2009-09-04 01:14:01 +08:00
|
|
|
/*
|
|
|
|
* omap-pm-noop.c - OMAP power management interface - dummy version
|
|
|
|
*
|
|
|
|
* This code implements the OMAP power management interface to
|
|
|
|
* drivers, CPUIdle, CPUFreq, and DSP Bridge. It is strictly for
|
|
|
|
* debug/demonstration use, as it does nothing but printk() whenever a
|
|
|
|
* function is called (when DEBUG is defined, below)
|
|
|
|
*
|
|
|
|
* Copyright (C) 2008-2009 Texas Instruments, Inc.
|
|
|
|
* Copyright (C) 2008-2009 Nokia Corporation
|
|
|
|
* Paul Walmsley
|
|
|
|
*
|
|
|
|
* Interface developed by (in alphabetical order):
|
|
|
|
* Karthik Dasu, Tony Lindgren, Rajendra Nayak, Sakari Poussa, Veeramanikandan
|
|
|
|
* Raju, Anand Sawant, Igor Stoppa, Paul Walmsley, Richard Woodruff
|
|
|
|
*/
|
|
|
|
|
|
|
|
#undef DEBUG
|
|
|
|
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/cpufreq.h>
|
|
|
|
#include <linux/device.h>
|
2010-12-22 12:31:55 +08:00
|
|
|
#include <linux/platform_device.h>
|
2009-09-04 01:14:01 +08:00
|
|
|
|
|
|
|
/* Interface documentation is in mach/omap-pm.h */
|
2009-10-21 00:40:47 +08:00
|
|
|
#include <plat/omap-pm.h>
|
2010-12-22 12:31:55 +08:00
|
|
|
#include <plat/omap_device.h>
|
2009-09-04 01:14:01 +08:00
|
|
|
|
2010-12-22 12:31:55 +08:00
|
|
|
static bool off_mode_enabled;
|
2011-06-09 21:56:23 +08:00
|
|
|
static int dummy_context_loss_counter;
|
2010-12-22 12:31:55 +08:00
|
|
|
|
2009-09-04 01:14:01 +08:00
|
|
|
/*
|
|
|
|
* Device-driver-originated constraints (via board-*.c files)
|
|
|
|
*/
|
|
|
|
|
2010-07-27 06:34:34 +08:00
|
|
|
int omap_pm_set_max_mpu_wakeup_lat(struct device *dev, long t)
|
2009-09-04 01:14:01 +08:00
|
|
|
{
|
|
|
|
if (!dev || t < -1) {
|
2010-07-27 06:34:34 +08:00
|
|
|
WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__);
|
|
|
|
return -EINVAL;
|
2012-09-19 00:36:13 +08:00
|
|
|
}
|
2009-09-04 01:14:01 +08:00
|
|
|
|
|
|
|
if (t == -1)
|
2012-07-26 14:54:26 +08:00
|
|
|
pr_debug("OMAP PM: remove max MPU wakeup latency constraint: dev %s\n",
|
|
|
|
dev_name(dev));
|
2009-09-04 01:14:01 +08:00
|
|
|
else
|
2012-07-26 14:54:26 +08:00
|
|
|
pr_debug("OMAP PM: add max MPU wakeup latency constraint: dev %s, t = %ld usec\n",
|
|
|
|
dev_name(dev), t);
|
2009-09-04 01:14:01 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* For current Linux, this needs to map the MPU to a
|
|
|
|
* powerdomain, then go through the list of current max lat
|
|
|
|
* constraints on the MPU and find the smallest. If
|
|
|
|
* the latency constraint has changed, the code should
|
|
|
|
* recompute the state to enter for the next powerdomain
|
|
|
|
* state.
|
|
|
|
*
|
|
|
|
* TI CDP code can call constraint_set here.
