linux/net/rds/rdma.c

881 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2007 Oracle. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/pagemap.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
#include "rds.h"
/*
* XXX
* - build with sparse
* - should we detect duplicate keys on a socket? hmm.
* - an rdma is an mlock, apply rlimit?
*/
/*
* get the number of pages by looking at the page indices that the start and
* end addresses fall in.
*
* Returns 0 if the vec is invalid. It is invalid if the number of bytes
* causes the address to wrap or overflows an unsigned int. This comes
* from being stored in the 'length' member of 'struct scatterlist'.
*/
static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
{
if ((vec->addr + vec->bytes <= vec->addr) ||
(vec->bytes > (u64)UINT_MAX))
return 0;
return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
(vec->addr >> PAGE_SHIFT);
}
static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
struct rds_mr *insert)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct rds_mr *mr;
while (*p) {
parent = *p;
mr = rb_entry(parent, struct rds_mr, r_rb_node);
if (key < mr->r_key)
p = &(*p)->rb_left;
else if (key > mr->r_key)
p = &(*p)->rb_right;
else
return mr;
}
if (insert) {
rb_link_node(&insert->r_rb_node, parent, p);
rb_insert_color(&insert->r_rb_node, root);
refcount_inc(&insert->r_refcount);
}
return NULL;
}
/*
* Destroy the transport-specific part of a MR.
*/
static void rds_destroy_mr(struct rds_mr *mr)
{
struct rds_sock *rs = mr->r_sock;
void *trans_private = NULL;
unsigned long flags;
rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
mr->r_key, refcount_read(&mr->r_refcount));
if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
return;
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
if (!RB_EMPTY_NODE(&mr->r_rb_node))
rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
trans_private = mr->r_trans_private;
mr->r_trans_private = NULL;
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
if (trans_private)
mr->r_trans->free_mr(trans_private, mr->r_invalidate);
}
void __rds_put_mr_final(struct rds_mr *mr)
{
rds_destroy_mr(mr);
kfree(mr);
}
/*
* By the time this is called we can't have any more ioctls called on
* the socket so we don't need to worry about racing with others.
*/
void rds_rdma_drop_keys(struct rds_sock *rs)
{
struct rds_mr *mr;
struct rb_node *node;
unsigned long flags;
/* Release any MRs associated with this socket */
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
while ((node = rb_first(&rs->rs_rdma_keys))) {
mr = rb_entry(node, struct rds_mr, r_rb_node);
if (mr->r_trans == rs->rs_transport)
mr->r_invalidate = 0;
rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
RB_CLEAR_NODE(&mr->r_rb_node);
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
rds_destroy_mr(mr);
rds_mr_put(mr);
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
}
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
if (rs->rs_transport && rs->rs_transport->flush_mrs)
rs->rs_transport->flush_mrs();
}
/*
* Helper function to pin user pages.
*/
static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
struct page **pages, int write)
{
int ret;
ret = get_user_pages_fast(user_addr, nr_pages, write, pages);
if (ret >= 0 && ret < nr_pages) {
while (ret--)
put_page(pages[ret]);
ret = -EFAULT;
}
return ret;
}
static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
u64 *cookie_ret, struct rds_mr **mr_ret)
{
struct rds_mr *mr = NULL, *found;
unsigned int nr_pages;
struct page **pages = NULL;
struct scatterlist *sg;
void *trans_private;
unsigned long flags;
rds_rdma_cookie_t cookie;
unsigned int nents;
long i;
int ret;
