linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_tc_flower.c

877 lines
24 KiB
C
Raw Normal View History

/*
* This file is part of the Chelsio T4/T5/T6 Ethernet driver for Linux.
*
* Copyright (c) 2017 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <net/tc_act/tc_mirred.h>
#include <net/tc_act/tc_pedit.h>
#include <net/tc_act/tc_gact.h>
#include <net/tc_act/tc_vlan.h>
#include "cxgb4.h"
#include "cxgb4_filter.h"
#include "cxgb4_tc_flower.h"
#define STATS_CHECK_PERIOD (HZ / 2)
struct ch_tc_pedit_fields pedits[] = {
PEDIT_FIELDS(ETH_, DMAC_31_0, 4, dmac, 0),
PEDIT_FIELDS(ETH_, DMAC_47_32, 2, dmac, 4),
PEDIT_FIELDS(ETH_, SMAC_15_0, 2, smac, 0),
PEDIT_FIELDS(ETH_, SMAC_47_16, 4, smac, 2),
PEDIT_FIELDS(IP4_, SRC, 4, nat_fip, 0),
PEDIT_FIELDS(IP4_, DST, 4, nat_lip, 0),
PEDIT_FIELDS(IP6_, SRC_31_0, 4, nat_fip, 0),
PEDIT_FIELDS(IP6_, SRC_63_32, 4, nat_fip, 4),
PEDIT_FIELDS(IP6_, SRC_95_64, 4, nat_fip, 8),
PEDIT_FIELDS(IP6_, SRC_127_96, 4, nat_fip, 12),
PEDIT_FIELDS(IP6_, DST_31_0, 4, nat_lip, 0),
PEDIT_FIELDS(IP6_, DST_63_32, 4, nat_lip, 4),
PEDIT_FIELDS(IP6_, DST_95_64, 4, nat_lip, 8),
PEDIT_FIELDS(IP6_, DST_127_96, 4, nat_lip, 12),
PEDIT_FIELDS(TCP_, SPORT, 2, nat_fport, 0),
PEDIT_FIELDS(TCP_, DPORT, 2, nat_lport, 0),
PEDIT_FIELDS(UDP_, SPORT, 2, nat_fport, 0),
PEDIT_FIELDS(UDP_, DPORT, 2, nat_lport, 0),
};
static struct ch_tc_flower_entry *allocate_flower_entry(void)
{
struct ch_tc_flower_entry *new = kzalloc(sizeof(*new), GFP_KERNEL);
spin_lock_init(&new->lock);
return new;
}
/* Must be called with either RTNL or rcu_read_lock */
static struct ch_tc_flower_entry *ch_flower_lookup(struct adapter *adap,
unsigned long flower_cookie)
{
return rhashtable_lookup_fast(&adap->flower_tbl, &flower_cookie,
adap->flower_ht_params);
}
static void cxgb4_process_flow_match(struct net_device *dev,
struct tc_cls_flower_offload *cls,
struct ch_filter_specification *fs)
{
u16 addr_type = 0;
if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_CONTROL)) {
struct flow_dissector_key_control *key =
skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_CONTROL,
cls->key);
addr_type = key->addr_type;
}
if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_dissector_key_basic *key =
skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_BASIC,
cls->key);
struct flow_dissector_key_basic *mask =
skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_BASIC,
cls->mask);
u16 ethtype_key = ntohs(key->n_proto);
u16 ethtype_mask = ntohs(mask->n_proto);
if (ethtype_key == ETH_P_ALL) {
ethtype_key = 0;
ethtype_mask = 0;
}
fs->val.ethtype = ethtype_key;
fs->mask.ethtype = ethtype_mask;
fs->val.proto = key->ip_proto;
fs->mask.proto = mask->ip_proto;
}
if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
struct flow_dissector_key_ipv4_addrs *key =
skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_IPV4_ADDRS,
cls->key);
struct flow_dissector_key_ipv4_addrs *mask =
skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_IPV4_ADDRS,
cls->mask);
fs->type = 0;
memcpy(&fs->val.lip[0], &key->dst, sizeof(key->dst));
memcpy(&fs->val.fip[0], &key->src, sizeof(key->src));
memcpy(&fs->mask.lip[0], &mask->dst, sizeof(mask->dst));
memcpy(&fs->mask.fip[0], &mask->src, sizeof(mask->src));
/* also initialize nat_lip/fip to same values */
memcpy(&fs->nat_lip[0], &key->dst, sizeof(key->dst));
memcpy(&fs->nat_fip[0], &key->src, sizeof(key->src));
}
if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
struct flow_dissector_key_ipv6_addrs *key =
skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS,
