linux/drivers/net/irda/sir_dev.c

988 lines
24 KiB
C
Raw Normal View History

/*********************************************************************
*
* sir_dev.c: irda sir network device
*
* Copyright (c) 2002 Martin Diehl
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
********************************************************************/
#include <linux/hardirq.h>
#include <linux/module.h>
#include <linux/kernel.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <net/irda/irda.h>
#include <net/irda/wrapper.h>
#include <net/irda/irda_device.h>
#include "sir-dev.h"
static struct workqueue_struct *irda_sir_wq;
/* STATE MACHINE */
/* substate handler of the config-fsm to handle the cases where we want
* to wait for transmit completion before changing the port configuration
*/
static int sirdev_tx_complete_fsm(struct sir_dev *dev)
{
struct sir_fsm *fsm = &dev->fsm;
unsigned next_state, delay;
unsigned bytes_left;
do {
next_state = fsm->substate; /* default: stay in current substate */
delay = 0;
switch(fsm->substate) {
case SIRDEV_STATE_WAIT_XMIT:
if (dev->drv->chars_in_buffer)
bytes_left = dev->drv->chars_in_buffer(dev);
else
bytes_left = 0;
if (!bytes_left) {
next_state = SIRDEV_STATE_WAIT_UNTIL_SENT;
break;
}
if (dev->speed > 115200)
delay = (bytes_left*8*10000) / (dev->speed/100);
else if (dev->speed > 0)
delay = (bytes_left*10*10000) / (dev->speed/100);
else
delay = 0;
/* expected delay (usec) until remaining bytes are sent */
if (delay < 100) {
udelay(delay);
delay = 0;
break;
}
/* sleep some longer delay (msec) */
delay = (delay+999) / 1000;
break;
case SIRDEV_STATE_WAIT_UNTIL_SENT:
/* block until underlaying hardware buffer are empty */
if (dev->drv->wait_until_sent)
dev->drv->wait_until_sent(dev);
next_state = SIRDEV_STATE_TX_DONE;
break;
case SIRDEV_STATE_TX_DONE:
return 0;
default:
net_err_ratelimited("%s - undefined state\n", __func__);
return -EINVAL;
}
fsm->substate = next_state;
} while (delay == 0);
return delay;
}
/*
* Function sirdev_config_fsm
*
* State machine to handle the configuration of the device (and attached dongle, if any).
* This handler is scheduled for execution in kIrDAd context, so we can sleep.
* however, kIrDAd is shared by all sir_dev devices so we better don't sleep there too
* long. Instead, for longer delays we start a timer to reschedule us later.
* On entry, fsm->sem is always locked and the netdev xmit queue stopped.
* Both must be unlocked/restarted on completion - but only on final exit.
*/
static void sirdev_config_fsm(struct work_struct *work)
{
struct sir_dev *dev = container_of(work, struct sir_dev, fsm.work.work);
struct sir_fsm *fsm = &dev->fsm;
int next_state;
int ret = -1;
unsigned delay;
pr_debug("%s(), <%ld>\n", __func__, jiffies);
do {
pr_debug("%s - state=0x%04x / substate=0x%04x\n",
__func__, fsm->state, fsm->substate);
next_state = fsm->state;
delay = 0;
switch(fsm->state) {
case SIRDEV_STATE_DONGLE_OPEN:
if (dev->dongle_drv != NULL) {
ret = sirdev_put_dongle(dev);
if (ret) {
fsm->result = -EINVAL;
next_state = SIRDEV_STATE_ERROR;
break;
}
}
/* Initialize dongle */
ret = sirdev_get_dongle(dev, fsm->param);
if (ret) {
fsm->result = ret;
next_state = SIRDEV_STATE_ERROR;
break;
}
/* Dongles are powered through the modem control lines which
* were just set during open. Before resetting, let's wait for
* the power to stabilize. This is what some dongle drivers did
* in open before, while others didn't - should be safe anyway.