rds: Fix NULL pointer dereference in __rds_rdma_map This is a fix for syzkaller719569, where memory registration was attempted without any underlying transport being loaded. Analysis of the case reveals that it is the setsockopt() RDS_GET_MR (2) and RDS_GET_MR_FOR_DEST (7) that are vulnerable. Here is an example stack trace when the bug is hit: BUG: unable to handle kernel NULL pointer dereference at 00000000000000c0 IP: __rds_rdma_map+0x36/0x440 [rds] PGD 2f93d03067 P4D 2f93d03067 PUD 2f93d02067 PMD 0 Oops: 0000 [#1] SMP Modules linked in: bridge stp llc tun rpcsec_gss_krb5 nfsv4 dns_resolver nfs fscache rds binfmt_misc sb_edac intel_powerclamp coretemp kvm_intel kvm irqbypass crct10dif_pclmul c rc32_pclmul ghash_clmulni_intel pcbc aesni_intel crypto_simd glue_helper cryptd iTCO_wdt mei_me sg iTCO_vendor_support ipmi_si mei ipmi_devintf nfsd shpchp pcspkr i2c_i801 ioatd ma ipmi_msghandler wmi lpc_ich mfd_core auth_rpcgss nfs_acl lockd grace sunrpc ip_tables ext4 mbcache jbd2 mgag200 i2c_algo_bit drm_kms_helper ixgbe syscopyarea ahci sysfillrect sysimgblt libahci mdio fb_sys_fops ttm ptp libata sd_mod mlx4_core drm crc32c_intel pps_core megaraid_sas i2c_core dca dm_mirror dm_region_hash dm_log dm_mod CPU: 48 PID: 45787 Comm: repro_set2 Not tainted 4.14.2-3.el7uek.x86_64 #2 Hardware name: Oracle Corporation ORACLE SERVER X5-2L/ASM,MOBO TRAY,2U, BIOS 31110000 03/03/2017 task: ffff882f9190db00 task.stack: ffffc9002b994000 RIP: 0010:__rds_rdma_map+0x36/0x440 [rds] RSP: 0018:ffffc9002b997df0 EFLAGS: 00010202 RAX: 0000000000000000 RBX: ffff882fa2182580 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffc9002b997e40 RDI: ffff882fa2182580 RBP: ffffc9002b997e30 R08: 0000000000000000 R09: 0000000000000002 R10: ffff885fb29e3838 R11: 0000000000000000 R12: ffff882fa2182580 R13: ffff882fa2182580 R14: 0000000000000002 R15: 0000000020000ffc FS: 00007fbffa20b700(0000) GS:ffff882fbfb80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c0 CR3: 0000002f98a66006 CR4: 00000000001606e0 Call Trace: rds_get_mr+0x56/0x80 [rds] rds_setsockopt+0x172/0x340 [rds] ? __fget_light+0x25/0x60 ? __fdget+0x13/0x20 SyS_setsockopt+0x80/0xe0 do_syscall_64+0x67/0x1b0 entry_SYSCALL64_slow_path+0x25/0x25 RIP: 0033:0x7fbff9b117f9 RSP: 002b:00007fbffa20aed8 EFLAGS: 00000293 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00000000000c84a4 RCX: 00007fbff9b117f9 RDX: 0000000000000002 RSI: 0000400000000114 RDI: 000000000000109b RBP: 00007fbffa20af10 R08: 0000000000000020 R09: 00007fbff9dd7860 R10: 0000000020000ffc R11: 0000000000000293 R12: 0000000000000000 R13: 00007fbffa20b9c0 R14: 00007fbffa20b700 R15: 0000000000000021 Code: 41 56 41 55 49 89 fd 41 54 53 48 83 ec 18 8b 87 f0 02 00 00 48 89 55 d0 48 89 4d c8 85 c0 0f 84 2d 03 00 00 48 8b 87 00 03 00 00 <48> 83 b8 c0 00 00 00 00 0f 84 25 03 00 0 0 48 8b 06 48 8b 56 08 The fix is to check the existence of an underlying transport in __rds_rdma_map(). Signed-off-by: Håkon Bugge <haakon.bugge@oracle.com> Reported-by: syzbot <syzkaller@googlegroups.com> Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-07 00:18:28 +08:00
if (rs->rs_bound_addr == 0 || !rs->rs_transport) {
ret = -ENOTCONN; /* XXX not a great errno */
goto out;
}
if (!rs->rs_transport->get_mr) {
ret = -EOPNOTSUPP;
goto out;
}
nr_pages = rds_pages_in_vec(&args->vec);
if (nr_pages == 0) {
ret = -EINVAL;
goto out;
}
/* Restrict the size of mr irrespective of underlying transport
* To account for unaligned mr regions, subtract one from nr_pages
*/
if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
ret = -EMSGSIZE;
goto out;
}
rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
args->vec.addr, args->vec.bytes, nr_pages);
/* XXX clamp nr_pages to limit the size of this alloc? */
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
if (!pages) {
ret = -ENOMEM;
goto out;
}
mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
if (!mr) {
ret = -ENOMEM;
goto out;
}
refcount_set(&mr->r_refcount, 1);
RB_CLEAR_NODE(&mr->r_rb_node);
mr->r_trans = rs->rs_transport;
mr->r_sock = rs;
if (args->flags & RDS_RDMA_USE_ONCE)
mr->r_use_once = 1;
if (args->flags & RDS_RDMA_INVALIDATE)
mr->r_invalidate = 1;
if (args->flags & RDS_RDMA_READWRITE)
mr->r_write = 1;
/*
* Pin the pages that make up the user buffer and transfer the page
* pointers to the mr's sg array. We check to see if we've mapped
* the whole region after transferring the partial page references
* to the sg array so that we can have one page ref cleanup path.
