linux/drivers/infiniband/core/core_priv.h

147 lines
4.7 KiB
C
Raw Normal View History

/*
* Copyright (c) 2004 Topspin Communications. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _CORE_PRIV_H
#define _CORE_PRIV_H
#include <linux/list.h>
#include <linux/spinlock.h>
#include <rdma/ib_verbs.h>
#if IS_ENABLED(CONFIG_INFINIBAND_ADDR_TRANS_CONFIGFS)
int cma_configfs_init(void);
void cma_configfs_exit(void);
#else
static inline int cma_configfs_init(void)
{
return 0;
}
static inline void cma_configfs_exit(void)
{
}
#endif
struct cma_device;
void cma_ref_dev(struct cma_device *cma_dev);
void cma_deref_dev(struct cma_device *cma_dev);
typedef bool (*cma_device_filter)(struct ib_device *, void *);
struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter,
void *cookie);
int cma_get_default_gid_type(struct cma_device *cma_dev,
unsigned int port);
int cma_set_default_gid_type(struct cma_device *cma_dev,
unsigned int port,
enum ib_gid_type default_gid_type);
struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev);
int ib_device_register_sysfs(struct ib_device *device,
int (*port_callback)(struct ib_device *,
u8, struct kobject *));
void ib_device_unregister_sysfs(struct ib_device *device);
IB/core: Add RoCE GID table management RoCE GIDs are based on IP addresses configured on Ethernet net-devices which relate to the RDMA (RoCE) device port. Currently, each of the low-level drivers that support RoCE (ocrdma, mlx4) manages its own RoCE port GID table. As there's nothing which is essentially vendor specific, we generalize that, and enhance the RDMA core GID cache to do this job. In order to populate the GID table, we listen for events: (a) netdev up/down/change_addr events - if a netdev is built onto our RoCE device, we need to add/delete its IPs. This involves adding all GIDs related to this ndev, add default GIDs, etc. (b) inet events - add new GIDs (according to the IP addresses) to the table. For programming the port RoCE GID table, providers must implement the add_gid and del_gid callbacks. RoCE GID management requires us to state the associated net_device alongside the GID. This information is necessary in order to manage the GID table. For example, when a net_device is removed, its associated GIDs need to be removed as well. RoCE mandates generating a default GID for each port, based on the related net-device's IPv6 link local. In contrast to the GID based on the regular IPv6 link-local (as we generate GID per IP address), the default GID is also available when the net device is down (in order to support loopback). Locking is done as follows: The patch modify the GID table code both for new RoCE drivers implementing the add_gid/del_gid callbacks and for current RoCE and IB drivers that do not. The flows for updating the table are different, so the locking requirements are too. While updating RoCE GID table, protection against multiple writers is achieved via mutex_lock(&table->lock). Since writing to a table requires us to find an entry (possible a free entry) in the table and then modify it, this mutex protects both the find_gid and write_gid ensuring the atomicity of the action. Each entry in the GID cache is protected by rwlock. In RoCE, writing (usually results from netdev notifier) involves invoking the vendor's add_gid and del_gid callbacks, which could sleep. Therefore, an invalid flag is added for each entry. Updates for RoCE are done via a workqueue, thus sleeping is permitted. In IB, updates are done in write_lock_irq(&device->cache.lock), thus write_gid isn't allowed to sleep and add_gid/del_gid are not called. When passing net-device into/out-of the GID cache, the device is always passed held (dev_hold). The code uses a single work item for updating all RDMA devices, following a netdev or inet notifier. The patch moves the cache from being a client (which was incorrect, as the cache is part of the IB infrastructure) to being explicitly initialized/freed when a device is registered/removed. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-07-30 23:33:26 +08:00
void ib_cache_setup(void);
void ib_cache_cleanup(void);
