linux/drivers/iio/imu/bmi160/bmi160_core.c

597 lines
14 KiB
C
Raw Normal View History

/*
* BMI160 - Bosch IMU (accel, gyro plus external magnetometer)
*
* Copyright (c) 2016, Intel Corporation.
*
* This file is subject to the terms and conditions of version 2 of
* the GNU General Public License. See the file COPYING in the main
* directory of this archive for more details.
*
* IIO core driver for BMI160, with support for I2C/SPI busses
*
* TODO: magnetometer, interrupts, hardware FIFO
*/
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/acpi.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/buffer.h>
#include "bmi160.h"
#define BMI160_REG_CHIP_ID 0x00
#define BMI160_CHIP_ID_VAL 0xD1
#define BMI160_REG_PMU_STATUS 0x03
/* X axis data low byte address, the rest can be obtained using axis offset */
#define BMI160_REG_DATA_MAGN_XOUT_L 0x04
#define BMI160_REG_DATA_GYRO_XOUT_L 0x0C
#define BMI160_REG_DATA_ACCEL_XOUT_L 0x12
#define BMI160_REG_ACCEL_CONFIG 0x40
#define BMI160_ACCEL_CONFIG_ODR_MASK GENMASK(3, 0)
#define BMI160_ACCEL_CONFIG_BWP_MASK GENMASK(6, 4)
#define BMI160_REG_ACCEL_RANGE 0x41
#define BMI160_ACCEL_RANGE_2G 0x03
#define BMI160_ACCEL_RANGE_4G 0x05
#define BMI160_ACCEL_RANGE_8G 0x08
#define BMI160_ACCEL_RANGE_16G 0x0C
#define BMI160_REG_GYRO_CONFIG 0x42
#define BMI160_GYRO_CONFIG_ODR_MASK GENMASK(3, 0)
#define BMI160_GYRO_CONFIG_BWP_MASK GENMASK(5, 4)
#define BMI160_REG_GYRO_RANGE 0x43
#define BMI160_GYRO_RANGE_2000DPS 0x00
#define BMI160_GYRO_RANGE_1000DPS 0x01
#define BMI160_GYRO_RANGE_500DPS 0x02
#define BMI160_GYRO_RANGE_250DPS 0x03
#define BMI160_GYRO_RANGE_125DPS 0x04
#define BMI160_REG_CMD 0x7E
#define BMI160_CMD_ACCEL_PM_SUSPEND 0x10
#define BMI160_CMD_ACCEL_PM_NORMAL 0x11
#define BMI160_CMD_ACCEL_PM_LOW_POWER 0x12
#define BMI160_CMD_GYRO_PM_SUSPEND 0x14
#define BMI160_CMD_GYRO_PM_NORMAL 0x15
#define BMI160_CMD_GYRO_PM_FAST_STARTUP 0x17
#define BMI160_CMD_SOFTRESET 0xB6
#define BMI160_REG_DUMMY 0x7F
#define BMI160_ACCEL_PMU_MIN_USLEEP 3200
#define BMI160_ACCEL_PMU_MAX_USLEEP 3800
#define BMI160_GYRO_PMU_MIN_USLEEP 55000
#define BMI160_GYRO_PMU_MAX_USLEEP 80000
#define BMI160_SOFTRESET_USLEEP 1000
#define BMI160_CHANNEL(_type, _axis, _index) { \
.type = _type, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = _index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
}
/* scan indexes follow DATA register order */
enum bmi160_scan_axis {
BMI160_SCAN_EXT_MAGN_X = 0,
BMI160_SCAN_EXT_MAGN_Y,
BMI160_SCAN_EXT_MAGN_Z,
BMI160_SCAN_RHALL,
BMI160_SCAN_GYRO_X,
BMI160_SCAN_GYRO_Y,
BMI160_SCAN_GYRO_Z,
BMI160_SCAN_ACCEL_X,
BMI160_SCAN_ACCEL_Y,
BMI160_SCAN_ACCEL_Z,
BMI160_SCAN_TIMESTAMP,
};
enum bmi160_sensor_type {
BMI160_ACCEL = 0,
BMI160_GYRO,
BMI160_EXT_MAGN,
BMI160_NUM_SENSORS /* must be last */
};
struct bmi160_data {
struct regmap *regmap;
};
const struct regmap_config bmi160_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
};
EXPORT_SYMBOL(bmi160_regmap_config);
struct bmi160_regs {
u8 data; /* LSB byte register for X-axis */
u8 config;
u8 config_odr_mask;
u8 config_bwp_mask;
u8 range;
u8 pmu_cmd_normal;
u8 pmu_cmd_suspend;
};
static struct bmi160_regs bmi160_regs[] = {
[BMI160_ACCEL] = {
.data = BMI160_REG_DATA_ACCEL_XOUT_L,
