linux/arch/s390/kernel/setup.c

969 lines
23 KiB
C
Raw Normal View History

/*
* arch/s390/kernel/setup.c
*
* S390 version
* Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Author(s): Hartmut Penner (hp@de.ibm.com),
* Martin Schwidefsky (schwidefsky@de.ibm.com)
*
* Derived from "arch/i386/kernel/setup.c"
* Copyright (C) 1995, Linus Torvalds
*/
/*
* This file handles the architecture-dependent parts of initialization
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/tty.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/root_dev.h>
#include <linux/console.h>
#include <linux/seq_file.h>
#include <linux/kernel_stat.h>
#include <linux/device.h>
#include <linux/notifier.h>
#include <linux/pfn.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/smp.h>
#include <asm/mmu_context.h>
#include <asm/cpcmd.h>
#include <asm/lowcore.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/sections.h>
/*
* Machine setup..
*/
unsigned int console_mode = 0;
unsigned int console_devno = -1;
unsigned int console_irq = -1;
unsigned long memory_size = 0;
unsigned long machine_flags = 0;
struct {
unsigned long addr, size, type;
} memory_chunk[MEMORY_CHUNKS] = { { 0 } };
#define CHUNK_READ_WRITE 0
#define CHUNK_READ_ONLY 1
volatile int __cpu_logical_map[NR_CPUS]; /* logical cpu to cpu address */
unsigned long __initdata zholes_size[MAX_NR_ZONES];
static unsigned long __initdata memory_end;
/*
* This is set up by the setup-routine at boot-time
* for S390 need to find out, what we have to setup
* using address 0x10400 ...
*/
#include <asm/setup.h>
static struct resource code_resource = {
.name = "Kernel code",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource data_resource = {
.name = "Kernel data",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
/*
* cpu_init() initializes state that is per-CPU.
*/
void __devinit cpu_init (void)
{
int addr = hard_smp_processor_id();
/*
* Store processor id in lowcore (used e.g. in timer_interrupt)
*/
asm volatile ("stidp %0": "=m" (S390_lowcore.cpu_data.cpu_id));
S390_lowcore.cpu_data.cpu_addr = addr;
/*
* Force FPU initialization:
*/
clear_thread_flag(TIF_USEDFPU);
clear_used_math();
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
if (current->mm)
BUG();
enter_lazy_tlb(&init_mm, current);
}
/*
* VM halt and poweroff setup routines
*/
char vmhalt_cmd[128] = "";
char vmpoff_cmd[128] = "";
char vmpanic_cmd[128] = "";
static inline void strncpy_skip_quote(char *dst, char *src, int n)
{
int sx, dx;
dx = 0;
for (sx = 0; src[sx] != 0; sx++) {
if (src[sx] == '"') continue;
dst[dx++] = src[sx];
if (dx >= n) break;
}
}
static int __init vmhalt_setup(char *str)
{
strncpy_skip_quote(vmhalt_cmd, str, 127);
vmhalt_cmd[127] = 0;
return 1;
}
__setup("vmhalt=", vmhalt_setup);
static int __init vmpoff_setup(char *str)
{
strncpy_skip_quote(vmpoff_cmd, str, 127);
vmpoff_cmd[127] = 0;
return 1;
}
__setup("vmpoff=", vmpoff_setup);
static int vmpanic_notify(struct notifier_block *self, unsigned long event,
void *data)
{
if (MACHINE_IS_VM && strlen(vmpanic_cmd) > 0)
cpcmd(vmpanic_cmd, NULL, 0, NULL);
return NOTIFY_OK;
}
#define PANIC_PRI_VMPANIC 0
static struct notifier_block vmpanic_nb = {
.notifier_call = vmpanic_notify,
.priority = PANIC_PRI_VMPANIC
};
static int __init vmpanic_setup(char *str)
{
static int register_done __initdata = 0;
strncpy_skip_quote(vmpanic_cmd, str, 127);
vmpanic_cmd[127] = 0;
if (!register_done) {
register_done = 1;
atomic_notifier_chain_register(&panic_notifier_list,
&vmpanic_nb);
}
return 1;
}
__setup("vmpanic=", vmpanic_setup);
/*
* condev= and conmode= setup parameter.