*
* For now we have no flag that tells us whether the mapping is
* r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
* the zero page.
*/
ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
if (ret < 0)
goto out;
nents = ret;
sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
if (!sg) {
ret = -ENOMEM;
goto out;
}
WARN_ON(!nents);
sg_init_table(sg, nents);
/* Stick all pages into the scatterlist */
for (i = 0 ; i < nents; i++)
sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
rdsdebug("RDS: trans_private nents is %u\n", nents);
/* Obtain a transport specific MR. If this succeeds, the
* s/g list is now owned by the MR.
* Note that dma_map() implies that pending writes are
* flushed to RAM, so no dma_sync is needed here. */
trans_private = rs->rs_transport->get_mr(sg, nents, rs,
&mr->r_key);
if (IS_ERR(trans_private)) {
for (i = 0 ; i < nents; i++)
put_page(sg_page(&sg[i]));
kfree(sg);
ret = PTR_ERR(trans_private);
goto out;
}
mr->r_trans_private = trans_private;
rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
mr->r_key, (void *)(unsigned long) args->cookie_addr);
/* The user may pass us an unaligned address, but we can only
* map page aligned regions. So we keep the offset, and build
* a 64bit cookie containing <R_Key, offset> and pass that
* around. */
cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
if (cookie_ret)
*cookie_ret = cookie;
if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
ret = -EFAULT;
goto out;
}
/* Inserting the new MR into the rbtree bumps its
* reference count. */
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
BUG_ON(found && found != mr);
rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
if (mr_ret) {
refcount_inc(&mr->r_refcount);
*mr_ret = mr;
}
ret = 0;
out:
kfree(pages);
if (mr)
rds_mr_put(mr);
return ret;
}
int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
{
struct rds_get_mr_args args;
if (optlen != sizeof(struct rds_get_mr_args))
return -EINVAL;
if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
sizeof(struct rds_get_mr_args)))
return -EFAULT;
return __rds_rdma_map(rs, &args, NULL, NULL);
}
int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
{
struct rds_get_mr_for_dest_args args;
struct rds_get_mr_args new_args;
if (optlen != sizeof(struct rds_get_mr_for_dest_args))
return -EINVAL;
if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
sizeof(struct rds_get_mr_for_dest_args)))
return -EFAULT;
/*
* Initially, just behave like get_mr().
* TODO: Implement get_mr as wrapper around this
* and deprecate it.
*/
new_args.vec = args.vec;
new_args.cookie_addr = args.cookie_addr;
new_args.flags = args.flags;
return __rds_rdma_map(rs, &new_args, NULL, NULL);
}
/*
* Free the MR indicated by the given R_Key
*/
int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
{
struct rds_free_mr_args args;
struct rds_mr *mr;
unsigned long flags;
if (optlen != sizeof(struct rds_free_mr_args))
return -EINVAL;
if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
sizeof(struct rds_free_mr_args)))
return -EFAULT;
/* Special case - a null cookie means flush all unused MRs */
if (args.cookie == 0) {
if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
return -EINVAL;
rs->rs_transport->flush_mrs();
return 0;
}
/* Look up the MR given its R_key and remove it from the rbtree
* so nobody else finds it.
* This should also prevent races with rds_rdma_unuse.
*/
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
if (mr) {
rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
RB_CLEAR_NODE(&mr->r_rb_node);
if (args.flags & RDS_RDMA_INVALIDATE)
mr->r_invalidate = 1;
}
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
if (!mr)
return -EINVAL;
/*
* call rds_destroy_mr() ourselves so that we're sure it's done by the time
* we return. If we let rds_mr_put() do it it might not happen until
* someone else drops their ref.