.config = BMI160_REG_ACCEL_CONFIG,
.config_odr_mask = BMI160_ACCEL_CONFIG_ODR_MASK,
.config_bwp_mask = BMI160_ACCEL_CONFIG_BWP_MASK,
.range = BMI160_REG_ACCEL_RANGE,
.pmu_cmd_normal = BMI160_CMD_ACCEL_PM_NORMAL,
.pmu_cmd_suspend = BMI160_CMD_ACCEL_PM_SUSPEND,
},
[BMI160_GYRO] = {
.data = BMI160_REG_DATA_GYRO_XOUT_L,
.config = BMI160_REG_GYRO_CONFIG,
.config_odr_mask = BMI160_GYRO_CONFIG_ODR_MASK,
.config_bwp_mask = BMI160_GYRO_CONFIG_BWP_MASK,
.range = BMI160_REG_GYRO_RANGE,
.pmu_cmd_normal = BMI160_CMD_GYRO_PM_NORMAL,
.pmu_cmd_suspend = BMI160_CMD_GYRO_PM_SUSPEND,
},
};
struct bmi160_pmu_time {
unsigned long min;
unsigned long max;
};
static struct bmi160_pmu_time bmi160_pmu_time[] = {
[BMI160_ACCEL] = {
.min = BMI160_ACCEL_PMU_MIN_USLEEP,
.max = BMI160_ACCEL_PMU_MAX_USLEEP
},
[BMI160_GYRO] = {
.min = BMI160_GYRO_PMU_MIN_USLEEP,
.max = BMI160_GYRO_PMU_MIN_USLEEP,
},
};
struct bmi160_scale {
u8 bits;
int uscale;
};
struct bmi160_odr {
u8 bits;
int odr;
int uodr;
};
static const struct bmi160_scale bmi160_accel_scale[] = {
{ BMI160_ACCEL_RANGE_2G, 598},
{ BMI160_ACCEL_RANGE_4G, 1197},
{ BMI160_ACCEL_RANGE_8G, 2394},
{ BMI160_ACCEL_RANGE_16G, 4788},
};
static const struct bmi160_scale bmi160_gyro_scale[] = {
{ BMI160_GYRO_RANGE_2000DPS, 1065},
{ BMI160_GYRO_RANGE_1000DPS, 532},
{ BMI160_GYRO_RANGE_500DPS, 266},
{ BMI160_GYRO_RANGE_250DPS, 133},
{ BMI160_GYRO_RANGE_125DPS, 66},
};
struct bmi160_scale_item {
const struct bmi160_scale *tbl;
int num;
};
static const struct bmi160_scale_item bmi160_scale_table[] = {
[BMI160_ACCEL] = {
.tbl = bmi160_accel_scale,
.num = ARRAY_SIZE(bmi160_accel_scale),
},
[BMI160_GYRO] = {
.tbl = bmi160_gyro_scale,
.num = ARRAY_SIZE(bmi160_gyro_scale),
},
};
static const struct bmi160_odr bmi160_accel_odr[] = {
{0x01, 0, 78125},
{0x02, 1, 5625},
{0x03, 3, 125},
{0x04, 6, 25},
{0x05, 12, 5},
{0x06, 25, 0},
{0x07, 50, 0},
{0x08, 100, 0},
{0x09, 200, 0},
{0x0A, 400, 0},
{0x0B, 800, 0},
{0x0C, 1600, 0},
};
static const struct bmi160_odr bmi160_gyro_odr[] = {
{0x06, 25, 0},
{0x07, 50, 0},
{0x08, 100, 0},
{0x09, 200, 0},
{0x0A, 400, 0},
{0x0B, 8000, 0},
{0x0C, 1600, 0},
{0x0D, 3200, 0},
};
struct bmi160_odr_item {
const struct bmi160_odr *tbl;
int num;
};
static const struct bmi160_odr_item bmi160_odr_table[] = {
[BMI160_ACCEL] = {
.tbl = bmi160_accel_odr,
.num = ARRAY_SIZE(bmi160_accel_odr),
},
[BMI160_GYRO] = {
.tbl = bmi160_gyro_odr,
.num = ARRAY_SIZE(bmi160_gyro_odr),
},
};
static const struct iio_chan_spec bmi160_channels[] = {
BMI160_CHANNEL(IIO_ACCEL, X, BMI160_SCAN_ACCEL_X),
BMI160_CHANNEL(IIO_ACCEL, Y, BMI160_SCAN_ACCEL_Y),
BMI160_CHANNEL(IIO_ACCEL, Z, BMI160_SCAN_ACCEL_Z),
BMI160_CHANNEL(IIO_ANGL_VEL, X, BMI160_SCAN_GYRO_X),
BMI160_CHANNEL(IIO_ANGL_VEL, Y, BMI160_SCAN_GYRO_Y),
BMI160_CHANNEL(IIO_ANGL_VEL, Z, BMI160_SCAN_GYRO_Z),
IIO_CHAN_SOFT_TIMESTAMP(BMI160_SCAN_TIMESTAMP),
};
static enum bmi160_sensor_type bmi160_to_sensor(enum iio_chan_type iio_type)
{
switch (iio_type) {
case IIO_ACCEL:
return BMI160_ACCEL;
case IIO_ANGL_VEL:
return BMI160_GYRO;
default:
return -EINVAL;
}
}
static
int bmi160_set_mode(struct bmi160_data *data, enum bmi160_sensor_type t,
bool mode)
{
int ret;
u8 cmd;
if (mode)
cmd = bmi160_regs[t].pmu_cmd_normal;
