linux/drivers/media/platform/omap3isp/ispcsiphy.c

360 lines
9.7 KiB
C
Raw Normal View History

/*
* ispcsiphy.c
*
* TI OMAP3 ISP - CSI PHY module
*
* Copyright (C) 2010 Nokia Corporation
* Copyright (C) 2009 Texas Instruments, Inc.
*
* Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
* Sakari Ailus <sakari.ailus@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include "isp.h"
#include "ispreg.h"
#include "ispcsiphy.h"
static void csiphy_routing_cfg_3630(struct isp_csiphy *phy,
enum isp_interface_type iface,
bool ccp2_strobe)
{
u32 reg;
u32 shift, mode;
regmap_read(phy->isp->syscon, phy->isp->syscon_offset, &reg);
switch (iface) {
default:
/* Should not happen in practice, but let's keep the compiler happy. */
case ISP_INTERFACE_CCP2B_PHY1:
reg &= ~OMAP3630_CONTROL_CAMERA_PHY_CTRL_CSI1_RX_SEL_PHY2;
shift = OMAP3630_CONTROL_CAMERA_PHY_CTRL_CAMMODE_PHY1_SHIFT;
break;
case ISP_INTERFACE_CSI2C_PHY1:
shift = OMAP3630_CONTROL_CAMERA_PHY_CTRL_CAMMODE_PHY1_SHIFT;
mode = OMAP3630_CONTROL_CAMERA_PHY_CTRL_CAMMODE_DPHY;
break;
case ISP_INTERFACE_CCP2B_PHY2:
reg |= OMAP3630_CONTROL_CAMERA_PHY_CTRL_CSI1_RX_SEL_PHY2;
shift = OMAP3630_CONTROL_CAMERA_PHY_CTRL_CAMMODE_PHY2_SHIFT;
break;
case ISP_INTERFACE_CSI2A_PHY2:
shift = OMAP3630_CONTROL_CAMERA_PHY_CTRL_CAMMODE_PHY2_SHIFT;
mode = OMAP3630_CONTROL_CAMERA_PHY_CTRL_CAMMODE_DPHY;
break;
}
/* Select data/clock or data/strobe mode for CCP2 */
if (iface == ISP_INTERFACE_CCP2B_PHY1 ||
iface == ISP_INTERFACE_CCP2B_PHY2) {
if (ccp2_strobe)
mode = OMAP3630_CONTROL_CAMERA_PHY_CTRL_CAMMODE_CCP2_DATA_STROBE;
else
mode = OMAP3630_CONTROL_CAMERA_PHY_CTRL_CAMMODE_CCP2_DATA_CLOCK;
}
reg &= ~(OMAP3630_CONTROL_CAMERA_PHY_CTRL_CAMMODE_MASK << shift);
reg |= mode << shift;
regmap_write(phy->isp->syscon, phy->isp->syscon_offset, reg);
}
static void csiphy_routing_cfg_3430(struct isp_csiphy *phy, u32 iface, bool on,
bool ccp2_strobe)
{
u32 csirxfe = OMAP343X_CONTROL_CSIRXFE_PWRDNZ
| OMAP343X_CONTROL_CSIRXFE_RESET;
/* Only the CCP2B on PHY1 is configurable. */
if (iface != ISP_INTERFACE_CCP2B_PHY1)
return;
if (!on) {
regmap_write(phy->isp->syscon, phy->isp->syscon_offset, 0);
return;
}
if (ccp2_strobe)
csirxfe |= OMAP343X_CONTROL_CSIRXFE_SELFORM;
regmap_write(phy->isp->syscon, phy->isp->syscon_offset, csirxfe);
}
/*
* Configure OMAP 3 CSI PHY routing.
* @phy: relevant phy device
* @iface: ISP_INTERFACE_*
* @on: power on or off
* @ccp2_strobe: false: data/clock, true: data/strobe
*
* Note that the underlying routing configuration registers are part of the
* control (SCM) register space and part of the CORE power domain on both 3430
* and 3630, so they will not hold their contents in off-mode. This isn't an
* issue since the MPU power domain is forced on whilst the ISP is in use.
*/
static void csiphy_routing_cfg(struct isp_csiphy *phy,
enum isp_interface_type iface, bool on,
bool ccp2_strobe)
{
if (phy->isp->phy_type == ISP_PHY_TYPE_3630 && on)
return csiphy_routing_cfg_3630(phy, iface, ccp2_strobe);
if (phy->isp->phy_type == ISP_PHY_TYPE_3430)
return csiphy_routing_cfg_3430(phy, iface, on, ccp2_strobe);
}
/*
* csiphy_power_autoswitch_enable
* @enable: Sets or clears the autoswitch function enable flag.