*/
delay = 50;
fsm->substate = SIRDEV_STATE_DONGLE_RESET;
next_state = SIRDEV_STATE_DONGLE_RESET;
fsm->param = 9600;
break;
case SIRDEV_STATE_DONGLE_CLOSE:
/* shouldn't we just treat this as success=? */
if (dev->dongle_drv == NULL) {
fsm->result = -EINVAL;
next_state = SIRDEV_STATE_ERROR;
break;
}
ret = sirdev_put_dongle(dev);
if (ret) {
fsm->result = ret;
next_state = SIRDEV_STATE_ERROR;
break;
}
next_state = SIRDEV_STATE_DONE;
break;
case SIRDEV_STATE_SET_DTR_RTS:
ret = sirdev_set_dtr_rts(dev,
(fsm->param&0x02) ? TRUE : FALSE,
(fsm->param&0x01) ? TRUE : FALSE);
next_state = SIRDEV_STATE_DONE;
break;
case SIRDEV_STATE_SET_SPEED:
fsm->substate = SIRDEV_STATE_WAIT_XMIT;
next_state = SIRDEV_STATE_DONGLE_CHECK;
break;
case SIRDEV_STATE_DONGLE_CHECK:
ret = sirdev_tx_complete_fsm(dev);
if (ret < 0) {
fsm->result = ret;
next_state = SIRDEV_STATE_ERROR;
break;
}
if ((delay=ret) != 0)
break;
if (dev->dongle_drv) {
fsm->substate = SIRDEV_STATE_DONGLE_RESET;
next_state = SIRDEV_STATE_DONGLE_RESET;
}
else {
dev->speed = fsm->param;
next_state = SIRDEV_STATE_PORT_SPEED;
}
break;
case SIRDEV_STATE_DONGLE_RESET:
if (dev->dongle_drv->reset) {
ret = dev->dongle_drv->reset(dev);
if (ret < 0) {
fsm->result = ret;
next_state = SIRDEV_STATE_ERROR;
break;
}
}
else
ret = 0;
if ((delay=ret) == 0) {
/* set serial port according to dongle default speed */
if (dev->drv->set_speed)
dev->drv->set_speed(dev, dev->speed);
fsm->substate = SIRDEV_STATE_DONGLE_SPEED;
next_state = SIRDEV_STATE_DONGLE_SPEED;
}
break;
case SIRDEV_STATE_DONGLE_SPEED:
if (dev->dongle_drv->set_speed) {
ret = dev->dongle_drv->set_speed(dev, fsm->param);
if (ret < 0) {
fsm->result = ret;
next_state = SIRDEV_STATE_ERROR;
break;
}
}
else
ret = 0;
if ((delay=ret) == 0)
next_state = SIRDEV_STATE_PORT_SPEED;
break;
case SIRDEV_STATE_PORT_SPEED:
/* Finally we are ready to change the serial port speed */
if (dev->drv->set_speed)
dev->drv->set_speed(dev, dev->speed);
dev->new_speed = 0;
next_state = SIRDEV_STATE_DONE;
break;
case SIRDEV_STATE_DONE:
/* Signal network layer so it can send more frames */
netif_wake_queue(dev->netdev);
next_state = SIRDEV_STATE_COMPLETE;
break;
default:
net_err_ratelimited("%s - undefined state\n", __func__);
fsm->result = -EINVAL;
/* fall thru */
case SIRDEV_STATE_ERROR:
net_err_ratelimited("%s - error: %d\n",
__func__, fsm->result);
#if 0 /* don't enable this before we have netdev->tx_timeout to recover */
netif_stop_queue(dev->netdev);
#else
netif_wake_queue(dev->netdev);
#endif
/* fall thru */
case SIRDEV_STATE_COMPLETE:
/* config change finished, so we are not busy any longer */
sirdev_enable_rx(dev);
up(&fsm->sem);
return;
}
fsm->state = next_state;
} while(!delay);
queue_delayed_work(irda_sir_wq, &fsm->work, msecs_to_jiffies(delay));
}
/* schedule some device configuration task for execution by kIrDAd
* on behalf of the above state machine.
* can be called from process or interrupt/tasklet context.