*/
static int __init condev_setup(char *str)
{
int vdev;
vdev = simple_strtoul(str, &str, 0);
if (vdev >= 0 && vdev < 65536) {
console_devno = vdev;
console_irq = -1;
}
return 1;
}
__setup("condev=", condev_setup);
static int __init conmode_setup(char *str)
{
#if defined(CONFIG_SCLP_CONSOLE)
if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
SET_CONSOLE_SCLP;
#endif
#if defined(CONFIG_TN3215_CONSOLE)
if (strncmp(str, "3215", 5) == 0)
SET_CONSOLE_3215;
#endif
#if defined(CONFIG_TN3270_CONSOLE)
if (strncmp(str, "3270", 5) == 0)
SET_CONSOLE_3270;
#endif
return 1;
}
__setup("conmode=", conmode_setup);
static void __init conmode_default(void)
{
char query_buffer[1024];
char *ptr;
if (MACHINE_IS_VM) {
__cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
ptr = strstr(query_buffer, "SUBCHANNEL =");
console_irq = simple_strtoul(ptr + 13, NULL, 16);
__cpcmd("QUERY TERM", query_buffer, 1024, NULL);
ptr = strstr(query_buffer, "CONMODE");
/*
* Set the conmode to 3215 so that the device recognition
* will set the cu_type of the console to 3215. If the
* conmode is 3270 and we don't set it back then both
* 3215 and the 3270 driver will try to access the console
* device (3215 as console and 3270 as normal tty).
*/
__cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
if (ptr == NULL) {
#if defined(CONFIG_SCLP_CONSOLE)
SET_CONSOLE_SCLP;
#endif
return;
}
if (strncmp(ptr + 8, "3270", 4) == 0) {
#if defined(CONFIG_TN3270_CONSOLE)
SET_CONSOLE_3270;
#elif defined(CONFIG_TN3215_CONSOLE)
SET_CONSOLE_3215;
#elif defined(CONFIG_SCLP_CONSOLE)
SET_CONSOLE_SCLP;
#endif
} else if (strncmp(ptr + 8, "3215", 4) == 0) {
#if defined(CONFIG_TN3215_CONSOLE)
SET_CONSOLE_3215;
#elif defined(CONFIG_TN3270_CONSOLE)
SET_CONSOLE_3270;
#elif defined(CONFIG_SCLP_CONSOLE)
SET_CONSOLE_SCLP;
#endif
}
} else if (MACHINE_IS_P390) {
#if defined(CONFIG_TN3215_CONSOLE)
SET_CONSOLE_3215;
#elif defined(CONFIG_TN3270_CONSOLE)
SET_CONSOLE_3270;
#endif
} else {
#if defined(CONFIG_SCLP_CONSOLE)
SET_CONSOLE_SCLP;
#endif
}
}
#ifdef CONFIG_SMP
extern void machine_restart_smp(char *);
extern void machine_halt_smp(void);
extern void machine_power_off_smp(void);
void (*_machine_restart)(char *command) = machine_restart_smp;
void (*_machine_halt)(void) = machine_halt_smp;
void (*_machine_power_off)(void) = machine_power_off_smp;
#else
/*
* Reboot, halt and power_off routines for non SMP.
*/
extern void reipl(unsigned long devno);
extern void reipl_diag(void);
static void do_machine_restart_nonsmp(char * __unused)
{
reipl_diag();
if (MACHINE_IS_VM)
cpcmd ("IPL", NULL, 0, NULL);
else
reipl (0x10000 | S390_lowcore.ipl_device);
}
static void do_machine_halt_nonsmp(void)
{
if (MACHINE_IS_VM && strlen(vmhalt_cmd) > 0)
cpcmd(vmhalt_cmd, NULL, 0, NULL);
signal_processor(smp_processor_id(), sigp_stop_and_store_status);
}
static void do_machine_power_off_nonsmp(void)
{
if (MACHINE_IS_VM && strlen(vmpoff_cmd) > 0)
cpcmd(vmpoff_cmd, NULL, 0, NULL);
signal_processor(smp_processor_id(), sigp_stop_and_store_status);
}
void (*_machine_restart)(char *command) = do_machine_restart_nonsmp;
void (*_machine_halt)(void) = do_machine_halt_nonsmp;
void (*_machine_power_off)(void) = do_machine_power_off_nonsmp;
#endif
/*
* Reboot, halt and power_off stubs. They just call _machine_restart,
* _machine_halt or _machine_power_off.
*/
void machine_restart(char *command)
{
if (!in_interrupt() || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_restart(command);
}
void machine_halt(void)
{
if (!in_interrupt() || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_halt();
}
void machine_power_off(void)
{
if (!in_interrupt() || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_power_off();
}
/*
* Dummy power off function.
