linux/arch/x86/xen/enlighten.c

370 lines
9.6 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#ifdef CONFIG_XEN_BALLOON_MEMORY_HOTPLUG
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 06:09:49 +08:00
#include <linux/memblock.h>
#endif
#include <linux/cpu.h>
#include <linux/kexec.h>
x86: Don't include linux/irq.h from asm/hardirq.h The next patch in this series will have to make the definition of irq_cpustat_t available to entering_irq(). Inclusion of asm/hardirq.h into asm/apic.h would cause circular header dependencies like asm/smp.h asm/apic.h asm/hardirq.h linux/irq.h linux/topology.h linux/smp.h asm/smp.h or linux/gfp.h linux/mmzone.h asm/mmzone.h asm/mmzone_64.h asm/smp.h asm/apic.h asm/hardirq.h linux/irq.h linux/irqdesc.h linux/kobject.h linux/sysfs.h linux/kernfs.h linux/idr.h linux/gfp.h and others. This causes compilation errors because of the header guards becoming effective in the second inclusion: symbols/macros that had been defined before wouldn't be available to intermediate headers in the #include chain anymore. A possible workaround would be to move the definition of irq_cpustat_t into its own header and include that from both, asm/hardirq.h and asm/apic.h. However, this wouldn't solve the real problem, namely asm/harirq.h unnecessarily pulling in all the linux/irq.h cruft: nothing in asm/hardirq.h itself requires it. Also, note that there are some other archs, like e.g. arm64, which don't have that #include in their asm/hardirq.h. Remove the linux/irq.h #include from x86' asm/hardirq.h. Fix resulting compilation errors by adding appropriate #includes to *.c files as needed. Note that some of these *.c files could be cleaned up a bit wrt. to their set of #includes, but that should better be done from separate patches, if at all. Signed-off-by: Nicolai Stange <nstange@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-07-29 18:15:33 +08:00
#include <linux/slab.h>
#include <xen/xen.h>
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
#include <xen/features.h>
#include <xen/page.h>
#include <asm/xen/hypercall.h>
#include <asm/xen/hypervisor.h>
#include <asm/cpu.h>
#include <asm/e820/api.h>
xen/enlighten: Expose MWAIT and MWAIT_LEAF if hypervisor OKs it. For the hypervisor to take advantage of the MWAIT support it needs to extract from the ACPI _CST the register address. But the hypervisor does not have the support to parse DSDT so it relies on the initial domain (dom0) to parse the ACPI Power Management information and push it up to the hypervisor. The pushing of the data is done by the processor_harveset_xen module which parses the information that the ACPI parser has graciously exposed in 'struct acpi_processor'. For the ACPI parser to also expose the Cx states for MWAIT, we need to expose the MWAIT capability (leaf 1). Furthermore we also need to expose the MWAIT_LEAF capability (leaf 5) for cstate.c to properly function. The hypervisor could expose these flags when it traps the XEN_EMULATE_PREFIX operations, but it can't do it since it needs to be backwards compatible. Instead we choose to use the native CPUID to figure out if the MWAIT capability exists and use the XEN_SET_PDC query hypercall to figure out if the hypervisor wants us to expose the MWAIT_LEAF capability or not. Note: The XEN_SET_PDC query was implemented in c/s 23783: "ACPI: add _PDC input override mechanism". With this in place, instead of C3 ACPI IOPORT 415 we get now C3:ACPI FFH INTEL MWAIT 0x20 Note: The cpu_idle which would be calling the mwait variants for idling never gets set b/c we set the default pm_idle to be the hypercall variant. Acked-by: Jan Beulich <JBeulich@suse.com> [v2: Fix missing header file include and #ifdef] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-02-14 11:26:32 +08:00
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
#include "xen-ops.h"
#include "smp.h"
#include "pmu.h"
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
EXPORT_SYMBOL_GPL(hypercall_page);
/*
* Pointer to the xen_vcpu_info structure or
* &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
* and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
* but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
* to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
* acknowledge pending events.
* Also more subtly it is used by the patched version of irq enable/disable
* e.g. xen_irq_enable_direct and xen_iret in PV mode.
*
* The desire to be able to do those mask/unmask operations as a single
* instruction by using the per-cpu offset held in %gs is the real reason
* vcpu info is in a per-cpu pointer and the original reason for this
* hypercall.
*
*/
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
/*
* Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
* hypercall. This can be used both in PV and PVHVM mode. The structure
* overrides the default per_cpu(xen_vcpu, cpu) value.
