linux/drivers/infiniband/core/Makefile

35 lines
904 B
Makefile
Raw Normal View History

infiniband-$(CONFIG_INFINIBAND_ADDR_TRANS) := rdma_cm.o
user_access-$(CONFIG_INFINIBAND_ADDR_TRANS) := rdma_ucm.o
obj-$(CONFIG_INFINIBAND) += ib_core.o ib_mad.o ib_sa.o \
ib_cm.o iw_cm.o ib_addr.o \
$(infiniband-y)
obj-$(CONFIG_INFINIBAND_USER_MAD) += ib_umad.o
obj-$(CONFIG_INFINIBAND_USER_ACCESS) += ib_uverbs.o ib_ucm.o \
$(user_access-y)
ib_core-y := packer.o ud_header.o verbs.o sysfs.o \
device.o fmr_pool.o cache.o netlink.o
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
ib_core-$(CONFIG_INFINIBAND_USER_MEM) += umem.o
IB/core: Implement support for MMU notifiers regarding on demand paging regions * Add an interval tree implementation for ODP umems. Create an interval tree for each ucontext (including a count of the number of ODP MRs in this context, semaphore, etc.), and register ODP umems in the interval tree. * Add MMU notifiers handling functions, using the interval tree to notify only the relevant umems and underlying MRs. * Register to receive MMU notifier events from the MM subsystem upon ODP MR registration (and unregister accordingly). * Add a completion object to synchronize the destruction of ODP umems. * Add mechanism to abort page faults when there's a concurrent invalidation. The way we synchronize between concurrent invalidations and page faults is by keeping a counter of currently running invalidations, and a sequence number that is incremented whenever an invalidation is caught. The page fault code checks the counter and also verifies that the sequence number hasn't progressed before it updates the umem's page tables. This is similar to what the kvm module does. In order to prevent the case where we register a umem in the middle of an ongoing notifier, we also keep a per ucontext counter of the total number of active mmu notifiers. We only enable new umems when all the running notifiers complete. Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Shachar Raindel <raindel@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Signed-off-by: Yuval Dagan <yuvalda@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-12-11 23:04:18 +08:00
ib_core-$(CONFIG_INFINIBAND_ON_DEMAND_PAGING) += umem_odp.o umem_rbtree.o
ib_mad-y := mad.o smi.o agent.o mad_rmpp.o
ib_sa-y := sa_query.o multicast.o
ib_cm-y := cm.o
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-27 06:07:35 +08:00
iw_cm-y := iwcm.o iwpm_util.o iwpm_msg.o
rdma_cm-y := cma.o
rdma_ucm-y := ucma.o
ib_addr-y := addr.o
ib_umad-y := user_mad.o
ib_ucm-y := ucm.o
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
ib_uverbs-y := uverbs_main.o uverbs_cmd.o uverbs_marshall.o