*/
int sirdev_schedule_request(struct sir_dev *dev, int initial_state, unsigned param)
{
struct sir_fsm *fsm = &dev->fsm;
pr_debug("%s - state=0x%04x / param=%u\n", __func__,
initial_state, param);
if (down_trylock(&fsm->sem)) {
if (in_interrupt() || in_atomic() || irqs_disabled()) {
pr_debug("%s(), state machine busy!\n", __func__);
return -EWOULDBLOCK;
} else
down(&fsm->sem);
}
if (fsm->state == SIRDEV_STATE_DEAD) {
/* race with sirdev_close should never happen */
net_err_ratelimited("%s(), instance staled!\n", __func__);
up(&fsm->sem);
return -ESTALE; /* or better EPIPE? */
}
netif_stop_queue(dev->netdev);
atomic_set(&dev->enable_rx, 0);
fsm->state = initial_state;
fsm->param = param;
fsm->result = 0;
INIT_DELAYED_WORK(&fsm->work, sirdev_config_fsm);
queue_delayed_work(irda_sir_wq, &fsm->work, 0);
return 0;
}
/***************************************************************************/
void sirdev_enable_rx(struct sir_dev *dev)
{
if (unlikely(atomic_read(&dev->enable_rx)))
return;
/* flush rx-buffer - should also help in case of problems with echo cancelation */
dev->rx_buff.data = dev->rx_buff.head;
dev->rx_buff.len = 0;
dev->rx_buff.in_frame = FALSE;
dev->rx_buff.state = OUTSIDE_FRAME;
atomic_set(&dev->enable_rx, 1);
}
static int sirdev_is_receiving(struct sir_dev *dev)
{
if (!atomic_read(&dev->enable_rx))
return 0;
return dev->rx_buff.state != OUTSIDE_FRAME;
}
int sirdev_set_dongle(struct sir_dev *dev, IRDA_DONGLE type)
{
int err;
pr_debug("%s : requesting dongle %d.\n", __func__, type);
err = sirdev_schedule_dongle_open(dev, type);
if (unlikely(err))
return err;
down(&dev->fsm.sem); /* block until config change completed */
err = dev->fsm.result;
up(&dev->fsm.sem);
return err;
}
EXPORT_SYMBOL(sirdev_set_dongle);
/* used by dongle drivers for dongle programming */
int sirdev_raw_write(struct sir_dev *dev, const char *buf, int len)
{
unsigned long flags;
int ret;
if (unlikely(len > dev->tx_buff.truesize))
return -ENOSPC;
spin_lock_irqsave(&dev->tx_lock, flags); /* serialize with other tx operations */
while (dev->tx_buff.len > 0) { /* wait until tx idle */
spin_unlock_irqrestore(&dev->tx_lock, flags);
msleep(10);
spin_lock_irqsave(&dev->tx_lock, flags);
}
dev->tx_buff.data = dev->tx_buff.head;
memcpy(dev->tx_buff.data, buf, len);
dev->tx_buff.len = len;
ret = dev->drv->do_write(dev, dev->tx_buff.data, dev->tx_buff.len);
if (ret > 0) {
pr_debug("%s(), raw-tx started\n", __func__);
dev->tx_buff.data += ret;
dev->tx_buff.len -= ret;
dev->raw_tx = 1;
ret = len; /* all data is going to be sent */
}
spin_unlock_irqrestore(&dev->tx_lock, flags);
return ret;
}
EXPORT_SYMBOL(sirdev_raw_write);
/* seems some dongle drivers may need this */
int sirdev_raw_read(struct sir_dev *dev, char *buf, int len)
{
int count;
if (atomic_read(&dev->enable_rx))
return -EIO; /* fail if we expect irda-frames */
count = (len < dev->rx_buff.len) ? len : dev->rx_buff.len;
if (count > 0) {
memcpy(buf, dev->rx_buff.data, count);
dev->rx_buff.data += count;
dev->rx_buff.len -= count;
}
/* remaining stuff gets flushed when re-enabling normal rx */
return count;
}
EXPORT_SYMBOL(sirdev_raw_read);
int sirdev_set_dtr_rts(struct sir_dev *dev, int dtr, int rts)
{
int ret = -ENXIO;
if (dev->drv->set_dtr_rts)
ret = dev->drv->set_dtr_rts(dev, dtr, rts);
return ret;
}
EXPORT_SYMBOL(sirdev_set_dtr_rts);
/**********************************************************************/
/* called from client driver - likely with bh-context - to indicate
* it made some progress with transmission. Hence we send the next
* chunk, if any, or complete the skb otherwise
*/
void sirdev_write_complete(struct sir_dev *dev)
{
unsigned long flags;
struct sk_buff *skb;