|
|
|
|
*/
|
2010-07-27 06:34:34 +08:00
|
|
|
|
|
|
|
return 0;
|
2009-09-04 01:14:01 +08:00
|
|
|
}
|
|
|
|
|
2010-07-27 06:34:34 +08:00
|
|
|
int omap_pm_set_min_bus_tput(struct device *dev, u8 agent_id, unsigned long r)
|
2009-09-04 01:14:01 +08:00
|
|
|
{
|
|
|
|
if (!dev || (agent_id != OCP_INITIATOR_AGENT &&
|
|
|
|
agent_id != OCP_TARGET_AGENT)) {
|
2010-07-27 06:34:34 +08:00
|
|
|
WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__);
|
|
|
|
return -EINVAL;
|
2012-09-19 00:36:13 +08:00
|
|
|
}
|
2009-09-04 01:14:01 +08:00
|
|
|
|
|
|
|
if (r == 0)
|
2012-07-26 14:54:26 +08:00
|
|
|
pr_debug("OMAP PM: remove min bus tput constraint: dev %s for agent_id %d\n",
|
|
|
|
dev_name(dev), agent_id);
|
2009-09-04 01:14:01 +08:00
|
|
|
else
|
2012-07-26 14:54:26 +08:00
|
|
|
pr_debug("OMAP PM: add min bus tput constraint: dev %s for agent_id %d: rate %ld KiB\n",
|
2009-09-04 01:14:01 +08:00
|
|
|
dev_name(dev), agent_id, r);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This code should model the interconnect and compute the
|
|
|
|
* required clock frequency, convert that to a VDD2 OPP ID, then
|
|
|
|
* set the VDD2 OPP appropriately.
|
|
|
|
*
|
|
|
|
* TI CDP code can call constraint_set here on the VDD2 OPP.
|
|
|
|
*/
|
2010-07-27 06:34:34 +08:00
|
|
|
|
|
|
|
return 0;
|
2009-09-04 01:14:01 +08:00
|
|
|
}
|
|
|
|
|
2010-07-27 06:34:34 +08:00
|
|
|
int omap_pm_set_max_dev_wakeup_lat(struct device *req_dev, struct device *dev,
|
|
|
|
long t)
|
2009-09-04 01:14:01 +08:00
|
|
|
{
|
2010-07-27 06:34:34 +08:00
|
|
|
if (!req_dev || !dev || t < -1) {
|
|
|
|
WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__);
|
|
|
|
return -EINVAL;
|
2012-09-19 00:36:13 +08:00
|
|
|
}
|
2009-09-04 01:14:01 +08:00
|
|
|
|
|
|
|
if (t == -1)
|
2012-07-26 14:54:26 +08:00
|
|
|
pr_debug("OMAP PM: remove max device latency constraint: dev %s\n",
|
|
|
|
dev_name(dev));
|
2009-09-04 01:14:01 +08:00
|
|
|
else
|
2012-07-26 14:54:26 +08:00
|
|
|
pr_debug("OMAP PM: add max device latency constraint: dev %s, t = %ld usec\n",
|
|
|
|
dev_name(dev), t);
|
2009-09-04 01:14:01 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* For current Linux, this needs to map the device to a
|
|
|
|
* powerdomain, then go through the list of current max lat
|
|
|
|
* constraints on that powerdomain and find the smallest. If
|
|
|
|
* the latency constraint has changed, the code should
|
|
|
|
* recompute the state to enter for the next powerdomain
|
|
|
|
* state. Conceivably, this code should also determine
|
|
|
|
* whether to actually disable the device clocks or not,
|
|
|
|
* depending on how long it takes to re-enable the clocks.
|
|
|
|
*
|
|
|
|
* TI CDP code can call constraint_set here.
|
|
|
|
*/
|
2010-07-27 06:34:34 +08:00
|
|
|
|
|
|
|
return 0;
|
2009-09-04 01:14:01 +08:00
|
|
|
}
|
|
|
|
|
2010-07-27 06:34:34 +08:00
|
|
|
int omap_pm_set_max_sdma_lat(struct device *dev, long t)
|
2009-09-04 01:14:01 +08:00
|
|
|
{
|
|
|
|
if (!dev || t < -1) {
|
2010-07-27 06:34:34 +08:00
|
|
|
WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__);
|
|
|
|
return -EINVAL;
|
2012-09-19 00:36:13 +08:00
|
|
|
}
|
2009-09-04 01:14:01 +08:00
|
|
|
|
|
|
|
if (t == -1)
|
2012-07-26 14:54:26 +08:00
|
|
|
pr_debug("OMAP PM: remove max DMA latency constraint: dev %s\n",
|
|
|
|
dev_name(dev));
|
2009-09-04 01:14:01 +08:00
|
|
|
else
|
2012-07-26 14:54:26 +08:00
|
|
|
pr_debug("OMAP PM: add max DMA latency constraint: dev %s, t = %ld usec\n",
|
|
|
|
dev_name(dev), t);
|
2009-09-04 01:14:01 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* For current Linux PM QOS params, this code should scan the
|
|
|
|
* list of maximum CPU and DMA latencies and select the
|
|
|
|
* smallest, then set cpu_dma_latency pm_qos_param
|
|
|
|
* accordingly.