else
cmd = bmi160_regs[t].pmu_cmd_suspend;
ret = regmap_write(data->regmap, BMI160_REG_CMD, cmd);
if (ret < 0)
return ret;
usleep_range(bmi160_pmu_time[t].min, bmi160_pmu_time[t].max);
return 0;
}
static
int bmi160_set_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
int uscale)
{
int i;
for (i = 0; i < bmi160_scale_table[t].num; i++)
if (bmi160_scale_table[t].tbl[i].uscale == uscale)
break;
if (i == bmi160_scale_table[t].num)
return -EINVAL;
return regmap_write(data->regmap, bmi160_regs[t].range,
bmi160_scale_table[t].tbl[i].bits);
}
static
int bmi160_get_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
int *uscale)
{
int i, ret, val;
ret = regmap_read(data->regmap, bmi160_regs[t].range, &val);
if (ret < 0)
return ret;
for (i = 0; i < bmi160_scale_table[t].num; i++)
if (bmi160_scale_table[t].tbl[i].bits == val) {
*uscale = bmi160_scale_table[t].tbl[i].uscale;
return 0;
}
return -EINVAL;
}
static int bmi160_get_data(struct bmi160_data *data, int chan_type,
int axis, int *val)
{
u8 reg;
int ret;
__le16 sample;
enum bmi160_sensor_type t = bmi160_to_sensor(chan_type);
reg = bmi160_regs[t].data + (axis - IIO_MOD_X) * sizeof(__le16);
ret = regmap_bulk_read(data->regmap, reg, &sample, sizeof(__le16));
if (ret < 0)
return ret;
*val = sign_extend32(le16_to_cpu(sample), 15);
return 0;
}
static
int bmi160_set_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
int odr, int uodr)
{
int i;
for (i = 0; i < bmi160_odr_table[t].num; i++)
if (bmi160_odr_table[t].tbl[i].odr == odr &&
bmi160_odr_table[t].tbl[i].uodr == uodr)
break;
if (i >= bmi160_odr_table[t].num)
return -EINVAL;
return regmap_update_bits(data->regmap,
bmi160_regs[t].config,
bmi160_odr_table[t].tbl[i].bits,
bmi160_regs[t].config_odr_mask);
}
static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
int *odr, int *uodr)
{
int i, val, ret;
ret = regmap_read(data->regmap, bmi160_regs[t].config, &val);
if (ret < 0)
return ret;
val &= bmi160_regs[t].config_odr_mask;
for (i = 0; i < bmi160_odr_table[t].num; i++)
if (val == bmi160_odr_table[t].tbl[i].bits)
break;
if (i >= bmi160_odr_table[t].num)
return -EINVAL;
*odr = bmi160_odr_table[t].tbl[i].odr;
*uodr = bmi160_odr_table[t].tbl[i].uodr;
return 0;
}
static irqreturn_t bmi160_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct bmi160_data *data = iio_priv(indio_dev);
s16 buf[16]; /* 3 sens x 3 axis x s16 + 3 x s16 pad + 4 x s16 tstamp */
int i, ret, j = 0, base = BMI160_REG_DATA_MAGN_XOUT_L;
__le16 sample;
for_each_set_bit(i, indio_dev->active_scan_mask,
indio_dev->masklength) {
ret = regmap_bulk_read(data->regmap, base + i * sizeof(__le16),
&sample, sizeof(__le16));
if (ret < 0)
goto done;
buf[j++] = sample;
}
iio_push_to_buffers_with_timestamp(indio_dev, buf, iio_get_time_ns());
done:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int bmi160_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
int ret;
struct bmi160_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = bmi160_get_data(data, chan->type, chan->channel2, val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 0;
ret = bmi160_get_scale(data,
bmi160_to_sensor(chan->type), val2);
return ret < 0 ? ret : IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = bmi160_get_odr(data, bmi160_to_sensor(chan->type),