int actual = 0;
int err;
spin_lock_irqsave(&dev->tx_lock, flags);
pr_debug("%s() - dev->tx_buff.len = %d\n",
__func__, dev->tx_buff.len);
if (likely(dev->tx_buff.len > 0)) {
/* Write data left in transmit buffer */
actual = dev->drv->do_write(dev, dev->tx_buff.data, dev->tx_buff.len);
if (likely(actual>0)) {
dev->tx_buff.data += actual;
dev->tx_buff.len -= actual;
}
else if (unlikely(actual<0)) {
/* could be dropped later when we have tx_timeout to recover */
net_err_ratelimited("%s: drv->do_write failed (%d)\n",
__func__, actual);
if ((skb=dev->tx_skb) != NULL) {
dev->tx_skb = NULL;
dev_kfree_skb_any(skb);
dev->netdev->stats.tx_errors++;
dev->netdev->stats.tx_dropped++;
}
dev->tx_buff.len = 0;
}
if (dev->tx_buff.len > 0)
goto done; /* more data to send later */
}
if (unlikely(dev->raw_tx != 0)) {
/* in raw mode we are just done now after the buffer was sent
* completely. Since this was requested by some dongle driver
* running under the control of the irda-thread we must take
* care here not to re-enable the queue. The queue will be
* restarted when the irda-thread has completed the request.
*/
pr_debug("%s(), raw-tx done\n", __func__);
dev->raw_tx = 0;
goto done; /* no post-frame handling in raw mode */
}
/* we have finished now sending this skb.
* update statistics and free the skb.
* finally we check and trigger a pending speed change, if any.
* if not we switch to rx mode and wake the queue for further
* packets.
* note the scheduled speed request blocks until the lower
* client driver and the corresponding hardware has really
* finished sending all data (xmit fifo drained f.e.)
* before the speed change gets finally done and the queue
* re-activated.
*/
pr_debug("%s(), finished with frame!\n", __func__);
if ((skb=dev->tx_skb) != NULL) {
dev->tx_skb = NULL;
dev->netdev->stats.tx_packets++;
dev->netdev->stats.tx_bytes += skb->len;
dev_kfree_skb_any(skb);
}
if (unlikely(dev->new_speed > 0)) {
pr_debug("%s(), Changing speed!\n", __func__);
err = sirdev_schedule_speed(dev, dev->new_speed);
if (unlikely(err)) {
/* should never happen
* forget the speed change and hope the stack recovers
*/
net_err_ratelimited("%s - schedule speed change failed: %d\n",
__func__, err);
netif_wake_queue(dev->netdev);
}
/* else: success
* speed change in progress now
* on completion dev->new_speed gets cleared,
* rx-reenabled and the queue restarted
*/
}
else {
sirdev_enable_rx(dev);
netif_wake_queue(dev->netdev);
}
done:
spin_unlock_irqrestore(&dev->tx_lock, flags);
}
EXPORT_SYMBOL(sirdev_write_complete);
/* called from client driver - likely with bh-context - to give us
* some more received bytes. We put them into the rx-buffer,
* normally unwrapping and building LAP-skb's (unless rx disabled)
*/
int sirdev_receive(struct sir_dev *dev, const unsigned char *cp, size_t count)
{
if (!dev || !dev->netdev) {
net_warn_ratelimited("%s(), not ready yet!\n", __func__);
return -1;
}
if (!dev->irlap) {
net_warn_ratelimited("%s - too early: %p / %zd!\n",
__func__, cp, count);
return -1;
}
if (cp==NULL) {
/* error already at lower level receive
* just update stats and set media busy
*/
irda_device_set_media_busy(dev->netdev, TRUE);
dev->netdev->stats.rx_dropped++;
pr_debug("%s; rx-drop: %zd\n", __func__, count);
return 0;
}
/* Read the characters into the buffer */
if (likely(atomic_read(&dev->enable_rx))) {
while (count--)
/* Unwrap and destuff one byte */
async_unwrap_char(dev->netdev, &dev->netdev->stats,
&dev->rx_buff, *cp++);
} else {
while (count--) {
/* rx not enabled: save the raw bytes and never
* trigger any netif_rx. The received bytes are flushed
* later when we re-enable rx but might be read meanwhile
* by the dongle driver.
