel->paths[TB_DMA_PATH_OUT] = path;
return tunnel;
}
/**
* tb_tunnel_free() - free a tunnel
* @tunnel: Tunnel to be freed
*
* Frees a tunnel. The tunnel does not need to be deactivated.
*/
void tb_tunnel_free(struct tb_tunnel *tunnel)
{
int i;
if (!tunnel)
return;
for (i = 0; i < tunnel->npaths; i++) {
if (tunnel->paths[i])
tb_path_free(tunnel->paths[i]);
}
kfree(tunnel->paths);
kfree(tunnel);
}
/**
* tb_tunnel_is_invalid - check whether an activated path is still valid
* @tunnel: Tunnel to check
*/
bool tb_tunnel_is_invalid(struct tb_tunnel *tunnel)
{
int i;
for (i = 0; i < tunnel->npaths; i++) {
WARN_ON(!tunnel->paths[i]->activated);
if (tb_path_is_invalid(tunnel->paths[i]))
return true;
}
return false;
}
/**
* tb_tunnel_restart() - activate a tunnel after a hardware reset
* @tunnel: Tunnel to restart
*
* Return: 0 on success and negative errno in case if failure
*/
int tb_tunnel_restart(struct tb_tunnel *tunnel)
{
int res, i;
tb_tunnel_dbg(tunnel, "activating\n");
/*
* Make sure all paths are properly disabled before enabling
* them again.
*/
for (i = 0; i < tunnel->npaths; i++) {
if (tunnel->paths[i]->activated) {
tb_path_deactivate(tunnel->paths[i]);
tunnel->paths[i]->activated = false;
}
}
if (tunnel->init) {
res = tunnel->init(tunnel);
if (res)
return res;
}
for (i = 0; i < tunnel->npaths; i++) {
res = tb_path_activate(tunnel->paths[i]);
if (res)
goto err;
}
if (tunnel->activate) {
res = tunnel->activate(tunnel, true);
if (res)
goto err;
}
return 0;
err:
tb_tunnel_warn(tunnel, "activation failed\n");
tb_tunnel_deactivate(tunnel);
return res;
}
/**
* tb_tunnel_activate() - activate a tunnel
* @tunnel: Tunnel to activate
*
* Return: Returns 0 on success or an error code on failure.
*/
int tb_tunnel_activate(struct tb_tunnel *tunnel)
{
int i;
for (i = 0; i < tunnel->npaths; i++) {
if (tunnel->paths[i]->activated) {
tb_tunnel_WARN(tunnel,
"trying to activate an already activated tunnel\n");
return -EINVAL;
}
}
return tb_tunnel_restart(tunnel);
}
/**
* tb_tunnel_deactivate() - deactivate a tunnel
* @tunnel: Tunnel to deactivate
*/
void tb_tunnel_deactivate(struct tb_tunnel *tunnel)
{
int i;
tb_tunnel_dbg(tunnel, "deactivating\n");
if (tunnel->activate)
tunnel->activate(tunnel, false);
for (i = 0; i < tunnel->npaths; i++) {
if (tunnel->paths[i] && tunnel->paths[i]->activated)
tb_path_deactivate(tunnel->paths[i]);
}
}