*/
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
/* Linux <-> Xen vCPU id mapping */
DEFINE_PER_CPU(uint32_t, xen_vcpu_id);
EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
enum xen_domain_type xen_domain_type = XEN_NATIVE;
EXPORT_SYMBOL_GPL(xen_domain_type);
unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
EXPORT_SYMBOL(machine_to_phys_mapping);
unsigned long machine_to_phys_nr;
EXPORT_SYMBOL(machine_to_phys_nr);
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
struct start_info *xen_start_info;
EXPORT_SYMBOL_GPL(xen_start_info);
struct shared_info xen_dummy_shared_info;
__read_mostly int xen_have_vector_callback;
EXPORT_SYMBOL_GPL(xen_have_vector_callback);
/*
* NB: needs to live in .data because it's used by xen_prepare_pvh which runs
* before clearing the bss.
*/
uint32_t xen_start_flags __attribute__((section(".data"))) = 0;
EXPORT_SYMBOL(xen_start_flags);
/*
* Point at some empty memory to start with. We map the real shared_info
* page as soon as fixmap is up and running.
*/
struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
/*
* Flag to determine whether vcpu info placement is available on all
* VCPUs. We assume it is to start with, and then set it to zero on
* the first failure. This is because it can succeed on some VCPUs
* and not others, since it can involve hypervisor memory allocation,
* or because the guest failed to guarantee all the appropriate
* constraints on all VCPUs (ie buffer can't cross a page boundary).
*
* Note that any particular CPU may be using a placed vcpu structure,
* but we can only optimise if the all are.
*
* 0: not available, 1: available
*/
int xen_have_vcpu_info_placement = 1;
static int xen_cpu_up_online(unsigned int cpu)
{
xen_init_lock_cpu(cpu);
return 0;
}
int xen_cpuhp_setup(int (*cpu_up_prepare_cb)(unsigned int),
int (*cpu_dead_cb)(unsigned int))
{
int rc;
rc = cpuhp_setup_state_nocalls(CPUHP_XEN_PREPARE,
"x86/xen/guest:prepare",
cpu_up_prepare_cb, cpu_dead_cb);
if (rc >= 0) {
rc = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
"x86/xen/guest:online",
xen_cpu_up_online, NULL);
if (rc < 0)
cpuhp_remove_state_nocalls(CPUHP_XEN_PREPARE);
}
return rc >= 0 ? 0 : rc;
}
static int xen_vcpu_setup_restore(int cpu)
xen/pvh*: Support > 32 VCPUs at domain restore When Xen restores a PVHVM or PVH guest, its shared_info only holds up to 32 CPUs. The hypercall VCPUOP_register_vcpu_info allows us to setup per-page areas for VCPUs. This means we can boot PVH* guests with more than 32 VCPUs. During restore the per-cpu structure is allocated freshly by the hypervisor (vcpu_info_mfn is set to INVALID_MFN) so that the newly restored guest can make a VCPUOP_register_vcpu_info hypercall. However, we end up triggering this condition in Xen: /* Run this command on yourself or on other offline VCPUS. */ if ( (v != current) && !test_bit(_VPF_down, &v->pause_flags) ) which means we are unable to setup the per-cpu VCPU structures for running VCPUS. The Linux PV code paths makes this work by iterating over cpu_possible in xen_vcpu_restore() with: 1) is target CPU up (VCPUOP_is_up hypercall?) 2) if yes, then VCPUOP_down to pause it 3) VCPUOP_register_vcpu_info 4) if it was down, then VCPUOP_up to bring it back up With Xen commit 192df6f9122d ("xen/x86: allow HVM guests to use hypercalls to bring up vCPUs") this is available for non-PV guests. As such first check if VCPUOP_is_up is actually possible before trying this dance. As most of this dance code is done already in xen_vcpu_restore() let's make it callable on PV, PVH and PVHVM. Based-on-patch-by: Konrad Wilk <konrad.wilk@oracle.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com>
2017-06-03 08:05:59 +08:00
{
int rc = 0;
xen/pvh*: Support > 32 VCPUs at domain restore When Xen restores a PVHVM or PVH guest, its shared_info only holds up to 32 CPUs. The hypercall VCPUOP_register_vcpu_info allows us to setup per-page areas for VCPUs. This means we can boot PVH* guests with more than 32 VCPUs. During restore the per-cpu structure is allocated freshly by the hypervisor (vcpu_info_mfn is set to INVALID_MFN) so that the newly restored guest can make a VCPUOP_register_vcpu_info hypercall. However, we end up triggering this condition in Xen: /* Run this command on yourself or on other offline VCPUS. */ if ( (v != current) && !test_bit(_VPF_down, &v->pause_flags) ) which means we are unable to setup the per-cpu VCPU structures for running VCPUS. The Linux PV code paths makes this work by iterating over cpu_possible in xen_vcpu_restore() with: 1) is target CPU up (VCPUOP_is_up hypercall?) 2) if yes, then VCPUOP_down to pause it 3) VCPUOP_register_vcpu_info 4) if it was down, then VCPUOP_up to bring it back up With Xen commit 192df6f9122d ("xen/x86: allow HVM guests to use hypercalls to bring up vCPUs") this is available for non-PV guests. As such first check if VCPUOP_is_up is actually possible before trying this dance. As most of this dance code is done already in xen_vcpu_restore() let's make it callable on PV, PVH and PVHVM. Based-on-patch-by: Konrad Wilk <konrad.wilk@oracle.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com>
2017-06-03 08:05:59 +08:00
/* Any per_cpu(xen_vcpu) is stale, so reset it */
xen_vcpu_info_reset(cpu);
/*
* For PVH and PVHVM, setup online VCPUs only. The rest will
* be handled by hotplug.