*/
static void csiphy_power_autoswitch_enable(struct isp_csiphy *phy, bool enable)
{
isp_reg_clr_set(phy->isp, phy->cfg_regs, ISPCSI2_PHY_CFG,
ISPCSI2_PHY_CFG_PWR_AUTO,
enable ? ISPCSI2_PHY_CFG_PWR_AUTO : 0);
}
/*
* csiphy_set_power
* @power: Power state to be set.
*
* Returns 0 if successful, or -EBUSY if the retry count is exceeded.
*/
static int csiphy_set_power(struct isp_csiphy *phy, u32 power)
{
u32 reg;
u8 retry_count;
isp_reg_clr_set(phy->isp, phy->cfg_regs, ISPCSI2_PHY_CFG,
ISPCSI2_PHY_CFG_PWR_CMD_MASK, power);
retry_count = 0;
do {
udelay(50);
reg = isp_reg_readl(phy->isp, phy->cfg_regs, ISPCSI2_PHY_CFG) &
ISPCSI2_PHY_CFG_PWR_STATUS_MASK;
if (reg != power >> 2)
retry_count++;
} while ((reg != power >> 2) && (retry_count < 100));
if (retry_count == 100) {
dev_err(phy->isp->dev, "CSI2 CIO set power failed!\n");
return -EBUSY;
}
return 0;
}
/*
* TCLK values are OK at their reset values
*/
#define TCLK_TERM 0
#define TCLK_MISS 1
#define TCLK_SETTLE 14
static int omap3isp_csiphy_config(struct isp_csiphy *phy)
{
struct isp_csi2_device *csi2 = phy->csi2;
struct isp_pipeline *pipe = to_isp_pipeline(&csi2->subdev.entity);
struct isp_bus_cfg *buscfg = pipe->external->host_priv;
struct isp_csiphy_lanes_cfg *lanes;
int csi2_ddrclk_khz;
unsigned int num_data_lanes, used_lanes = 0;
unsigned int i;
u32 reg;
if (!buscfg) {
struct isp_async_subdev *isd =
container_of(pipe->external->asd,
struct isp_async_subdev, asd);
buscfg = &isd->bus;
}
if (buscfg->interface == ISP_INTERFACE_CCP2B_PHY1
|| buscfg->interface == ISP_INTERFACE_CCP2B_PHY2) {
lanes = &buscfg->bus.ccp2.lanecfg;
num_data_lanes = 1;
} else {
lanes = &buscfg->bus.csi2.lanecfg;
num_data_lanes = buscfg->bus.csi2.num_data_lanes;
}
if (num_data_lanes > phy->num_data_lanes)
return -EINVAL;
/* Clock and data lanes verification */
for (i = 0; i < num_data_lanes; i++) {
if (lanes->data[i].pol > 1 || lanes->data[i].pos > 3)
return -EINVAL;
if (used_lanes & (1 << lanes->data[i].pos))
return -EINVAL;
used_lanes |= 1 << lanes->data[i].pos;
}
if (lanes->clk.pol > 1 || lanes->clk.pos > 3)
return -EINVAL;
if (lanes->clk.pos == 0 || used_lanes & (1 << lanes->clk.pos))
return -EINVAL;
/*
* The PHY configuration is lost in off mode, that's not an
* issue since the MPU power domain is forced on whilst the
* ISP is in use.
*/
csiphy_routing_cfg(phy, buscfg->interface, true,
buscfg->bus.ccp2.phy_layer);
/* DPHY timing configuration */
/* CSI-2 is DDR and we only count used lanes. */
csi2_ddrclk_khz = pipe->external_rate / 1000
/ (2 * hweight32(used_lanes)) * pipe->external_width;
reg = isp_reg_readl(csi2->isp, phy->phy_regs, ISPCSIPHY_REG0);
reg &= ~(ISPCSIPHY_REG0_THS_TERM_MASK |
ISPCSIPHY_REG0_THS_SETTLE_MASK);
/* THS_TERM: Programmed value = ceil(12.5 ns/DDRClk period) - 1. */
reg |= (DIV_ROUND_UP(25 * csi2_ddrclk_khz, 2000000) - 1)
<< ISPCSIPHY_REG0_THS_TERM_SHIFT;
/* THS_SETTLE: Programmed value = ceil(90 ns/DDRClk period) + 3. */
reg |= (DIV_ROUND_UP(90 * csi2_ddrclk_khz, 1000000) + 3)
<< ISPCSIPHY_REG0_THS_SETTLE_SHIFT;