val, val2);
return ret < 0 ? ret : IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
return 0;
}
static int bmi160_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bmi160_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return bmi160_set_scale(data,
bmi160_to_sensor(chan->type), val2);
break;
case IIO_CHAN_INFO_SAMP_FREQ:
return bmi160_set_odr(data, bmi160_to_sensor(chan->type),
val, val2);
default:
return -EINVAL;
}
return 0;
}
static const struct iio_info bmi160_info = {
.driver_module = THIS_MODULE,
.read_raw = bmi160_read_raw,
.write_raw = bmi160_write_raw,
};
static const char *bmi160_match_acpi_device(struct device *dev)
{
const struct acpi_device_id *id;
id = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!id)
return NULL;
return dev_name(dev);
}
static int bmi160_chip_init(struct bmi160_data *data, bool use_spi)
{
int ret;
unsigned int val;
struct device *dev = regmap_get_device(data->regmap);
ret = regmap_write(data->regmap, BMI160_REG_CMD, BMI160_CMD_SOFTRESET);
if (ret < 0)
return ret;
usleep_range(BMI160_SOFTRESET_USLEEP, BMI160_SOFTRESET_USLEEP + 1);
/*
* CS rising edge is needed before starting SPI, so do a dummy read
* See Section 3.2.1, page 86 of the datasheet
*/
if (use_spi) {
ret = regmap_read(data->regmap, BMI160_REG_DUMMY, &val);
if (ret < 0)
return ret;
}
ret = regmap_read(data->regmap, BMI160_REG_CHIP_ID, &val);
if (ret < 0) {
dev_err(dev, "Error reading chip id\n");
return ret;
}
if (val != BMI160_CHIP_ID_VAL) {
dev_err(dev, "Wrong chip id, got %x expected %x\n",
val, BMI160_CHIP_ID_VAL);
return -ENODEV;
}
ret = bmi160_set_mode(data, BMI160_ACCEL, true);
if (ret < 0)
return ret;
ret = bmi160_set_mode(data, BMI160_GYRO, true);
if (ret < 0)
return ret;
return 0;
}
static void bmi160_chip_uninit(struct bmi160_data *data)
{
bmi160_set_mode(data, BMI160_GYRO, false);
bmi160_set_mode(data, BMI160_ACCEL, false);
}
int bmi160_core_probe(struct device *dev, struct regmap *regmap,
const char *name, bool use_spi)
{
struct iio_dev *indio_dev;
struct bmi160_data *data;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
data->regmap = regmap;
ret = bmi160_chip_init(data, use_spi);
if (ret < 0)
return ret;
if (!name && ACPI_HANDLE(dev))
name = bmi160_match_acpi_device(dev);
indio_dev->dev.parent = dev;
indio_dev->channels = bmi160_channels;
indio_dev->num_channels = ARRAY_SIZE(bmi160_channels);
indio_dev->name = name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &bmi160_info;
ret = iio_triggered_buffer_setup(indio_dev, NULL,
bmi160_trigger_handler, NULL);
if (ret < 0)
goto uninit;
ret = iio_device_register(indio_dev);
if (ret < 0)
goto buffer_cleanup;
return 0;
buffer_cleanup:
iio_triggered_buffer_cleanup(indio_dev);
uninit:
bmi160_chip_uninit(data);
return ret;
}
EXPORT_SYMBOL_GPL(bmi160_core_probe);
void bmi160_core_remove(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmi160_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
iio_triggered_buffer_cleanup(indio_dev);
bmi160_chip_uninit(data);
}
EXPORT_SYMBOL_GPL(bmi160_core_remove);
MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com");
MODULE_DESCRIPTION("Bosch BMI160 driver");
MODULE_LICENSE("GPL v2");