*/
if (xen_pv_domain() ||
(xen_hvm_domain() && cpu_online(cpu))) {
rc = xen_vcpu_setup(cpu);
xen/pvh*: Support > 32 VCPUs at domain restore When Xen restores a PVHVM or PVH guest, its shared_info only holds up to 32 CPUs. The hypercall VCPUOP_register_vcpu_info allows us to setup per-page areas for VCPUs. This means we can boot PVH* guests with more than 32 VCPUs. During restore the per-cpu structure is allocated freshly by the hypervisor (vcpu_info_mfn is set to INVALID_MFN) so that the newly restored guest can make a VCPUOP_register_vcpu_info hypercall. However, we end up triggering this condition in Xen: /* Run this command on yourself or on other offline VCPUS. */ if ( (v != current) && !test_bit(_VPF_down, &v->pause_flags) ) which means we are unable to setup the per-cpu VCPU structures for running VCPUS. The Linux PV code paths makes this work by iterating over cpu_possible in xen_vcpu_restore() with: 1) is target CPU up (VCPUOP_is_up hypercall?) 2) if yes, then VCPUOP_down to pause it 3) VCPUOP_register_vcpu_info 4) if it was down, then VCPUOP_up to bring it back up With Xen commit 192df6f9122d ("xen/x86: allow HVM guests to use hypercalls to bring up vCPUs") this is available for non-PV guests. As such first check if VCPUOP_is_up is actually possible before trying this dance. As most of this dance code is done already in xen_vcpu_restore() let's make it callable on PV, PVH and PVHVM. Based-on-patch-by: Konrad Wilk <konrad.wilk@oracle.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com>
2017-06-03 08:05:59 +08:00
}
return rc;
xen/pvh*: Support > 32 VCPUs at domain restore When Xen restores a PVHVM or PVH guest, its shared_info only holds up to 32 CPUs. The hypercall VCPUOP_register_vcpu_info allows us to setup per-page areas for VCPUs. This means we can boot PVH* guests with more than 32 VCPUs. During restore the per-cpu structure is allocated freshly by the hypervisor (vcpu_info_mfn is set to INVALID_MFN) so that the newly restored guest can make a VCPUOP_register_vcpu_info hypercall. However, we end up triggering this condition in Xen: /* Run this command on yourself or on other offline VCPUS. */ if ( (v != current) && !test_bit(_VPF_down, &v->pause_flags) ) which means we are unable to setup the per-cpu VCPU structures for running VCPUS. The Linux PV code paths makes this work by iterating over cpu_possible in xen_vcpu_restore() with: 1) is target CPU up (VCPUOP_is_up hypercall?) 2) if yes, then VCPUOP_down to pause it 3) VCPUOP_register_vcpu_info 4) if it was down, then VCPUOP_up to bring it back up With Xen commit 192df6f9122d ("xen/x86: allow HVM guests to use hypercalls to bring up vCPUs") this is available for non-PV guests. As such first check if VCPUOP_is_up is actually possible before trying this dance. As most of this dance code is done already in xen_vcpu_restore() let's make it callable on PV, PVH and PVHVM. Based-on-patch-by: Konrad Wilk <konrad.wilk@oracle.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com>
2017-06-03 08:05:59 +08:00
}
/*
* On restore, set the vcpu placement up again.
* If it fails, then we're in a bad state, since
* we can't back out from using it...