isp_reg_writel(csi2->isp, reg, phy->phy_regs, ISPCSIPHY_REG0);
reg = isp_reg_readl(csi2->isp, phy->phy_regs, ISPCSIPHY_REG1);
reg &= ~(ISPCSIPHY_REG1_TCLK_TERM_MASK |
ISPCSIPHY_REG1_TCLK_MISS_MASK |
ISPCSIPHY_REG1_TCLK_SETTLE_MASK);
reg |= TCLK_TERM << ISPCSIPHY_REG1_TCLK_TERM_SHIFT;
reg |= TCLK_MISS << ISPCSIPHY_REG1_TCLK_MISS_SHIFT;
reg |= TCLK_SETTLE << ISPCSIPHY_REG1_TCLK_SETTLE_SHIFT;
isp_reg_writel(csi2->isp, reg, phy->phy_regs, ISPCSIPHY_REG1);
/* DPHY lane configuration */
reg = isp_reg_readl(csi2->isp, phy->cfg_regs, ISPCSI2_PHY_CFG);
for (i = 0; i < num_data_lanes; i++) {
reg &= ~(ISPCSI2_PHY_CFG_DATA_POL_MASK(i + 1) |
ISPCSI2_PHY_CFG_DATA_POSITION_MASK(i + 1));
reg |= (lanes->data[i].pol <<
ISPCSI2_PHY_CFG_DATA_POL_SHIFT(i + 1));
reg |= (lanes->data[i].pos <<
ISPCSI2_PHY_CFG_DATA_POSITION_SHIFT(i + 1));
}
reg &= ~(ISPCSI2_PHY_CFG_CLOCK_POL_MASK |
ISPCSI2_PHY_CFG_CLOCK_POSITION_MASK);
reg |= lanes->clk.pol << ISPCSI2_PHY_CFG_CLOCK_POL_SHIFT;
reg |= lanes->clk.pos << ISPCSI2_PHY_CFG_CLOCK_POSITION_SHIFT;
isp_reg_writel(csi2->isp, reg, phy->cfg_regs, ISPCSI2_PHY_CFG);
return 0;
}
int omap3isp_csiphy_acquire(struct isp_csiphy *phy)
{
int rval;
if (phy->vdd == NULL) {
dev_err(phy->isp->dev,
"Power regulator for CSI PHY not available\n");
return -ENODEV;
}
mutex_lock(&phy->mutex);
rval = regulator_enable(phy->vdd);
if (rval < 0)
goto done;
rval = omap3isp_csi2_reset(phy->csi2);
if (rval < 0)
goto done;
rval = omap3isp_csiphy_config(phy);
if (rval < 0)
goto done;
rval = csiphy_set_power(phy, ISPCSI2_PHY_CFG_PWR_CMD_ON);
if (rval) {
regulator_disable(phy->vdd);
goto done;
}
csiphy_power_autoswitch_enable(phy, true);
phy->phy_in_use = 1;
done:
mutex_unlock(&phy->mutex);
return rval;
}
void omap3isp_csiphy_release(struct isp_csiphy *phy)
{
mutex_lock(&phy->mutex);
if (phy->phy_in_use) {
struct isp_csi2_device *csi2 = phy->csi2;
struct isp_pipeline *pipe =
to_isp_pipeline(&csi2->subdev.entity);
struct isp_bus_cfg *buscfg = pipe->external->host_priv;
csiphy_routing_cfg(phy, buscfg->interface, false,
buscfg->bus.ccp2.phy_layer);
csiphy_power_autoswitch_enable(phy, false);
csiphy_set_power(phy, ISPCSI2_PHY_CFG_PWR_CMD_OFF);
regulator_disable(phy->vdd);
phy->phy_in_use = 0;
}
mutex_unlock(&phy->mutex);
}
/*
* omap3isp_csiphy_init - Initialize the CSI PHY frontends
*/
int omap3isp_csiphy_init(struct isp_device *isp)
{
struct isp_csiphy *phy1 = &isp->isp_csiphy1;
struct isp_csiphy *phy2 = &isp->isp_csiphy2;
phy2->isp = isp;
phy2->csi2 = &isp->isp_csi2a;
phy2->num_data_lanes = ISP_CSIPHY2_NUM_DATA_LANES;
phy2->cfg_regs = OMAP3_ISP_IOMEM_CSI2A_REGS1;
phy2->phy_regs = OMAP3_ISP_IOMEM_CSIPHY2;
mutex_init(&phy2->mutex);
if (isp->revision == ISP_REVISION_15_0) {
phy1->isp = isp;
phy1->csi2 = &isp->isp_csi2c;
phy1->num_data_lanes = ISP_CSIPHY1_NUM_DATA_LANES;
phy1->cfg_regs = OMAP3_ISP_IOMEM_CSI2C_REGS1;
phy1->phy_regs = OMAP3_ISP_IOMEM_CSIPHY1;
mutex_init(&phy1->mutex);
}
return 0;
}
void omap3isp_csiphy_cleanup(struct isp_device *isp)
{
mutex_destroy(&isp->isp_csiphy1.mutex);
mutex_destroy(&isp->isp_csiphy2.mutex);
}