IB/core: Add RoCE GID table management RoCE GIDs are based on IP addresses configured on Ethernet net-devices which relate to the RDMA (RoCE) device port. Currently, each of the low-level drivers that support RoCE (ocrdma, mlx4) manages its own RoCE port GID table. As there's nothing which is essentially vendor specific, we generalize that, and enhance the RDMA core GID cache to do this job. In order to populate the GID table, we listen for events: (a) netdev up/down/change_addr events - if a netdev is built onto our RoCE device, we need to add/delete its IPs. This involves adding all GIDs related to this ndev, add default GIDs, etc. (b) inet events - add new GIDs (according to the IP addresses) to the table. For programming the port RoCE GID table, providers must implement the add_gid and del_gid callbacks. RoCE GID management requires us to state the associated net_device alongside the GID. This information is necessary in order to manage the GID table. For example, when a net_device is removed, its associated GIDs need to be removed as well. RoCE mandates generating a default GID for each port, based on the related net-device's IPv6 link local. In contrast to the GID based on the regular IPv6 link-local (as we generate GID per IP address), the default GID is also available when the net device is down (in order to support loopback). Locking is done as follows: The patch modify the GID table code both for new RoCE drivers implementing the add_gid/del_gid callbacks and for current RoCE and IB drivers that do not. The flows for updating the table are different, so the locking requirements are too. While updating RoCE GID table, protection against multiple writers is achieved via mutex_lock(&table->lock). Since writing to a table requires us to find an entry (possible a free entry) in the table and then modify it, this mutex protects both the find_gid and write_gid ensuring the atomicity of the action. Each entry in the GID cache is protected by rwlock. In RoCE, writing (usually results from netdev notifier) involves invoking the vendor's add_gid and del_gid callbacks, which could sleep. Therefore, an invalid flag is added for each entry. Updates for RoCE are done via a workqueue, thus sleeping is permitted. In IB, updates are done in write_lock_irq(&device->cache.lock), thus write_gid isn't allowed to sleep and add_gid/del_gid are not called. When passing net-device into/out-of the GID cache, the device is always passed held (dev_hold). The code uses a single work item for updating all RDMA devices, following a netdev or inet notifier. The patch moves the cache from being a client (which was incorrect, as the cache is part of the IB infrastructure) to being explicitly initialized/freed when a device is registered/removed. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-07-30 23:33:26 +08:00
typedef void (*roce_netdev_callback)(struct ib_device *device, u8 port,
struct net_device *idev, void *cookie);
typedef int (*roce_netdev_filter)(struct ib_device *device, u8 port,
struct net_device *idev, void *cookie);
void ib_enum_roce_netdev(struct ib_device *ib_dev,
roce_netdev_filter filter,
void *filter_cookie,
roce_netdev_callback cb,
void *cookie);
void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
void *filter_cookie,
roce_netdev_callback cb,
void *cookie);
enum ib_cache_gid_default_mode {
IB_CACHE_GID_DEFAULT_MODE_SET,
IB_CACHE_GID_DEFAULT_MODE_DELETE
};
int ib_cache_gid_parse_type_str(const char *buf);
const char *ib_cache_gid_type_str(enum ib_gid_type gid_type);
IB/core: Add RoCE GID table management RoCE GIDs are based on IP addresses configured on Ethernet net-devices which relate to the RDMA (RoCE) device port. Currently, each of the low-level drivers that support RoCE (ocrdma, mlx4) manages its own RoCE port GID table. As there's nothing which is essentially vendor specific, we generalize that, and enhance the RDMA core GID cache to do this job. In order to populate the GID table, we listen for events: (a) netdev up/down/change_addr events - if a netdev is built onto our RoCE device, we need to add/delete its IPs. This involves adding all GIDs related to this ndev, add default GIDs, etc. (b) inet events - add new GIDs (according to the IP addresses) to the table. For programming the port RoCE GID table, providers must implement the add_gid and del_gid callbacks. RoCE GID management requires us to state the associated net_device alongside the GID. This information is necessary in order to manage the GID table. For example, when a net_device is removed, its associated GIDs need to be removed as well. RoCE mandates generating a default GID for each port, based on the related net-device's