*/
void xen_vcpu_restore(void)
{
int cpu, rc;
for_each_possible_cpu(cpu) {
bool other_cpu = (cpu != smp_processor_id());
xen/pvh*: Support > 32 VCPUs at domain restore When Xen restores a PVHVM or PVH guest, its shared_info only holds up to 32 CPUs. The hypercall VCPUOP_register_vcpu_info allows us to setup per-page areas for VCPUs. This means we can boot PVH* guests with more than 32 VCPUs. During restore the per-cpu structure is allocated freshly by the hypervisor (vcpu_info_mfn is set to INVALID_MFN) so that the newly restored guest can make a VCPUOP_register_vcpu_info hypercall. However, we end up triggering this condition in Xen: /* Run this command on yourself or on other offline VCPUS. */ if ( (v != current) && !test_bit(_VPF_down, &v->pause_flags) ) which means we are unable to setup the per-cpu VCPU structures for running VCPUS. The Linux PV code paths makes this work by iterating over cpu_possible in xen_vcpu_restore() with: 1) is target CPU up (VCPUOP_is_up hypercall?) 2) if yes, then VCPUOP_down to pause it 3) VCPUOP_register_vcpu_info 4) if it was down, then VCPUOP_up to bring it back up With Xen commit 192df6f9122d ("xen/x86: allow HVM guests to use hypercalls to bring up vCPUs") this is available for non-PV guests. As such first check if VCPUOP_is_up is actually possible before trying this dance. As most of this dance code is done already in xen_vcpu_restore() let's make it callable on PV, PVH and PVHVM. Based-on-patch-by: Konrad Wilk <konrad.wilk@oracle.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com>
2017-06-03 08:05:59 +08:00
bool is_up;
if (xen_vcpu_nr(cpu) == XEN_VCPU_ID_INVALID)
continue;
/* Only Xen 4.5 and higher support this. */
is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up,
xen_vcpu_nr(cpu), NULL) > 0;
if (other_cpu && is_up &&
HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
BUG();
xen/pvh*: Support > 32 VCPUs at domain restore When Xen restores a PVHVM or PVH guest, its shared_info only holds up to 32 CPUs. The hypercall VCPUOP_register_vcpu_info allows us to setup per-page areas for VCPUs. This means we can boot PVH* guests with more than 32 VCPUs. During restore the per-cpu structure is allocated freshly by the hypervisor (vcpu_info_mfn is set to INVALID_MFN) so that the newly restored guest can make a VCPUOP_register_vcpu_info hypercall. However, we end up triggering this condition in Xen: /* Run this command on yourself or on other offline VCPUS. */ if ( (v != current) && !test_bit(_VPF_down, &v->pause_flags) ) which means we are unable to setup the per-cpu VCPU structures for running VCPUS. The Linux PV code paths makes this work by iterating over cpu_possible in xen_vcpu_restore() with: 1) is target CPU up (VCPUOP_is_up hypercall?) 2) if yes, then VCPUOP_down to pause it 3) VCPUOP_register_vcpu_info 4) if it was down, then VCPUOP_up to bring it back up With Xen commit 192df6f9122d ("xen/x86: allow HVM guests to use hypercalls to bring up vCPUs") this is available for non-PV guests. As such first check if VCPUOP_is_up is actually possible before trying this dance. As most of this dance code is done already in xen_vcpu_restore() let's make it callable on PV, PVH and PVHVM. Based-on-patch-by: Konrad Wilk <konrad.wilk@oracle.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com>
2017-06-03 08:05:59 +08:00
if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
xen_setup_runstate_info(cpu);
rc = xen_vcpu_setup_restore(cpu);
if (rc)
pr_emerg_once("vcpu restore failed for cpu=%d err=%d. "
"System will hang.\n", cpu, rc);
/*
* In case xen_vcpu_setup_restore() fails, do not bring up the
* VCPU. This helps us avoid the resulting OOPS when the VCPU
* accesses pvclock_vcpu_time via xen_vcpu (which is NULL.)
* Note that this does not improve the situation much -- now the
* VM hangs instead of OOPSing -- with the VCPUs that did not
* fail, spinning in stop_machine(), waiting for the failed
* VCPUs to come up.