*/
dev->rx_buff.data[dev->rx_buff.len++] = *cp++;
/* What should we do when the buffer is full? */
if (unlikely(dev->rx_buff.len == dev->rx_buff.truesize))
dev->rx_buff.len = 0;
}
}
return 0;
}
EXPORT_SYMBOL(sirdev_receive);
/**********************************************************************/
/* callbacks from network layer */
static netdev_tx_t sirdev_hard_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct sir_dev *dev = netdev_priv(ndev);
unsigned long flags;
int actual = 0;
int err;
s32 speed;
IRDA_ASSERT(dev != NULL, return NETDEV_TX_OK;);
netif_stop_queue(ndev);
pr_debug("%s(), skb->len = %d\n", __func__, skb->len);
speed = irda_get_next_speed(skb);
if ((speed != dev->speed) && (speed != -1)) {
if (!skb->len) {
err = sirdev_schedule_speed(dev, speed);
if (unlikely(err == -EWOULDBLOCK)) {
/* Failed to initiate the speed change, likely the fsm
* is still busy (pretty unlikely, but...)
* We refuse to accept the skb and return with the queue
* stopped so the network layer will retry after the
* fsm completes and wakes the queue.
*/
return NETDEV_TX_BUSY;
}
else if (unlikely(err)) {
/* other fatal error - forget the speed change and
* hope the stack will recover somehow
*/
netif_start_queue(ndev);
}
/* else: success
* speed change in progress now
* on completion the queue gets restarted
*/
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
} else
dev->new_speed = speed;
}
/* Init tx buffer*/
dev->tx_buff.data = dev->tx_buff.head;
/* Check problems */
if(spin_is_locked(&dev->tx_lock)) {
pr_debug("%s(), write not completed\n", __func__);
}
/* serialize with write completion */
spin_lock_irqsave(&dev->tx_lock, flags);
/* Copy skb to tx_buff while wrapping, stuffing and making CRC */
dev->tx_buff.len = async_wrap_skb(skb, dev->tx_buff.data, dev->tx_buff.truesize);
/* transmission will start now - disable receive.
* if we are just in the middle of an incoming frame,
* treat it as collision. probably it's a good idea to
* reset the rx_buf OUTSIDE_FRAME in this case too?
*/
atomic_set(&dev->enable_rx, 0);
if (unlikely(sirdev_is_receiving(dev)))
dev->netdev->stats.collisions++;
actual = dev->drv->do_write(dev, dev->tx_buff.data, dev->tx_buff.len);
if (likely(actual > 0)) {
dev->tx_skb = skb;
dev->tx_buff.data += actual;
dev->tx_buff.len -= actual;
}
else if (unlikely(actual < 0)) {
/* could be dropped later when we have tx_timeout to recover */
net_err_ratelimited("%s: drv->do_write failed (%d)\n",
__func__, actual);
dev_kfree_skb_any(skb);
dev->netdev->stats.tx_errors++;
dev->netdev->stats.tx_dropped++;
netif_wake_queue(ndev);
}
spin_unlock_irqrestore(&dev->tx_lock, flags);
return NETDEV_TX_OK;
}
/* called from network layer with rtnl hold */
static int sirdev_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
{
struct if_irda_req *irq = (struct if_irda_req *) rq;
struct sir_dev *dev = netdev_priv(ndev);
int ret = 0;
IRDA_ASSERT(dev != NULL, return -1;);
pr_debug("%s(), %s, (cmd=0x%X)\n", __func__, ndev->name, cmd);
switch (cmd) {
case SIOCSBANDWIDTH: /* Set bandwidth */
if (!capable(CAP_NET_ADMIN))
ret = -EPERM;
else