cls->key);
struct flow_dissector_key_ipv6_addrs *mask =
skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS,
cls->mask);
fs->type = 1;
memcpy(&fs->val.lip[0], key->dst.s6_addr, sizeof(key->dst));
memcpy(&fs->val.fip[0], key->src.s6_addr, sizeof(key->src));
memcpy(&fs->mask.lip[0], mask->dst.s6_addr, sizeof(mask->dst));
memcpy(&fs->mask.fip[0], mask->src.s6_addr, sizeof(mask->src));
/* also initialize nat_lip/fip to same values */
memcpy(&fs->nat_lip[0], key->dst.s6_addr, sizeof(key->dst));
memcpy(&fs->nat_fip[0], key->src.s6_addr, sizeof(key->src));
}
if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_dissector_key_ports *key, *mask;
key = skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_PORTS,
cls->key);
mask = skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_PORTS,
cls->mask);
fs->val.lport = cpu_to_be16(key->dst);
fs->mask.lport = cpu_to_be16(mask->dst);
fs->val.fport = cpu_to_be16(key->src);
fs->mask.fport = cpu_to_be16(mask->src);
/* also initialize nat_lport/fport to same values */
fs->nat_lport = cpu_to_be16(key->dst);
fs->nat_fport = cpu_to_be16(key->src);
}
if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_IP)) {
struct flow_dissector_key_ip *key, *mask;
key = skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_IP,
cls->key);
mask = skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_IP,
cls->mask);
fs->val.tos = key->tos;
fs->mask.tos = mask->tos;
}
if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_dissector_key_vlan *key, *mask;
u16 vlan_tci, vlan_tci_mask;
key = skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_VLAN,
cls->key);
mask = skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_VLAN,
cls->mask);
vlan_tci = key->vlan_id | (key->vlan_priority <<
VLAN_PRIO_SHIFT);
vlan_tci_mask = mask->vlan_id | (mask->vlan_priority <<
VLAN_PRIO_SHIFT);
fs->val.ivlan = cpu_to_be16(vlan_tci);
fs->mask.ivlan = cpu_to_be16(vlan_tci_mask);
/* Chelsio adapters use ivlan_vld bit to match vlan packets
* as 802.1Q. Also, when vlan tag is present in packets,
* ethtype match is used then to match on ethtype of inner
* header ie. the header following the vlan header.
* So, set the ivlan_vld based on ethtype info supplied by
* TC for vlan packets if its 802.1Q. And then reset the
* ethtype value else, hw will try to match the supplied
* ethtype value with ethtype of inner header.
*/
if (fs->val.ethtype == ETH_P_8021Q) {
fs->val.ivlan_vld = 1;
fs->mask.ivlan_vld = 1;
fs->val.ethtype = 0;
fs->mask.ethtype = 0;
}
}
/* Match only packets coming from the ingress port where this
* filter will be created.
*/
fs->val.iport = netdev2pinfo(dev)->port_id;
fs->mask.iport = ~0;
}
static int cxgb4_validate_flow_match(struct net_device *dev,
struct tc_cls_flower_offload *cls)
{
u16 ethtype_mask = 0;
u16 ethtype_key = 0;
if (cls->dissector->used_keys &
~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
BIT(FLOW_DISSECTOR_KEY_BASIC) |
BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_PORTS) |
BIT(FLOW_DISSECTOR_KEY_VLAN) |
BIT(FLOW_DISSECTOR_KEY_IP))) {
netdev_warn(dev, "Unsupported key used: 0x%x\n",
cls->dissector->used_keys);
return -EOPNOTSUPP;
}
if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_dissector_key_basic *key =
skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_BASIC,
cls->key);
struct flow_dissector_key_basic *mask =
skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_BASIC,
cls->mask);
ethtype_key = ntohs(key->n_proto);
ethtype_mask = ntohs(mask->n_proto);
}