*/
void (*pm_power_off)(void) = machine_power_off;
static void __init
add_memory_hole(unsigned long start, unsigned long end)
{
unsigned long dma_pfn = MAX_DMA_ADDRESS >> PAGE_SHIFT;
if (end <= dma_pfn)
zholes_size[ZONE_DMA] += end - start + 1;
else if (start > dma_pfn)
zholes_size[ZONE_NORMAL] += end - start + 1;
else {
zholes_size[ZONE_DMA] += dma_pfn - start + 1;
zholes_size[ZONE_NORMAL] += end - dma_pfn;
}
}
static int __init early_parse_mem(char *p)
{
memory_end = memparse(p, &p);
return 0;
}
early_param("mem", early_parse_mem);
/*
* "ipldelay=XXX[sm]" sets ipl delay in seconds or minutes
*/
static int __init early_parse_ipldelay(char *p)
{
unsigned long delay = 0;
delay = simple_strtoul(p, &p, 0);
switch (*p) {
case 's':
case 'S':
delay *= 1000000;
break;
case 'm':
case 'M':
delay *= 60 * 1000000;
}
/* now wait for the requested amount of time */
udelay(delay);
return 0;
}
early_param("ipldelay", early_parse_ipldelay);
static void __init
setup_lowcore(void)
{
struct _lowcore *lc;
int lc_pages;
/*
* Setup lowcore for boot cpu
*/
lc_pages = sizeof(void *) == 8 ? 2 : 1;
lc = (struct _lowcore *)
__alloc_bootmem(lc_pages * PAGE_SIZE, lc_pages * PAGE_SIZE, 0);
memset(lc, 0, lc_pages * PAGE_SIZE);
lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
lc->restart_psw.addr =
PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
lc->external_new_psw.mask = PSW_KERNEL_BITS;
lc->external_new_psw.addr =
PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
lc->svc_new_psw.mask = PSW_KERNEL_BITS | PSW_MASK_IO | PSW_MASK_EXT;
lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
lc->program_new_psw.mask = PSW_KERNEL_BITS;
lc->program_new_psw.addr =
PSW_ADDR_AMODE | (unsigned long)pgm_check_handler;
lc->mcck_new_psw.mask =
PSW_KERNEL_BITS & ~PSW_MASK_MCHECK & ~PSW_MASK_DAT;
lc->mcck_new_psw.addr =
PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
lc->io_new_psw.mask = PSW_KERNEL_BITS;
lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
lc->ipl_device = S390_lowcore.ipl_device;
lc->jiffy_timer = -1LL;
lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
lc->async_stack = (unsigned long)
__alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
lc->panic_stack = (unsigned long)
__alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
lc->current_task = (unsigned long) init_thread_union.thread_info.task;
lc->thread_info = (unsigned long) &init_thread_union;
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE) {
lc->extended_save_area_addr = (__u32)
__alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0);
/* enable extended save area */
ctl_set_bit(14, 29);
}
#endif
set_prefix((u32)(unsigned long) lc);
}
static void __init
setup_resources(void)
{
struct resource *res;
int i;
code_resource.start = (unsigned long) &_text;
code_resource.end = (unsigned long) &_etext - 1;
data_resource.start = (unsigned long) &_etext;
data_resource.end = (unsigned long) &_edata - 1;
for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
res = alloc_bootmem_low(sizeof(struct resource));
res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
switch (memory_chunk[i].type) {
case CHUNK_READ_WRITE:
res->name = "System RAM";
break;
case CHUNK_READ_ONLY:
res->name = "System ROM";
res->flags |= IORESOURCE_READONLY;
break;
default:
res->name = "reserved";
}
res->start = memory_chunk[i].addr;
res->end = memory_chunk[i].addr + memory_chunk[i].size - 1;
request_resource(&iomem_resource, res);
request_resource(res, &code_resource);
request_resource(res, &data_resource);
}
}
static void __init
setup_memory(void)
{
unsigned long bootmap_size;
unsigned long start_pfn, end_pfn, init_pfn;
unsigned long last_rw_end;
int i;
/*
* partially used pages are not usable - thus
* we are rounding upwards:
*/
start_pfn = PFN_UP(__pa(&_end));
end_pfn = max_pfn = PFN_DOWN(memory_end);
/* Initialize storage key for kernel pages */
for (init_pfn = 0 ; init_pfn < start_pfn; init_pfn++)
page_set_storage_key(init_pfn << PAGE_SHIFT, PAGE_DEFAULT_KEY);
#ifdef CONFIG_BLK_DEV_INITRD
/*
* Move the initrd in case the bitmap of the bootmem allocater
* would overwrite it.