ret = sirdev_schedule_speed(dev, irq->ifr_baudrate);
/* cannot sleep here for completion
* we are called from network layer with rtnl hold
*/
break;
case SIOCSDONGLE: /* Set dongle */
if (!capable(CAP_NET_ADMIN))
ret = -EPERM;
else
ret = sirdev_schedule_dongle_open(dev, irq->ifr_dongle);
/* cannot sleep here for completion
* we are called from network layer with rtnl hold
*/
break;
case SIOCSMEDIABUSY: /* Set media busy */
if (!capable(CAP_NET_ADMIN))
ret = -EPERM;
else
irda_device_set_media_busy(dev->netdev, TRUE);
break;
case SIOCGRECEIVING: /* Check if we are receiving right now */
irq->ifr_receiving = sirdev_is_receiving(dev);
break;
case SIOCSDTRRTS:
if (!capable(CAP_NET_ADMIN))
ret = -EPERM;
else
ret = sirdev_schedule_dtr_rts(dev, irq->ifr_dtr, irq->ifr_rts);
/* cannot sleep here for completion
* we are called from network layer with rtnl hold
*/
break;
case SIOCSMODE:
#if 0
if (!capable(CAP_NET_ADMIN))
ret = -EPERM;
else
ret = sirdev_schedule_mode(dev, irq->ifr_mode);
/* cannot sleep here for completion
* we are called from network layer with rtnl hold
*/
break;
#endif
default:
ret = -EOPNOTSUPP;
}
return ret;
}
/* ----------------------------------------------------------------------------- */
#define SIRBUF_ALLOCSIZE 4269 /* worst case size of a wrapped IrLAP frame */
static int sirdev_alloc_buffers(struct sir_dev *dev)
{
dev->tx_buff.truesize = SIRBUF_ALLOCSIZE;
dev->rx_buff.truesize = IRDA_SKB_MAX_MTU;
/* Bootstrap ZeroCopy Rx */
dev->rx_buff.skb = __netdev_alloc_skb(dev->netdev, dev->rx_buff.truesize,
GFP_KERNEL);
if (dev->rx_buff.skb == NULL)
return -ENOMEM;
skb_reserve(dev->rx_buff.skb, 1);
dev->rx_buff.head = dev->rx_buff.skb->data;
dev->tx_buff.head = kmalloc(dev->tx_buff.truesize, GFP_KERNEL);
if (dev->tx_buff.head == NULL) {
kfree_skb(dev->rx_buff.skb);
dev->rx_buff.skb = NULL;
dev->rx_buff.head = NULL;
return -ENOMEM;
}
dev->tx_buff.data = dev->tx_buff.head;
dev->rx_buff.data = dev->rx_buff.head;
dev->tx_buff.len = 0;
dev->rx_buff.len = 0;
dev->rx_buff.in_frame = FALSE;
dev->rx_buff.state = OUTSIDE_FRAME;
return 0;
};
static void sirdev_free_buffers(struct sir_dev *dev)
{
kfree_skb(dev->rx_buff.skb);
kfree(dev->tx_buff.head);
dev->rx_buff.head = dev->tx_buff.head = NULL;
dev->rx_buff.skb = NULL;
}
static int sirdev_open(struct net_device *ndev)
{
struct sir_dev *dev = netdev_priv(ndev);
const struct sir_driver *drv = dev->drv;
if (!drv)
return -ENODEV;
/* increase the reference count of the driver module before doing serious stuff */
if (!try_module_get(drv->owner))
return -ESTALE;
if (sirdev_alloc_buffers(dev))
goto errout_dec;
if (!dev->drv->start_dev || dev->drv->start_dev(dev))
goto errout_free;
sirdev_enable_rx(dev);
dev->raw_tx = 0;
netif_start_queue(ndev);
dev->irlap = irlap_open(ndev, &dev->qos, dev->hwname);
if (!dev->irlap)
goto errout_stop;
netif_wake_queue(ndev);
pr_debug("%s - done, speed = %d\n", __func__, dev->speed);
return 0;
errout_stop:
atomic_set(&dev->enable_rx, 0);
if (dev->drv->stop_dev)
dev->drv->stop_dev(dev);
errout_free:
sirdev_free_buffers(dev);
errout_dec:
module_put(drv->owner);
return -EAGAIN;
}