*/
rds_destroy_mr(mr);
rds_mr_put(mr);
return 0;
}
/*
* This is called when we receive an extension header that
* tells us this MR was used. It allows us to implement
* use_once semantics
*/
void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
{
struct rds_mr *mr;
unsigned long flags;
int zot_me = 0;
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
if (!mr) {
pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
r_key);
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
return;
}
if (mr->r_use_once || force) {
rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
RB_CLEAR_NODE(&mr->r_rb_node);
zot_me = 1;
}
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
/* May have to issue a dma_sync on this memory region.
* Note we could avoid this if the operation was a RDMA READ,
* but at this point we can't tell. */
if (mr->r_trans->sync_mr)
mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
/* If the MR was marked as invalidate, this will
* trigger an async flush. */
RDS: Fix rds MR reference count in rds_rdma_unuse() rds_rdma_unuse() drops the mr reference count which it hasn't taken. Correct way of removing mr is to remove mr from the tree and then rdma_destroy_mr() it first, then rds_mr_put() to decrement its reference count. Whichever thread holds last reference will free the mr via rds_mr_put() This bug was triggering weird null pointer crashes. One if the trace for it is captured below. BUG: unable to handle kernel NULL pointer dereference at 0000000000000104 IP: [<ffffffffa0899471>] rds_ib_free_mr+0x31/0x130 [rds_rdma] PGD 4366fa067 PUD 4366f9067 PMD 0 Oops: 0000 [#1] SMP [...] task: ffff88046da6a000 ti: ffff88046da6c000 task.ti: ffff88046da6c000 RIP: 0010:[<ffffffffa0899471>] [<ffffffffa0899471>] rds_ib_free_mr+0x31/0x130 [rds_rdma] RSP: 0018:ffff88046fa43bd8 EFLAGS: 00010286 RAX: 0000000071d38b80 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff880079e7ff40 RBP: ffff88046fa43bf8 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88046fa43ca8 R11: ffff88046a802ed8 R12: ffff880079e7fa40 R13: 0000000000000000 R14: ffff880079e7ff40 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88046fa40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000104 CR3: 00000004366fb000 CR4: 00000000000006e0 Stack: ffff880079e7fa40 ffff880671d38f08 ffff880079e7ff40 0000000000000296 ffff88046fa43c28 ffffffffa087a38b ffff880079e7fa40 ffff880671d38f10 0000000000000000 0000000000000292 ffff88046fa43c48 ffffffffa087a3b6 Call Trace: <IRQ> [<ffffffffa087a38b>] rds_destroy_mr+0x8b/0xa0 [rds] [<ffffffffa087a3b6>] __rds_put_mr_final+0x16/0x30 [rds] [<ffffffffa087a492>] rds_rdma_unuse+0xc2/0x120 [rds] [<ffffffffa08766d3>] rds_recv_incoming_exthdrs+0x83/0xa0 [rds] [<ffffffffa0876782>] rds_recv_incoming+0x92/0x200 [rds] [<ffffffffa0895269>] rds_ib_process_recv+0x259/0x320 [rds_rdma] [<ffffffffa08962a8>] rds_ib_recv_tasklet_fn+0x1a8/0x490 [rds_rdma] [<ffffffff810dcd78>] ? __remove_hrtimer+0x58/0x90 [<ffffffff810799e1>] tasklet_action+0xb1/0xc0 [<ffffffff81079b52>] __do_softirq+0xe2/0x290 [<ffffffff81079df6>] irq_exit+0xa6/0xb0 [<ffffffff81613915>] do_IRQ+0x65/0xf0 [<ffffffff816118ab>] common_interrupt+0x6b/0x6b Signed-off-by: Santosh Shilimkar <ssantosh@kernel.org> Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 03:01:59 +08:00
if (zot_me) {
rds_destroy_mr(mr);