*/
if (other_cpu && is_up && (rc == 0) &&
HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
BUG();
}
}
void xen_vcpu_info_reset(int cpu)
{
if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS) {
per_cpu(xen_vcpu, cpu) =
&HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
} else {
/* Set to NULL so that if somebody accesses it we get an OOPS */
per_cpu(xen_vcpu, cpu) = NULL;
}
}
int xen_vcpu_setup(int cpu)
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
{
struct vcpu_register_vcpu_info info;
int err;
struct vcpu_info *vcpup;
BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
xen/vcpu/pvhvm: Fix vcpu hotplugging hanging. If a user did: echo 0 > /sys/devices/system/cpu/cpu1/online echo 1 > /sys/devices/system/cpu/cpu1/online we would (this a build with DEBUG enabled) get to: smpboot: ++++++++++++++++++++=_---CPU UP 1 .. snip.. smpboot: Stack at about ffff880074c0ff44 smpboot: CPU1: has booted. and hang. The RCU mechanism would kick in an try to IPI the CPU1 but the IPIs (and all other interrupts) would never arrive at the CPU1. At first glance at least. A bit digging in the hypervisor trace shows that (using xenanalyze): [vla] d4v1 vec 243 injecting 0.043163027 --|x d4v1 intr_window vec 243 src 5(vector) intr f3 ] 0.043163639 --|x d4v1 vmentry cycles 1468 ] 0.043164913 --|x d4v1 vmexit exit_reason PENDING_INTERRUPT eip ffffffff81673254 0.043164913 --|x d4v1 inj_virq vec 243 real [vla] d4v1 vec 243 injecting 0.043164913 --|x d4v1 intr_window vec 243 src 5(vector) intr f3 ] 0.043165526 --|x d4v1 vmentry cycles 1472 ] 0.043166800 --|x d4v1 vmexit exit_reason PENDING_INTERRUPT eip ffffffff81673254 0.043166800 --|x d4v1 inj_virq vec 243 real [vla] d4v1 vec 243 injecting there is a pending event (subsequent debugging shows it is the IPI from the VCPU0 when smpboot.c on VCPU1 has done "set_cpu_online(smp_processor_id(), true)") and the guest VCPU1 is interrupted with the callback IPI (0xf3 aka 243) which ends up calling __xen_evtchn_do_upcall. The __xen_evtchn_do_upcall seems to do *something* but not acknowledge the pending events. And the moment the guest does a 'cli' (that is the ffffffff81673254 in the log above) the hypervisor is invoked again to inject the IPI (0xf3) to tell the guest it has pending interrupts. This repeats itself forever. The culprit was the per_cpu(xen_vcpu, cpu) pointer. At the bootup we set each per_cpu(xen_vcpu, cpu) to point to the shared_info->vcpu_info[vcpu] but later on use the VCPUOP_register_vcpu_info to register per-CPU structures (xen_vcpu_setup). This is used to allow events for more than 32 VCPUs and for performance optimizations reasons. When the user performs the VCPU hotplug we end up calling the the xen_vcpu_setup once more. We make the hypercall which returns -EINVAL as it does not allow multiple registration calls (and already has re-assigned where the events are being set). We pick the fallback case and set per_cpu(xen_vcpu, cpu) to point to the shared_info->vcpu_info[vcpu] (which is a good fallback during bootup). However the hypervisor is still setting events in the register per-cpu structure (per_cpu(xen_vcpu_info, cpu)). As such when the events are set by the hypervisor (such as timer one), and when we iterate in __xen_evtchn_do_upcall we end up reading stale events from the shared_info->vcpu_info[vcpu] instead of the per_cpu(xen_vcpu_info, cpu) structures. Hence we never acknowledge the events that the hypervisor has set and the hypervisor keeps on reminding us to ack the events which we never do. The fix is simple. Don't on the second time when xen_vcpu_setup is called over-write the per_cpu(xen_vcpu, cpu) if it points to per_cpu(xen_vcpu_info). Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> CC: stable@vger.kernel.org Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2013-05-05 21:30:09 +08:00
/*
xen/pvh*: Support > 32 VCPUs at domain restore When Xen restores a PVHVM or PVH guest, its shared_info only holds up to 32 CPUs. The hypercall VCPUOP_register_vcpu_info allows us to setup per-page areas for VCPUs. This means we can boot PVH* guests with more than 32 VCPUs. During restore the per-cpu structure is allocated freshly by the hypervisor (vcpu_info_mfn is set to INVALID_MFN) so that the newly restored guest can make a VCPUOP_register_vcpu_info hypercall. However, we end up triggering this condition in Xen: /* Run this command on yourself or on other offline VCPUS. */ if ( (v != current) && !test_bit(_VPF_down, &v->pause_flags) ) which means we are unable to setup the per-cpu VCPU structures for running VCPUS. The Linux PV code paths makes this work by iterating over cpu_possible in xen_vcpu_restore() with: 1) is target CPU up (VCPUOP_is_up hypercall?) 2) if yes, then VCPUOP_down to pause it 3) VCPUOP_register_vcpu_info 4) if it was down, then VCPUOP_up to bring it back up With Xen commit 192df6f9122d ("xen/x86: allow HVM guests to use hypercalls to bring up vCPUs") this is available for non-PV guests. As such first check if VCPUOP_is_up is actually possible before trying this dance. As most of this dance code is done already in xen_vcpu_restore() let's make it callable on PV, PVH and PVHVM. Based-on-patch-by: Konrad Wilk <konrad.wilk@oracle.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com>
2017-06-03 08:05:59 +08:00
* This path is called on PVHVM at bootup (xen_hvm_smp_prepare_boot_cpu)
* and at restore (xen_vcpu_restore). Also called for hotplugged
* VCPUs (cpu_init -> xen_hvm_cpu_prepare_hvm).