static int sirdev_close(struct net_device *ndev)
{
struct sir_dev *dev = netdev_priv(ndev);
const struct sir_driver *drv;
/* pr_debug("%s\n", __func__); */
netif_stop_queue(ndev);
down(&dev->fsm.sem); /* block on pending config completion */
atomic_set(&dev->enable_rx, 0);
if (unlikely(!dev->irlap))
goto out;
irlap_close(dev->irlap);
dev->irlap = NULL;
drv = dev->drv;
if (unlikely(!drv || !dev->priv))
goto out;
if (drv->stop_dev)
drv->stop_dev(dev);
sirdev_free_buffers(dev);
module_put(drv->owner);
out:
dev->speed = 0;
up(&dev->fsm.sem);
return 0;
}
static const struct net_device_ops sirdev_ops = {
.ndo_start_xmit = sirdev_hard_xmit,
.ndo_open = sirdev_open,
.ndo_stop = sirdev_close,
.ndo_do_ioctl = sirdev_ioctl,
};
/* ----------------------------------------------------------------------------- */
struct sir_dev * sirdev_get_instance(const struct sir_driver *drv, const char *name)
{
struct net_device *ndev;
struct sir_dev *dev;
pr_debug("%s - %s\n", __func__, name);
/* instead of adding tests to protect against drv->do_write==NULL
* at several places we refuse to create a sir_dev instance for
* drivers which don't implement do_write.
*/
if (!drv || !drv->do_write)
return NULL;
/*
* Allocate new instance of the device
*/
ndev = alloc_irdadev(sizeof(*dev));
if (ndev == NULL) {
net_err_ratelimited("%s - Can't allocate memory for IrDA control block!\n",
__func__);
goto out;
}
dev = netdev_priv(ndev);
irda_init_max_qos_capabilies(&dev->qos);
dev->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|IR_115200;
dev->qos.min_turn_time.bits = drv->qos_mtt_bits;
irda_qos_bits_to_value(&dev->qos);
strncpy(dev->hwname, name, sizeof(dev->hwname)-1);
atomic_set(&dev->enable_rx, 0);
dev->tx_skb = NULL;
spin_lock_init(&dev->tx_lock);
sema_init(&dev->fsm.sem, 1);
dev->drv = drv;
dev->netdev = ndev;
/* Override the network functions we need to use */
ndev->netdev_ops = &sirdev_ops;
if (register_netdev(ndev)) {
net_err_ratelimited("%s(), register_netdev() failed!\n",
__func__);
goto out_freenetdev;
}
return dev;
out_freenetdev:
free_netdev(ndev);
out:
return NULL;
}
EXPORT_SYMBOL(sirdev_get_instance);
int sirdev_put_instance(struct sir_dev *dev)
{
int err = 0;
pr_debug("%s\n", __func__);
atomic_set(&dev->enable_rx, 0);
netif_carrier_off(dev->netdev);
netif_device_detach(dev->netdev);
if (dev->dongle_drv)
err = sirdev_schedule_dongle_close(dev);
if (err)
net_err_ratelimited("%s - error %d\n", __func__, err);
sirdev_close(dev->netdev);
down(&dev->fsm.sem);
dev->fsm.state = SIRDEV_STATE_DEAD; /* mark staled */
dev->dongle_drv = NULL;
dev->priv = NULL;
up(&dev->fsm.sem);
/* Remove netdevice */
unregister_netdev(dev->netdev);
free_netdev(dev->netdev);
return 0;
}
EXPORT_SYMBOL(sirdev_put_instance);
static int __init sir_wq_init(void)
{
irda_sir_wq = create_singlethread_workqueue("irda_sir_wq");
if (!irda_sir_wq)
return -ENOMEM;
return 0;
}
static void __exit sir_wq_exit(void)
{
destroy_workqueue(irda_sir_wq);
}
module_init(sir_wq_init);
module_exit(sir_wq_exit);
MODULE_AUTHOR("Martin Diehl <info@mdiehl.de>");
MODULE_DESCRIPTION("IrDA SIR core");
MODULE_LICENSE("GPL");