|
|
|
|
*
|
|
|
|
* For future Linux PM QOS params, with separate CPU and DMA
|
|
|
|
* latency params, this code should just set the dma_latency param.
|
|
|
|
*
|
|
|
|
* TI CDP code can call constraint_set here.
|
|
|
|
*/
|
|
|
|
|
2010-07-27 06:34:34 +08:00
|
|
|
return 0;
|
2009-09-04 01:14:01 +08:00
|
|
|
}
|
|
|
|
|
OMAP: PM constraints: add omap_pm_set_min_clk_rate()
Add omap_pm_set_min_clk_rate(). This constraint is meant for use by
device drivers to translate a certain device-specific performance
constraint (e.g., "minimum polygons per second") to a clock rate for
the driver's device, given the driver's intimate knowledge of the
device hardware (e.g., device type, device hardware revision, firmware
revision, etc.) From a general PM core perspective, clock rate is
probably the closest general analog to "performance" that is
available, but the exact mapping from a use-case-specific performance
constraint to clock rate must be done by the driver. Drivers intended for
upstream merging shouldn't hardcode specific clock rates in their code
without basing those rates on some performance criteria requested through
the driver's subsystem (ideally, from userspace).
Imre Deak <imre.deak@nokia.com> described the need and use-case for
this constraint, and discussed the implementation - thanks, Imre.
Signed-off-by: Paul Walmsley <paul@pwsan.com>
Cc: Imre Deak <imre.deak@nokia.com>
2010-07-27 06:34:34 +08:00
|
|
|
int omap_pm_set_min_clk_rate(struct device *dev, struct clk *c, long r)
|
|
|
|
{
|
|
|
|
if (!dev || !c || r < 0) {
|
|
|
|
WARN(1, "OMAP PM: %s: invalid parameter(s)", __func__);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (r == 0)
|
2012-07-26 14:54:26 +08:00
|
|
|
pr_debug("OMAP PM: remove min clk rate constraint: dev %s\n",
|
|
|
|
dev_name(dev));
|
OMAP: PM constraints: add omap_pm_set_min_clk_rate()
Add omap_pm_set_min_clk_rate(). This constraint is meant for use by
device drivers to translate a certain device-specific performance
constraint (e.g., "minimum polygons per second") to a clock rate for
the driver's device, given the driver's intimate knowledge of the
device hardware (e.g., device type, device hardware revision, firmware
revision, etc.) From a general PM core perspective, clock rate is
probably the closest general analog to "performance" that is
available, but the exact mapping from a use-case-specific performance
constraint to clock rate must be done by the driver. Drivers intended for
upstream merging shouldn't hardcode specific clock rates in their code
without basing those rates on some performance criteria requested through
the driver's subsystem (ideally, from userspace).
Imre Deak <imre.deak@nokia.com> described the need and use-case for
this constraint, and discussed the implementation - thanks, Imre.
Signed-off-by: Paul Walmsley <paul@pwsan.com>
Cc: Imre Deak <imre.deak@nokia.com>
2010-07-27 06:34:34 +08:00
|
|
|
else
|
2012-07-26 14:54:26 +08:00
|
|
|
pr_debug("OMAP PM: add min clk rate constraint: dev %s, rate = %ld Hz\n",
|
|
|
|
dev_name(dev), r);
|
OMAP: PM constraints: add omap_pm_set_min_clk_rate()
Add omap_pm_set_min_clk_rate(). This constraint is meant for use by
device drivers to translate a certain device-specific performance
constraint (e.g., "minimum polygons per second") to a clock rate for
the driver's device, given the driver's intimate knowledge of the
device hardware (e.g., device type, device hardware revision, firmware
revision, etc.) From a general PM core perspective, clock rate is
probably the closest general analog to "performance" that is
available, but the exact mapping from a use-case-specific performance
constraint to clock rate must be done by the driver. Drivers intended for
upstream merging shouldn't hardcode specific clock rates in their code
without basing those rates on some performance criteria requested through
the driver's subsystem (ideally, from userspace).
Imre Deak <imre.deak@nokia.com> described the need and use-case for
this constraint, and discussed the implementation - thanks, Imre.