*/
if (INITRD_START && INITRD_SIZE) {
unsigned long bmap_size;
unsigned long start;
bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
bmap_size = PFN_PHYS(bmap_size);
if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
if (start + INITRD_SIZE > memory_end) {
printk("initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\n"
"disabling initrd\n",
start + INITRD_SIZE, memory_end);
INITRD_START = INITRD_SIZE = 0;
} else {
printk("Moving initrd (0x%08lx -> 0x%08lx, "
"size: %ld)\n",
INITRD_START, start, INITRD_SIZE);
memmove((void *) start, (void *) INITRD_START,
INITRD_SIZE);
INITRD_START = start;
}
}
}
#endif
/*
* Initialize the boot-time allocator (with low memory only):
*/
bootmap_size = init_bootmem(start_pfn, end_pfn);
/*
* Register RAM areas with the bootmem allocator.
*/
last_rw_end = start_pfn;
for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
unsigned long start_chunk, end_chunk;
if (memory_chunk[i].type != CHUNK_READ_WRITE)
continue;
start_chunk = (memory_chunk[i].addr + PAGE_SIZE - 1);
start_chunk >>= PAGE_SHIFT;
end_chunk = (memory_chunk[i].addr + memory_chunk[i].size);
end_chunk >>= PAGE_SHIFT;
if (start_chunk < start_pfn)
start_chunk = start_pfn;
if (end_chunk > end_pfn)
end_chunk = end_pfn;
if (start_chunk < end_chunk) {
/* Initialize storage key for RAM pages */
for (init_pfn = start_chunk ; init_pfn < end_chunk;
init_pfn++)
page_set_storage_key(init_pfn << PAGE_SHIFT,
PAGE_DEFAULT_KEY);
free_bootmem(start_chunk << PAGE_SHIFT,
(end_chunk - start_chunk) << PAGE_SHIFT);
if (last_rw_end < start_chunk)
add_memory_hole(last_rw_end, start_chunk - 1);
last_rw_end = end_chunk;
}
}
psw_set_key(PAGE_DEFAULT_KEY);
if (last_rw_end < end_pfn - 1)
add_memory_hole(last_rw_end, end_pfn - 1);
/*
* Reserve the bootmem bitmap itself as well. We do this in two
* steps (first step was init_bootmem()) because this catches
* the (very unlikely) case of us accidentally initializing the
* bootmem allocator with an invalid RAM area.
*/
reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size);
#ifdef CONFIG_BLK_DEV_INITRD
if (INITRD_START && INITRD_SIZE) {
if (INITRD_START + INITRD_SIZE <= memory_end) {
reserve_bootmem(INITRD_START, INITRD_SIZE);
initrd_start = INITRD_START;
initrd_end = initrd_start + INITRD_SIZE;
} else {
printk("initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
initrd_start + INITRD_SIZE, memory_end);
initrd_start = initrd_end = 0;
}
}
#endif
}
/*
* Setup function called from init/main.c just after the banner
* was printed.
*/
void __init
setup_arch(char **cmdline_p)
{
/*
* print what head.S has found out about the machine
*/
#ifndef CONFIG_64BIT
printk((MACHINE_IS_VM) ?
"We are running under VM (31 bit mode)\n" :
"We are running native (31 bit mode)\n");
printk((MACHINE_HAS_IEEE) ?
"This machine has an IEEE fpu\n" :
"This machine has no IEEE fpu\n");
#else /* CONFIG_64BIT */
printk((MACHINE_IS_VM) ?
"We are running under VM (64 bit mode)\n" :
"We are running native (64 bit mode)\n");
#endif /* CONFIG_64BIT */
/* Save unparsed command line copy for /proc/cmdline */
strlcpy(saved_command_line, COMMAND_LINE, COMMAND_LINE_SIZE);
*cmdline_p = COMMAND_LINE;
*(*cmdline_p + COMMAND_LINE_SIZE - 1) = '\0';
ROOT_DEV = Root_RAM0;
init_mm.start_code = PAGE_OFFSET;
init_mm.end_code = (unsigned long) &_etext;
init_mm.end_data = (unsigned long) &_edata;
init_mm.brk = (unsigned long) &_end;
memory_end = memory_size;
parse_early_param();
#ifndef CONFIG_64BIT
memory_end &= ~0x400000UL;
/*
* We need some free virtual space to be able to do vmalloc.