IPv6 link local. In contrast to the GID based on the regular IPv6 link-local (as we generate GID per IP address), the default GID is also available when the net device is down (in order to support loopback). Locking is done as follows: The patch modify the GID table code both for new RoCE drivers implementing the add_gid/del_gid callbacks and for current RoCE and IB drivers that do not. The flows for updating the table are different, so the locking requirements are too. While updating RoCE GID table, protection against multiple writers is achieved via mutex_lock(&table->lock). Since writing to a table requires us to find an entry (possible a free entry) in the table and then modify it, this mutex protects both the find_gid and write_gid ensuring the atomicity of the action. Each entry in the GID cache is protected by rwlock. In RoCE, writing (usually results from netdev notifier) involves invoking the vendor's add_gid and del_gid callbacks, which could sleep. Therefore, an invalid flag is added for each entry. Updates for RoCE are done via a workqueue, thus sleeping is permitted. In IB, updates are done in write_lock_irq(&device->cache.lock), thus write_gid isn't allowed to sleep and add_gid/del_gid are not called. When passing net-device into/out-of the GID cache, the device is always passed held (dev_hold). The code uses a single work item for updating all RDMA devices, following a netdev or inet notifier. The patch moves the cache from being a client (which was incorrect, as the cache is part of the IB infrastructure) to being explicitly initialized/freed when a device is registered/removed. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-07-30 23:33:26 +08:00
void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port,
struct net_device *ndev,
unsigned long gid_type_mask,
IB/core: Add RoCE GID table management RoCE GIDs are based on IP addresses configured on Ethernet net-devices which relate to the RDMA (RoCE) device port. Currently, each of the low-level drivers that support RoCE (ocrdma, mlx4) manages its own RoCE port GID table. As there's nothing which is essentially vendor specific, we generalize that, and enhance the RDMA core GID cache to do this job. In order to populate the GID table, we listen for events: (a) netdev up/down/change_addr events - if a netdev is built onto our RoCE device, we need to add/delete its IPs. This involves adding all GIDs related to this ndev, add default GIDs, etc. (b) inet events - add new GIDs (according to the IP addresses) to the table. For programming the port RoCE GID table, providers must implement the add_gid and del_gid callbacks. RoCE GID management requires us to state the associated net_device alongside the GID. This information is necessary in order to manage the GID table. For example, when a net_device is removed, its associated GIDs need to be removed as well. RoCE mandates generating a default GID for each port, based on the related net-device's IPv6 link local. In contrast to the GID based on the regular IPv6 link-local (as we generate GID per IP address), the default GID is also available when the net device is down (in order to support loopback). Locking is done as follows: The patch modify the GID table code both for new RoCE drivers implementing the add_gid/del_gid callbacks and for current RoCE and IB drivers that do not. The flows for updating the table are different, so the locking requirements are too. While updating RoCE GID table, protection against multiple writers is achieved via mutex_lock(&table->lock). Since writing to a table requires us to find an entry (possible a free entry) in the table and then modify it, this mutex protects both the find_gid and write_gid ensuring the atomicity of the action. Each entry in the GID cache is protected by rwlock. In RoCE, writing (usually results from netdev notifier) involves invoking the vendor's add_gid and del_gid callbacks, which could sleep. Therefore, an invalid flag is added for each entry. Updates for RoCE are done via a workqueue, thus sleeping is permitted. In IB, updates are done in write_lock_irq(&device->cache.lock), thus write_gid isn't allowed to sleep and add_gid/del_gid are not called. When passing net-device into/out-of the GID cache, the device is always passed held (dev_hold). The code uses a single work item for updating all RDMA devices, following a netdev or inet notifier. The patch moves the cache from being a client (which was incorrect, as the cache is part of the IB infrastructure) to being explicitly initialized/freed when a device is registered/removed. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-07-30 23:33:26 +08:00