* However, the hypercall can only be done once (see below) so if a VCPU
* is offlined and comes back online then let's not redo the hypercall.
xen/vcpu/pvhvm: Fix vcpu hotplugging hanging. If a user did: echo 0 > /sys/devices/system/cpu/cpu1/online echo 1 > /sys/devices/system/cpu/cpu1/online we would (this a build with DEBUG enabled) get to: smpboot: ++++++++++++++++++++=_---CPU UP 1 .. snip.. smpboot: Stack at about ffff880074c0ff44 smpboot: CPU1: has booted. and hang. The RCU mechanism would kick in an try to IPI the CPU1 but the IPIs (and all other interrupts) would never arrive at the CPU1. At first glance at least. A bit digging in the hypervisor trace shows that (using xenanalyze): [vla] d4v1 vec 243 injecting 0.043163027 --|x d4v1 intr_window vec 243 src 5(vector) intr f3 ] 0.043163639 --|x d4v1 vmentry cycles 1468 ] 0.043164913 --|x d4v1 vmexit exit_reason PENDING_INTERRUPT eip ffffffff81673254 0.043164913 --|x d4v1 inj_virq vec 243 real [vla] d4v1 vec 243 injecting 0.043164913 --|x d4v1 intr_window vec 243 src 5(vector) intr f3 ] 0.043165526 --|x d4v1 vmentry cycles 1472 ] 0.043166800 --|x d4v1 vmexit exit_reason PENDING_INTERRUPT eip ffffffff81673254 0.043166800 --|x d4v1 inj_virq vec 243 real [vla] d4v1 vec 243 injecting there is a pending event (subsequent debugging shows it is the IPI from the VCPU0 when smpboot.c on VCPU1 has done "set_cpu_online(smp_processor_id(), true)") and the guest VCPU1 is interrupted with the callback IPI (0xf3 aka 243) which ends up calling __xen_evtchn_do_upcall. The __xen_evtchn_do_upcall seems to do *something* but not acknowledge the pending events. And the moment the guest does a 'cli' (that is the ffffffff81673254 in the log above) the hypervisor is invoked again to inject the IPI (0xf3) to tell the guest it has pending interrupts. This repeats itself forever. The culprit was the per_cpu(xen_vcpu, cpu) pointer. At the bootup we set each per_cpu(xen_vcpu, cpu) to point to the shared_info->vcpu_info[vcpu] but later on use the VCPUOP_register_vcpu_info to register per-CPU structures (xen_vcpu_setup). This is used to allow events for more than 32 VCPUs and for performance optimizations reasons. When the user performs the VCPU hotplug we end up calling the the xen_vcpu_setup once more. We make the hypercall which returns -EINVAL as it does not allow multiple registration calls (and already has re-assigned where the events are being set). We pick the fallback case and set per_cpu(xen_vcpu, cpu) to point to the shared_info->vcpu_info[vcpu] (which is a good fallback during bootup). However the hypervisor is still setting events in the register per-cpu structure (per_cpu(xen_vcpu_info, cpu)). As such when the events are set by the hypervisor (such as timer one), and when we iterate in __xen_evtchn_do_upcall we end up reading stale events from the shared_info->vcpu_info[vcpu] instead of the per_cpu(xen_vcpu_info, cpu) structures. Hence we never acknowledge the events that the hypervisor has set and the hypervisor keeps on reminding us to ack the events which we never do. The fix is simple. Don't on the second time when xen_vcpu_setup is called over-write the per_cpu(xen_vcpu, cpu) if it points to per_cpu(xen_vcpu_info). Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> CC: stable@vger.kernel.org Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2013-05-05 21:30:09 +08:00
*
* For PV it is called during restore (xen_vcpu_restore) and bootup
* (xen_setup_vcpu_info_placement). The hotplug mechanism does not
* use this function.