* On a machine with 2GB memory we make sure that we have at
* least 128 MB free space for vmalloc.
*/
if (memory_end > 1920*1024*1024)
memory_end = 1920*1024*1024;
#else /* CONFIG_64BIT */
memory_end &= ~0x200000UL;
#endif /* CONFIG_64BIT */
setup_memory();
setup_resources();
setup_lowcore();
cpu_init();
__cpu_logical_map[0] = S390_lowcore.cpu_data.cpu_addr;
smp_setup_cpu_possible_map();
/*
* Create kernel page tables and switch to virtual addressing.
*/
paging_init();
/* Setup default console */
conmode_default();
}
void print_cpu_info(struct cpuinfo_S390 *cpuinfo)
{
printk("cpu %d "
#ifdef CONFIG_SMP
"phys_idx=%d "
#endif
"vers=%02X ident=%06X machine=%04X unused=%04X\n",
cpuinfo->cpu_nr,
#ifdef CONFIG_SMP
cpuinfo->cpu_addr,
#endif
cpuinfo->cpu_id.version,
cpuinfo->cpu_id.ident,
cpuinfo->cpu_id.machine,
cpuinfo->cpu_id.unused);
}
/*
* show_cpuinfo - Get information on one CPU for use by procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
struct cpuinfo_S390 *cpuinfo;
unsigned long n = (unsigned long) v - 1;
preempt_disable();
if (!n) {
seq_printf(m, "vendor_id : IBM/S390\n"
"# processors : %i\n"
"bogomips per cpu: %lu.%02lu\n",
num_online_cpus(), loops_per_jiffy/(500000/HZ),
(loops_per_jiffy/(5000/HZ))%100);
}
if (cpu_online(n)) {
#ifdef CONFIG_SMP
if (smp_processor_id() == n)
cpuinfo = &S390_lowcore.cpu_data;
else
cpuinfo = &lowcore_ptr[n]->cpu_data;
#else
cpuinfo = &S390_lowcore.cpu_data;
#endif
seq_printf(m, "processor %li: "
"version = %02X, "
"identification = %06X, "
"machine = %04X\n",
n, cpuinfo->cpu_id.version,
cpuinfo->cpu_id.ident,
cpuinfo->cpu_id.machine);
}
preempt_enable();
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < NR_CPUS ? (void *)((unsigned long) *pos + 1) : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
#define DEFINE_IPL_ATTR(_name, _format, _value) \
static ssize_t ipl_##_name##_show(struct subsystem *subsys, \
char *page) \
{ \
return sprintf(page, _format, _value); \
} \
static struct subsys_attribute ipl_##_name##_attr = \
__ATTR(_name, S_IRUGO, ipl_##_name##_show, NULL);
DEFINE_IPL_ATTR(wwpn, "0x%016llx\n", (unsigned long long)
IPL_PARMBLOCK_START->fcp.wwpn);
DEFINE_IPL_ATTR(lun, "0x%016llx\n", (unsigned long long)
IPL_PARMBLOCK_START->fcp.lun);
DEFINE_IPL_ATTR(bootprog, "%lld\n", (unsigned long long)
IPL_PARMBLOCK_START->fcp.bootprog);
DEFINE_IPL_ATTR(br_lba, "%lld\n", (unsigned long long)
IPL_PARMBLOCK_START->fcp.br_lba);
enum ipl_type_type {
ipl_type_unknown,
ipl_type_ccw,
ipl_type_fcp,
};
static enum ipl_type_type
get_ipl_type(void)
{
struct ipl_parameter_block *ipl = IPL_PARMBLOCK_START;
if (!IPL_DEVNO_VALID)
return ipl_type_unknown;
if (!IPL_PARMBLOCK_VALID)
return ipl_type_ccw;
if (ipl->hdr.header.version > IPL_MAX_SUPPORTED_VERSION)
return ipl_type_unknown;
if (ipl->fcp.pbt != IPL_TYPE_FCP)
return ipl_type_unknown;
return ipl_type_fcp;
}
static ssize_t
ipl_type_show(struct subsystem *subsys, char *page)
{
switch (get_ipl_type()) {
case ipl_type_ccw:
return sprintf(page, "ccw\n");
case ipl_type_fcp:
return sprintf(page, "fcp\n");
default:
return sprintf(page, "unknown\n");