enum ib_cache_gid_default_mode mode);
int ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
union ib_gid *gid, struct ib_gid_attr *attr);
int ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
union ib_gid *gid, struct ib_gid_attr *attr);
int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port,
struct net_device *ndev);
int roce_gid_mgmt_init(void);
void roce_gid_mgmt_cleanup(void);
int roce_rescan_device(struct ib_device *ib_dev);
unsigned long roce_gid_type_mask_support(struct ib_device *ib_dev, u8 port);
IB/core: Add RoCE GID table management RoCE GIDs are based on IP addresses configured on Ethernet net-devices which relate to the RDMA (RoCE) device port. Currently, each of the low-level drivers that support RoCE (ocrdma, mlx4) manages its own RoCE port GID table. As there's nothing which is essentially vendor specific, we generalize that, and enhance the RDMA core GID cache to do this job. In order to populate the GID table, we listen for events: (a) netdev up/down/change_addr events - if a netdev is built onto our RoCE device, we need to add/delete its IPs. This involves adding all GIDs related to this ndev, add default GIDs, etc. (b) inet events - add new GIDs (according to the IP addresses) to the table. For programming the port RoCE GID table, providers must implement the add_gid and del_gid callbacks. RoCE GID management requires us to state the associated net_device alongside the GID. This information is necessary in order to manage the GID table. For example, when a net_device is removed, its associated GIDs need to be removed as well. RoCE mandates generating a default GID for each port, based on the related net-device's IPv6 link local. In contrast to the GID based on the regular IPv6 link-local (as we generate GID per IP address), the default GID is also available when the net device is down (in order to support loopback). Locking is done as follows: The patch modify the GID table code both for new RoCE drivers implementing the add_gid/del_gid callbacks and for current RoCE and IB drivers that do not. The flows for updating the table are different, so the locking requirements are too. While updating RoCE GID table, protection against multiple writers is achieved via mutex_lock(&table->lock). Since writing to a table requires us to find an entry (possible a free entry) in the table and then modify it, this mutex protects both the find_gid and write_gid ensuring the atomicity of the action. Each entry in the GID cache is protected by rwlock. In RoCE, writing (usually results from netdev notifier) involves invoking the vendor's add_gid and del_gid callbacks, which could sleep. Therefore, an invalid flag is added for each entry. Updates for RoCE are done via a workqueue, thus sleeping is permitted. In IB, updates are done in write_lock_irq(&device->cache.lock), thus write_gid isn't allowed to sleep and add_gid/del_gid are not called. When passing net-device into/out-of the GID cache, the device is always passed held (dev_hold). The code uses a single work item for updating all RDMA devices, following a netdev or inet notifier. The patch moves the cache from being a client (which was incorrect, as the cache is part of the IB infrastructure) to being explicitly initialized/freed when a device is registered/removed. Signed-off-by: Matan Barak <matanb@mellanox.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-07-30 23:33:26 +08:00
int ib_cache_setup_one(struct ib_device *device);
void ib_cache_cleanup_one(struct ib_device *device);
void ib_cache_release_one(struct ib_device *device);
static inline bool rdma_is_upper_dev_rcu(struct net_device *dev,
struct net_device *upper)
{
return netdev_has_upper_dev_all_rcu(dev, upper);
}
int addr_init(void);
void addr_cleanup(void);
int ib_mad_init(void);
void ib_mad_cleanup(void);
int ib_sa_init(void);
void ib_sa_cleanup(void);
int ib_nl_handle_resolve_resp(struct sk_buff *skb,
struct netlink_callback *cb);
int ib_nl_handle_set_timeout(struct sk_buff *skb,
struct netlink_callback *cb);
int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
struct netlink_callback *cb);
#endif /* _CORE_PRIV_H */