Signed-off-by: Paul Walmsley <paul@pwsan.com>
Cc: Imre Deak <imre.deak@nokia.com>
2010-07-27 06:34:34 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Code in a real implementation should keep track of these
|
|
|
|
* constraints on the clock, and determine the highest minimum
|
|
|
|
* clock rate. It should iterate over each OPP and determine
|
|
|
|
* whether the OPP will result in a clock rate that would
|
|
|
|
* satisfy this constraint (and any other PM constraint in effect
|
|
|
|
* at that time). Once it finds the lowest-voltage OPP that
|
|
|
|
* meets those conditions, it should switch to it, or return
|
|
|
|
* an error if the code is not capable of doing so.
|
|
|
|
*/
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2009-09-04 01:14:01 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* DSP Bridge-specific constraints
|
|
|
|
*/
|
|
|
|
|
|
|
|
const struct omap_opp *omap_pm_dsp_get_opp_table(void)
|
|
|
|
{
|
|
|
|
pr_debug("OMAP PM: DSP request for OPP table\n");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return DSP frequency table here: The final item in the
|
|
|
|
* array should have .rate = .opp_id = 0.
|
|
|
|
*/
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void omap_pm_dsp_set_min_opp(u8 opp_id)
|
|
|
|
{
|
|
|
|
if (opp_id == 0) {
|
|
|
|
WARN_ON(1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
pr_debug("OMAP PM: DSP requests minimum VDD1 OPP to be %d\n", opp_id);
|
|
|
|
|
|
|
|
/*
|
|
|
|
*
|
|
|
|
* For l-o dev tree, our VDD1 clk is keyed on OPP ID, so we
|
|
|
|
* can just test to see which is higher, the CPU's desired OPP
|
|
|
|
* ID or the DSP's desired OPP ID, and use whichever is
|
|
|
|
* highest.
|
|
|
|
*
|
|
|
|
* In CDP12.14+, the VDD1 OPP custom clock that controls the DSP
|
|
|
|
* rate is keyed on MPU speed, not the OPP ID. So we need to
|
|
|
|
* map the OPP ID to the MPU speed for use with clk_set_rate()
|
|
|
|
* if it is higher than the current OPP clock rate.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
u8 omap_pm_dsp_get_opp(void)
|
|
|
|
{
|
|
|
|
pr_debug("OMAP PM: DSP requests current DSP OPP ID\n");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For l-o dev tree, call clk_get_rate() on VDD1 OPP clock
|
|
|
|
*
|
|
|
|
* CDP12.14+:
|
|
|
|
* Call clk_get_rate() on the OPP custom clock, map that to an
|
|
|
|
* OPP ID using the tables defined in board-*.c/chip-*.c files.
|
|
|
|
*/
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* CPUFreq-originated constraint
|
|
|
|
*
|
|
|
|
* In the future, this should be handled by custom OPP clocktype
|
|
|
|
* functions.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct cpufreq_frequency_table **omap_pm_cpu_get_freq_table(void)
|
|
|
|
{
|
|
|
|
pr_debug("OMAP PM: CPUFreq request for frequency table\n");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return CPUFreq frequency table here: loop over
|
|
|
|
* all VDD1 clkrates, pull out the mpu_ck frequencies, build
|
|
|
|
* table
|
|
|
|
*/
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void omap_pm_cpu_set_freq(unsigned long f)
|
|
|
|
{
|
|
|
|
if (f == 0) {
|
|
|
|
WARN_ON(1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
pr_debug("OMAP PM: CPUFreq requests CPU frequency to be set to %lu\n",
|
|
|
|
f);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For l-o dev tree, determine whether MPU freq or DSP OPP id
|
|
|
|
* freq is higher. Find the OPP ID corresponding to the
|
|
|
|
* higher frequency. Call clk_round_rate() and clk_set_rate()
|
|
|
|
* on the OPP custom clock.
|
|
|
|
*
|
|
|
|
* CDP should just be able to set the VDD1 OPP clock rate here.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long omap_pm_cpu_get_freq(void)
|
|
|
|
{
|
|
|
|
pr_debug("OMAP PM: CPUFreq requests current CPU frequency\n");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Call clk_get_rate() on the mpu_ck.