}
}
static struct subsys_attribute ipl_type_attr = __ATTR_RO(ipl_type);
static ssize_t
ipl_device_show(struct subsystem *subsys, char *page)
{
struct ipl_parameter_block *ipl = IPL_PARMBLOCK_START;
switch (get_ipl_type()) {
case ipl_type_ccw:
return sprintf(page, "0.0.%04x\n", ipl_devno);
case ipl_type_fcp:
return sprintf(page, "0.0.%04x\n", ipl->fcp.devno);
default:
return 0;
}
}
static struct subsys_attribute ipl_device_attr =
__ATTR(device, S_IRUGO, ipl_device_show, NULL);
static struct attribute *ipl_fcp_attrs[] = {
&ipl_type_attr.attr,
&ipl_device_attr.attr,
&ipl_wwpn_attr.attr,
&ipl_lun_attr.attr,
&ipl_bootprog_attr.attr,
&ipl_br_lba_attr.attr,
NULL,
};
static struct attribute_group ipl_fcp_attr_group = {
.attrs = ipl_fcp_attrs,
};
static struct attribute *ipl_ccw_attrs[] = {
&ipl_type_attr.attr,
&ipl_device_attr.attr,
NULL,
};
static struct attribute_group ipl_ccw_attr_group = {
.attrs = ipl_ccw_attrs,
};
static struct attribute *ipl_unknown_attrs[] = {
&ipl_type_attr.attr,
NULL,
};
static struct attribute_group ipl_unknown_attr_group = {
.attrs = ipl_unknown_attrs,
};
static ssize_t
ipl_parameter_read(struct kobject *kobj, char *buf, loff_t off, size_t count)
{
unsigned int size = IPL_PARMBLOCK_SIZE;
if (off > size)
return 0;
if (off + count > size)
count = size - off;
memcpy(buf, (void *) IPL_PARMBLOCK_START + off, count);
return count;
}
static struct bin_attribute ipl_parameter_attr = {
.attr = {
.name = "binary_parameter",
.mode = S_IRUGO,
.owner = THIS_MODULE,
},
.size = PAGE_SIZE,
.read = &ipl_parameter_read,
};
static ssize_t
ipl_scp_data_read(struct kobject *kobj, char *buf, loff_t off, size_t count)
{
unsigned int size = IPL_PARMBLOCK_START->fcp.scp_data_len;
void *scp_data = &IPL_PARMBLOCK_START->fcp.scp_data;
if (off > size)
return 0;
if (off + count > size)
count = size - off;
memcpy(buf, scp_data + off, count);
return count;
}
static struct bin_attribute ipl_scp_data_attr = {
.attr = {
.name = "scp_data",
.mode = S_IRUGO,
.owner = THIS_MODULE,
},
.size = PAGE_SIZE,
.read = &ipl_scp_data_read,
};
static decl_subsys(ipl, NULL, NULL);
static int ipl_register_fcp_files(void)
{
int rc;
rc = sysfs_create_group(&ipl_subsys.kset.kobj,
&ipl_fcp_attr_group);
if (rc)
goto out;
rc = sysfs_create_bin_file(&ipl_subsys.kset.kobj,
&ipl_parameter_attr);
if (rc)
goto out_ipl_parm;
rc = sysfs_create_bin_file(&ipl_subsys.kset.kobj,
&ipl_scp_data_attr);
if (!rc)
goto out;
sysfs_remove_bin_file(&ipl_subsys.kset.kobj, &ipl_parameter_attr);
out_ipl_parm:
sysfs_remove_group(&ipl_subsys.kset.kobj, &ipl_fcp_attr_group);
out:
return rc;
}
static int __init
ipl_device_sysfs_register(void) {
int rc;
rc = firmware_register(&ipl_subsys);
if (rc)
goto out;
switch (get_ipl_type()) {
case ipl_type_ccw:
rc = sysfs_create_group(&ipl_subsys.kset.kobj,
&ipl_ccw_attr_group);
break;
case ipl_type_fcp:
rc = ipl_register_fcp_files();
break;
default:
rc = sysfs_create_group(&ipl_subsys.kset.kobj,
&ipl_unknown_attr_group);
break;
}
if (rc)
firmware_unregister(&ipl_subsys);
out:
return rc;
}
__initcall(ipl_device_sysfs_register);