RDS: Fix rds MR reference count in rds_rdma_unuse() rds_rdma_unuse() drops the mr reference count which it hasn't taken. Correct way of removing mr is to remove mr from the tree and then rdma_destroy_mr() it first, then rds_mr_put() to decrement its reference count. Whichever thread holds last reference will free the mr via rds_mr_put() This bug was triggering weird null pointer crashes. One if the trace for it is captured below. BUG: unable to handle kernel NULL pointer dereference at 0000000000000104 IP: [<ffffffffa0899471>] rds_ib_free_mr+0x31/0x130 [rds_rdma] PGD 4366fa067 PUD 4366f9067 PMD 0 Oops: 0000 [#1] SMP [...] task: ffff88046da6a000 ti: ffff88046da6c000 task.ti: ffff88046da6c000 RIP: 0010:[<ffffffffa0899471>] [<ffffffffa0899471>] rds_ib_free_mr+0x31/0x130 [rds_rdma] RSP: 0018:ffff88046fa43bd8 EFLAGS: 00010286 RAX: 0000000071d38b80 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff880079e7ff40 RBP: ffff88046fa43bf8 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88046fa43ca8 R11: ffff88046a802ed8 R12: ffff880079e7fa40 R13: 0000000000000000 R14: ffff880079e7ff40 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88046fa40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000104 CR3: 00000004366fb000 CR4: 00000000000006e0 Stack: ffff880079e7fa40 ffff880671d38f08 ffff880079e7ff40 0000000000000296 ffff88046fa43c28 ffffffffa087a38b ffff880079e7fa40 ffff880671d38f10 0000000000000000 0000000000000292 ffff88046fa43c48 ffffffffa087a3b6 Call Trace: <IRQ> [<ffffffffa087a38b>] rds_destroy_mr+0x8b/0xa0 [rds] [<ffffffffa087a3b6>] __rds_put_mr_final+0x16/0x30 [rds] [<ffffffffa087a492>] rds_rdma_unuse+0xc2/0x120 [rds] [<ffffffffa08766d3>] rds_recv_incoming_exthdrs+0x83/0xa0 [rds] [<ffffffffa0876782>] rds_recv_incoming+0x92/0x200 [rds] [<ffffffffa0895269>] rds_ib_process_recv+0x259/0x320 [rds_rdma] [<ffffffffa08962a8>] rds_ib_recv_tasklet_fn+0x1a8/0x490 [rds_rdma] [<ffffffff810dcd78>] ? __remove_hrtimer+0x58/0x90 [<ffffffff810799e1>] tasklet_action+0xb1/0xc0 [<ffffffff81079b52>] __do_softirq+0xe2/0x290 [<ffffffff81079df6>] irq_exit+0xa6/0xb0 [<ffffffff81613915>] do_IRQ+0x65/0xf0 [<ffffffff816118ab>] common_interrupt+0x6b/0x6b Signed-off-by: Santosh Shilimkar <ssantosh@kernel.org> Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 03:01:59 +08:00
rds_mr_put(mr);
}
}
void rds_rdma_free_op(struct rm_rdma_op *ro)
{
unsigned int i;
for (i = 0; i < ro->op_nents; i++) {
struct page *page = sg_page(&ro->op_sg[i]);
/* Mark page dirty if it was possibly modified, which
* is the case for a RDMA_READ which copies from remote
* to local memory */
if (!ro->op_write) {
WARN_ON(!page->mapping && irqs_disabled());
set_page_dirty(page);
}
put_page(page);
}
kfree(ro->op_notifier);
ro->op_notifier = NULL;
ro->op_active = 0;
}
void rds_atomic_free_op(struct rm_atomic_op *ao)
{
struct page *page = sg_page(ao->op_sg);
/* Mark page dirty if it was possibly modified, which
* is the case for a RDMA_READ which copies from remote
* to local memory */
set_page_dirty(page);
put_page(page);
kfree(ao->op_notifier);
ao->op_notifier = NULL;
ao->op_active = 0;
}
/*
* Count the number of pages needed to describe an incoming iovec array.
*/
static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
{
int tot_pages = 0;
unsigned int nr_pages;
unsigned int i;
/* figure out the number of pages in the vector */
for (i = 0; i < nr_iovecs; i++) {
nr_pages = rds_pages_in_vec(&iov[i]);
if (nr_pages == 0)
return -EINVAL;
tot_pages += nr_pages;
/*
* nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
* so tot_pages cannot overflow without first going negative.