|
|
|
|
*/
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-12-22 12:31:55 +08:00
|
|
|
/**
|
|
|
|
* omap_pm_enable_off_mode - notify OMAP PM that off-mode is enabled
|
|
|
|
*
|
|
|
|
* Intended for use only by OMAP PM core code to notify this layer
|
|
|
|
* that off mode has been enabled.
|
|
|
|
*/
|
|
|
|
void omap_pm_enable_off_mode(void)
|
|
|
|
{
|
|
|
|
off_mode_enabled = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_pm_disable_off_mode - notify OMAP PM that off-mode is disabled
|
|
|
|
*
|
|
|
|
* Intended for use only by OMAP PM core code to notify this layer
|
|
|
|
* that off mode has been disabled.
|
|
|
|
*/
|
|
|
|
void omap_pm_disable_off_mode(void)
|
|
|
|
{
|
|
|
|
off_mode_enabled = false;
|
|
|
|
}
|
|
|
|
|
2009-09-04 01:14:01 +08:00
|
|
|
/*
|
|
|
|
* Device context loss tracking
|
|
|
|
*/
|
|
|
|
|
2010-12-22 12:31:55 +08:00
|
|
|
#ifdef CONFIG_ARCH_OMAP2PLUS
|
|
|
|
|
2011-06-09 21:56:23 +08:00
|
|
|
int omap_pm_get_dev_context_loss_count(struct device *dev)
|
2009-09-04 01:14:01 +08:00
|
|
|
{
|
2010-12-22 12:31:55 +08:00
|
|
|
struct platform_device *pdev = to_platform_device(dev);
|
2011-06-09 21:56:23 +08:00
|
|
|
int count;
|
2009-09-04 01:14:01 +08:00
|
|
|
|
2010-12-22 12:31:55 +08:00
|
|
|
if (WARN_ON(!dev))
|
2011-06-09 21:56:23 +08:00
|
|
|
return -ENODEV;
|
2009-09-04 01:14:01 +08:00
|
|
|
|
2012-02-16 03:47:45 +08:00
|
|
|
if (dev->pm_domain == &omap_device_pm_domain) {
|
2010-12-22 12:31:55 +08:00
|
|
|
count = omap_device_get_context_loss_count(pdev);
|
|
|
|
} else {
|
|
|
|
WARN_ONCE(off_mode_enabled, "omap_pm: using dummy context loss counter; device %s should be converted to omap_device",
|
|
|
|
dev_name(dev));
|
2011-06-09 21:56:23 +08:00
|
|
|
|
2010-12-22 12:31:55 +08:00
|
|
|
count = dummy_context_loss_counter;
|
2011-06-09 21:56:23 +08:00
|
|
|
|
|
|
|
if (off_mode_enabled) {
|
|
|
|
count++;
|
|
|
|
/*
|
|
|
|
* Context loss count has to be a non-negative value.
|
|
|
|
* Clear the sign bit to get a value range from 0 to
|
|
|
|
* INT_MAX.
|
|
|
|
*/
|
|
|
|
count &= INT_MAX;
|
|
|
|
dummy_context_loss_counter = count;
|
|
|
|
}
|
2010-12-22 12:31:55 +08:00
|
|
|
}
|
|
|
|
|
2010-12-22 12:31:55 +08:00
|
|
|
pr_debug("OMAP PM: context loss count for dev %s = %d\n",
|
|
|
|
dev_name(dev), count);
|
2009-09-04 01:14:01 +08:00
|
|
|
|
2010-12-22 12:31:55 +08:00
|
|
|
return count;
|
2009-09-04 01:14:01 +08:00
|
|
|
}
|
|
|
|
|
2010-12-22 12:31:55 +08:00
|
|
|
#else
|
|
|
|
|
2011-06-09 21:56:23 +08:00
|
|
|
int omap_pm_get_dev_context_loss_count(struct device *dev)
|
2010-12-22 12:31:55 +08:00
|
|
|
{
|
|
|
|
return dummy_context_loss_counter;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
2009-09-04 01:14:01 +08:00
|
|
|
|
|
|
|
/* Should be called before clk framework init */
|
2010-12-09 23:13:48 +08:00
|
|
|
int __init omap_pm_if_early_init(void)
|
2009-09-04 01:14:01 +08:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Must be called after clock framework is initialized */
|
|
|
|
int __init omap_pm_if_init(void)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void omap_pm_if_exit(void)
|
|
|
|
{
|
|
|
|
/* Deallocate CPUFreq frequency table here */
|
|
|
|
}
|
|
|
|
|