*/
if (xen_hvm_domain()) {
if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
return 0;
xen/vcpu/pvhvm: Fix vcpu hotplugging hanging. If a user did: echo 0 > /sys/devices/system/cpu/cpu1/online echo 1 > /sys/devices/system/cpu/cpu1/online we would (this a build with DEBUG enabled) get to: smpboot: ++++++++++++++++++++=_---CPU UP 1 .. snip.. smpboot: Stack at about ffff880074c0ff44 smpboot: CPU1: has booted. and hang. The RCU mechanism would kick in an try to IPI the CPU1 but the IPIs (and all other interrupts) would never arrive at the CPU1. At first glance at least. A bit digging in the hypervisor trace shows that (using xenanalyze): [vla] d4v1 vec 243 injecting 0.043163027 --|x d4v1 intr_window vec 243 src 5(vector) intr f3 ] 0.043163639 --|x d4v1 vmentry cycles 1468 ] 0.043164913 --|x d4v1 vmexit exit_reason PENDING_INTERRUPT eip ffffffff81673254 0.043164913 --|x d4v1 inj_virq vec 243 real [vla] d4v1 vec 243 injecting 0.043164913 --|x d4v1 intr_window vec 243 src 5(vector) intr f3 ] 0.043165526 --|x d4v1 vmentry cycles 1472 ] 0.043166800 --|x d4v1 vmexit exit_reason PENDING_INTERRUPT eip ffffffff81673254 0.043166800 --|x d4v1 inj_virq vec 243 real [vla] d4v1 vec 243 injecting there is a pending event (subsequent debugging shows it is the IPI from the VCPU0 when smpboot.c on VCPU1 has done "set_cpu_online(smp_processor_id(), true)") and the guest VCPU1 is interrupted with the callback IPI (0xf3 aka 243) which ends up calling __xen_evtchn_do_upcall. The __xen_evtchn_do_upcall seems to do *something* but not acknowledge the pending events. And the moment the guest does a 'cli' (that is the ffffffff81673254 in the log above) the hypervisor is invoked again to inject the IPI (0xf3) to tell the guest it has pending interrupts. This repeats itself forever. The culprit was the per_cpu(xen_vcpu, cpu) pointer. At the bootup we set each per_cpu(xen_vcpu, cpu) to point to the shared_info->vcpu_info[vcpu] but later on use the VCPUOP_register_vcpu_info to register per-CPU structures (xen_vcpu_setup). This is used to allow events for more than 32 VCPUs and for performance optimizations reasons. When the user performs the VCPU hotplug we end up calling the the xen_vcpu_setup once more. We make the hypercall which returns -EINVAL as it does not allow multiple registration calls (and already has re-assigned where the events are being set). We pick the fallback case and set per_cpu(xen_vcpu, cpu) to point to the shared_info->vcpu_info[vcpu] (which is a good fallback during bootup). However the hypervisor is still setting events in the register per-cpu structure (per_cpu(xen_vcpu_info, cpu)). As such when the events are set by the hypervisor (such as timer one), and when we iterate in __xen_evtchn_do_upcall we end up reading stale events from the shared_info->vcpu_info[vcpu] instead of the per_cpu(xen_vcpu_info, cpu) structures. Hence we never acknowledge the events that the hypervisor has set and the hypervisor keeps on reminding us to ack the events which we never do. The fix is simple. Don't on the second time when xen_vcpu_setup is called over-write the per_cpu(xen_vcpu, cpu) if it points to per_cpu(xen_vcpu_info). Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> CC: stable@vger.kernel.org Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2013-05-05 21:30:09 +08:00
}
if (xen_have_vcpu_info_placement) {
vcpup = &per_cpu(xen_vcpu_info, cpu);
info.mfn = arbitrary_virt_to_mfn(vcpup);
info.offset = offset_in_page(vcpup);
/*
* Check to see if the hypervisor will put the vcpu_info
* structure where we want it, which allows direct access via
* a percpu-variable.
* N.B. This hypercall can _only_ be called once per CPU.
* Subsequent calls will error out with -EINVAL. This is due to
* the fact that hypervisor has no unregister variant and this
* hypercall does not allow to over-write info.mfn and
* info.offset.
*/
err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info,
xen_vcpu_nr(cpu), &info);
if (err) {
pr_warn_once("register_vcpu_info failed: cpu=%d err=%d\n",
cpu, err);
xen_have_vcpu_info_placement = 0;
} else {
/*
* This cpu is using the registered vcpu info, even if
* later ones fail to.