*/
if (tot_pages < 0)
return -EINVAL;
}
return tot_pages;
}
int rds_rdma_extra_size(struct rds_rdma_args *args)
{
struct rds_iovec vec;
struct rds_iovec __user *local_vec;
int tot_pages = 0;
unsigned int nr_pages;
unsigned int i;
local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
/* figure out the number of pages in the vector */
for (i = 0; i < args->nr_local; i++) {
if (copy_from_user(&vec, &local_vec[i],
sizeof(struct rds_iovec)))
return -EFAULT;
nr_pages = rds_pages_in_vec(&vec);
if (nr_pages == 0)
return -EINVAL;
tot_pages += nr_pages;
/*
* nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
* so tot_pages cannot overflow without first going negative.
*/
if (tot_pages < 0)
return -EINVAL;
}
return tot_pages * sizeof(struct scatterlist);
}
/*
* The application asks for a RDMA transfer.
* Extract all arguments and set up the rdma_op
*/
int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
struct cmsghdr *cmsg)
{
struct rds_rdma_args *args;
struct rm_rdma_op *op = &rm->rdma;
int nr_pages;
unsigned int nr_bytes;
struct page **pages = NULL;
struct rds_iovec iovstack[UIO_FASTIOV], *iovs = iovstack;
int iov_size;
unsigned int i, j;
int ret = 0;
if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
|| rm->rdma.op_active)
return -EINVAL;
args = CMSG_DATA(cmsg);
if (rs->rs_bound_addr == 0) {
ret = -ENOTCONN; /* XXX not a great errno */
goto out_ret;
}
if (args->nr_local > UIO_MAXIOV) {
ret = -EMSGSIZE;
goto out_ret;
}
/* Check whether to allocate the iovec area */
iov_size = args->nr_local * sizeof(struct rds_iovec);
if (args->nr_local > UIO_FASTIOV) {
iovs = sock_kmalloc(rds_rs_to_sk(rs), iov_size, GFP_KERNEL);
if (!iovs) {
ret = -ENOMEM;
goto out_ret;
}
}
if (copy_from_user(iovs, (struct rds_iovec __user *)(unsigned long) args->local_vec_addr, iov_size)) {
ret = -EFAULT;
goto out;
}
nr_pages = rds_rdma_pages(iovs, args->nr_local);
if (nr_pages < 0) {
ret = -EINVAL;
goto out;
}
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
if (!pages) {
ret = -ENOMEM;
goto out;
}
op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
op->op_active = 1;
op->op_recverr = rs->rs_recverr;
WARN_ON(!nr_pages);
op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
if (!op->op_sg) {
ret = -ENOMEM;
goto out;
}
if (op->op_notify || op->op_recverr) {
/* We allocate an uninitialized notifier here, because
* we don't want to do that in the completion handler. We
* would have to use GFP_ATOMIC there, and don't want to deal
* with failed allocations.
*/
op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
if (!op->op_notifier) {
ret = -ENOMEM;
goto out;
}
op->op_notifier->n_user_token = args->user_token;
op->op_notifier->n_status = RDS_RDMA_SUCCESS;
/* Enable rmda notification on data operation for composite
* rds messages and make sure notification is enabled only
* for the data operation which follows it so that application
* gets notified only after full message gets delivered.
*/
if (rm->data.op_sg) {
rm->rdma.op_notify = 0;
rm->data.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
}
}
/* The cookie contains the R_Key of the remote memory region, and
* optionally an offset into it. This is how we implement RDMA into
* unaligned memory.
* When setting up the RDMA, we need to add that offset to the
* destination address (which is really an offset into the MR)
* FIXME: We may want to move this into ib_rdma.c
*/
op->op_rkey = rds_rdma_cookie_key(args->cookie);
op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
nr_bytes = 0;
rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
(unsigned long long)args->nr_local,
(unsigned long long)args->remote_vec.addr,
op->op_rkey);
for (i = 0; i < args->nr_local; i++) {
struct rds_iovec *iov = &iovs[i];
/* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
unsigned int nr = rds_pages_in_vec(iov);
rs->rs_user_addr = iov->addr;
rs->rs_user_bytes = iov->bytes;
/* If it's a WRITE operation, we want to pin the pages for reading.
* If it's a READ operation, we need to pin the pages for writing.