*/
per_cpu(xen_vcpu, cpu) = vcpup;
}
}
if (!xen_have_vcpu_info_placement)
xen/pvh*: Support > 32 VCPUs at domain restore When Xen restores a PVHVM or PVH guest, its shared_info only holds up to 32 CPUs. The hypercall VCPUOP_register_vcpu_info allows us to setup per-page areas for VCPUs. This means we can boot PVH* guests with more than 32 VCPUs. During restore the per-cpu structure is allocated freshly by the hypervisor (vcpu_info_mfn is set to INVALID_MFN) so that the newly restored guest can make a VCPUOP_register_vcpu_info hypercall. However, we end up triggering this condition in Xen: /* Run this command on yourself or on other offline VCPUS. */ if ( (v != current) && !test_bit(_VPF_down, &v->pause_flags) ) which means we are unable to setup the per-cpu VCPU structures for running VCPUS. The Linux PV code paths makes this work by iterating over cpu_possible in xen_vcpu_restore() with: 1) is target CPU up (VCPUOP_is_up hypercall?) 2) if yes, then VCPUOP_down to pause it 3) VCPUOP_register_vcpu_info 4) if it was down, then VCPUOP_up to bring it back up With Xen commit 192df6f9122d ("xen/x86: allow HVM guests to use hypercalls to bring up vCPUs") this is available for non-PV guests. As such first check if VCPUOP_is_up is actually possible before trying this dance. As most of this dance code is done already in xen_vcpu_restore() let's make it callable on PV, PVH and PVHVM. Based-on-patch-by: Konrad Wilk <konrad.wilk@oracle.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com>
2017-06-03 08:05:59 +08:00
xen_vcpu_info_reset(cpu);
return ((per_cpu(xen_vcpu, cpu) == NULL) ? -ENODEV : 0);
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
}
void xen_reboot(int reason)
{
struct sched_shutdown r = { .reason = reason };
int cpu;
for_each_online_cpu(cpu)
xen_pmu_finish(cpu);
if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
BUG();
}
static int reboot_reason = SHUTDOWN_reboot;
static bool xen_legacy_crash;
void xen_emergency_restart(void)
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
{
xen_reboot(reboot_reason);
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
}
static int
xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
{
if (!kexec_crash_loaded()) {
if (xen_legacy_crash)
xen_reboot(SHUTDOWN_crash);
reboot_reason = SHUTDOWN_crash;
/*
* If panic_timeout==0 then we are supposed to wait forever.
* However, to preserve original dom0 behavior we have to drop
* into hypervisor. (domU behavior is controlled by its
* config file)
*/
if (panic_timeout == 0)
panic_timeout = -1;
}
return NOTIFY_DONE;
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
}
static int __init parse_xen_legacy_crash(char *arg)
{
xen_legacy_crash = true;
return 0;
}
early_param("xen_legacy_crash", parse_xen_legacy_crash);
static struct notifier_block xen_panic_block = {
.notifier_call = xen_panic_event,
.priority = INT_MIN
};
int xen_panic_handler_init(void)
{
atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
return 0;
}
void xen_pin_vcpu(int cpu)
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
{
static bool disable_pinning;
struct sched_pin_override pin_override;
int ret;
if (disable_pinning)
return;
pin_override.pcpu = cpu;
ret = HYPERVISOR_sched_op(SCHEDOP_pin_override, &pin_override);
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
/* Ignore errors when removing override. */
if (cpu < 0)
return;
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
switch (ret) {
case -ENOSYS:
pr_warn("Unable to pin on physical cpu %d. In case of problems consider vcpu pinning.\n",
cpu);
disable_pinning = true;
break;
case -EPERM:
WARN(1, "Trying to pin vcpu without having privilege to do so\n");
disable_pinning = true;
break;
case -EINVAL:
case -EBUSY:
pr_warn("Physical cpu %d not available for pinning. Check Xen cpu configuration.\n",
cpu);
break;
case 0:
break;
default:
WARN(1, "rc %d while trying to pin vcpu\n", ret);
disable_pinning = true;
}
xen: Core Xen implementation This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
2007-07-18 09:37:04 +08:00
}
#ifdef CONFIG_HOTPLUG_CPU
void xen_arch_register_cpu(int num)
{
arch_register_cpu(num);
}
EXPORT_SYMBOL(xen_arch_register_cpu);
void xen_arch_unregister_cpu(int num)
{
arch_unregister_cpu(num);
}
EXPORT_SYMBOL(xen_arch_unregister_cpu);
#endif