*/
ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
if (ret < 0)
goto out;
else
ret = 0;
rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
nr_bytes, nr, iov->bytes, iov->addr);
nr_bytes += iov->bytes;
for (j = 0; j < nr; j++) {
unsigned int offset = iov->addr & ~PAGE_MASK;
struct scatterlist *sg;
sg = &op->op_sg[op->op_nents + j];
sg_set_page(sg, pages[j],
min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
offset);
rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
sg->offset, sg->length, iov->addr, iov->bytes);
iov->addr += sg->length;
iov->bytes -= sg->length;
}
op->op_nents += nr;
}
if (nr_bytes > args->remote_vec.bytes) {
rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
nr_bytes,
(unsigned int) args->remote_vec.bytes);
ret = -EINVAL;
goto out;
}
op->op_bytes = nr_bytes;
out:
if (iovs != iovstack)
sock_kfree_s(rds_rs_to_sk(rs), iovs, iov_size);
kfree(pages);
out_ret:
if (ret)
rds_rdma_free_op(op);
else
rds_stats_inc(s_send_rdma);
return ret;
}
/*
* The application wants us to pass an RDMA destination (aka MR)
* to the remote
*/
int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
struct cmsghdr *cmsg)
{
unsigned long flags;
struct rds_mr *mr;
u32 r_key;
int err = 0;
if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
rm->m_rdma_cookie != 0)
return -EINVAL;
memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
/* We are reusing a previously mapped MR here. Most likely, the
* application has written to the buffer, so we need to explicitly
* flush those writes to RAM. Otherwise the HCA may not see them
* when doing a DMA from that buffer.
*/
r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
spin_lock_irqsave(&rs->rs_rdma_lock, flags);
mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
if (!mr)
err = -EINVAL; /* invalid r_key */
else
refcount_inc(&mr->r_refcount);
spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
if (mr) {
mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
rm->rdma.op_rdma_mr = mr;
}
return err;
}
/*
* The application passes us an address range it wants to enable RDMA
* to/from. We map the area, and save the <R_Key,offset> pair
* in rm->m_rdma_cookie. This causes it to be sent along to the peer
* in an extension header.
*/
int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
struct cmsghdr *cmsg)
{
if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
rm->m_rdma_cookie != 0)
return -EINVAL;
return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->rdma.op_rdma_mr);
}
/*
* Fill in rds_message for an atomic request.
*/
int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
struct cmsghdr *cmsg)
{
struct page *page = NULL;
struct rds_atomic_args *args;
int ret = 0;
if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
|| rm->atomic.op_active)
return -EINVAL;
args = CMSG_DATA(cmsg);
/* Nonmasked & masked cmsg ops converted to masked hw ops */
switch (cmsg->cmsg_type) {
case RDS_CMSG_ATOMIC_FADD:
rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
rm->atomic.op_m_fadd.add = args->fadd.add;
rm->atomic.op_m_fadd.nocarry_mask = 0;
break;
case RDS_CMSG_MASKED_ATOMIC_FADD:
rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
rm->atomic.op_m_fadd.add = args->m_fadd.add;
rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
break;
case RDS_CMSG_ATOMIC_CSWP:
rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
rm->atomic.op_m_cswp.compare = args->cswp.compare;
rm->atomic.op_m_cswp.swap = args->cswp.swap;
rm->atomic.op_m_cswp.compare_mask = ~0;
rm->atomic.op_m_cswp.swap_mask = ~0;
break;
case RDS_CMSG_MASKED_ATOMIC_CSWP:
rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
break;
default:
BUG(); /* should never happen */
}
rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
rm->atomic.op_active = 1;
rm->atomic.op_recverr = rs->rs_recverr;
rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
if (!rm->atomic.op_sg) {
ret = -ENOMEM;
goto err;
}
/* verify 8 byte-aligned */
if (args->local_addr & 0x7) {
ret = -EFAULT;
goto err;
}
ret = rds_pin_pages(args->local_addr, 1, &page, 1);
if (ret != 1)
goto err;
ret = 0;
sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
if (rm->atomic.op_notify || rm->atomic.op_recverr) {
/* We allocate an uninitialized notifier here, because
* we don't want to do that in the completion handler. We
* would have to use GFP_ATOMIC there, and don't want to deal
* with failed allocations.
*/
rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
if (!rm->atomic.op_notifier) {
ret = -ENOMEM;
goto err;
}
rm->atomic.op_notifier->n_user_token = args->user_token;
rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
}
rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
return ret;
err:
if (page)
put_page(page);
kfree(rm->atomic.op_notifier);
return ret;
}