if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_IP)) {
u16 eth_ip_type = ethtype_key & ethtype_mask;
struct flow_dissector_key_ip *mask;
if (eth_ip_type != ETH_P_IP && eth_ip_type != ETH_P_IPV6) {
netdev_err(dev, "IP Key supported only with IPv4/v6");
return -EINVAL;
}
mask = skb_flow_dissector_target(cls->dissector,
FLOW_DISSECTOR_KEY_IP,
cls->mask);
if (mask->ttl) {
netdev_warn(dev, "ttl match unsupported for offload");
return -EOPNOTSUPP;
}
}
return 0;
}
static void offload_pedit(struct ch_filter_specification *fs, u32 val, u32 mask,
u8 field)
{
u32 set_val = val & ~mask;
u32 offset = 0;
u8 size = 1;
int i;
for (i = 0; i < ARRAY_SIZE(pedits); i++) {
if (pedits[i].field == field) {
offset = pedits[i].offset;
size = pedits[i].size;
break;
}
}
memcpy((u8 *)fs + offset, &set_val, size);
}
static void process_pedit_field(struct ch_filter_specification *fs, u32 val,
u32 mask, u32 offset, u8 htype)
{
switch (htype) {
case TCA_PEDIT_KEY_EX_HDR_TYPE_ETH:
switch (offset) {
case PEDIT_ETH_DMAC_31_0:
fs->newdmac = 1;
offload_pedit(fs, val, mask, ETH_DMAC_31_0);
break;
case PEDIT_ETH_DMAC_47_32_SMAC_15_0:
if (~mask & PEDIT_ETH_DMAC_MASK)
offload_pedit(fs, val, mask, ETH_DMAC_47_32);
else
offload_pedit(fs, val >> 16, mask >> 16,
ETH_SMAC_15_0);
break;
case PEDIT_ETH_SMAC_47_16:
fs->newsmac = 1;
offload_pedit(fs, val, mask, ETH_SMAC_47_16);
}
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_IP4:
switch (offset) {
case PEDIT_IP4_SRC:
offload_pedit(fs, val, mask, IP4_SRC);
break;
case PEDIT_IP4_DST:
offload_pedit(fs, val, mask, IP4_DST);
}
fs->nat_mode = NAT_MODE_ALL;
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_IP6:
switch (offset) {
case PEDIT_IP6_SRC_31_0:
offload_pedit(fs, val, mask, IP6_SRC_31_0);
break;
case PEDIT_IP6_SRC_63_32:
offload_pedit(fs, val, mask, IP6_SRC_63_32);
break;
case PEDIT_IP6_SRC_95_64:
offload_pedit(fs, val, mask, IP6_SRC_95_64);
break;
case PEDIT_IP6_SRC_127_96:
offload_pedit(fs, val, mask, IP6_SRC_127_96);
break;
case PEDIT_IP6_DST_31_0:
offload_pedit(fs, val, mask, IP6_DST_31_0);
break;
case PEDIT_IP6_DST_63_32:
offload_pedit(fs, val, mask, IP6_DST_63_32);
break;
case PEDIT_IP6_DST_95_64:
offload_pedit(fs, val, mask, IP6_DST_95_64);
break;
case PEDIT_IP6_DST_127_96:
offload_pedit(fs, val, mask, IP6_DST_127_96);
}
fs->nat_mode = NAT_MODE_ALL;
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_TCP:
switch (offset) {
case PEDIT_TCP_SPORT_DPORT:
if (~mask & PEDIT_TCP_UDP_SPORT_MASK)
offload_pedit(fs, cpu_to_be32(val) >> 16,
cpu_to_be32(mask) >> 16,
TCP_SPORT);
else
offload_pedit(fs, cpu_to_be32(val),
cpu_to_be32(mask), TCP_DPORT);
}
fs->nat_mode = NAT_MODE_ALL;
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_UDP:
switch (offset) {
case PEDIT_UDP_SPORT_DPORT:
if (~mask & PEDIT_TCP_UDP_SPORT_MASK)
offload_pedit(fs, cpu_to_be32(val) >> 16,
cpu_to_be32(mask) >> 16,
UDP_SPORT);
else
offload_pedit(fs, cpu_to_be32(val),
cpu_to_be32(mask), UDP_DPORT);
}
fs->nat_mode = NAT_MODE_ALL;
}
}
static void cxgb4_process_flow_actions(struct net_device *in,
struct tc_cls_flower_offload *cls,
struct ch_filter_specification *fs)
{
const struct tc_action *a;
LIST_HEAD(actions);
tcf_exts_to_list(cls->exts, &actions);
list_for_each_entry(a, &actions, list) {
if (is_tcf_gact_ok(a)) {
fs->action = FILTER_PASS;
} else if (is_tcf_gact_shot(a)) {
fs->action = FILTER_DROP;
} else if (is_tcf_mirred_egress_redirect(a)) {
int ifindex = tcf_mirred_ifindex(a);
struct net_device *out = __dev_get_by_index(dev_net(in),
ifindex);
struct port_info *pi = netdev_priv(out);
fs->action = FILTER_SWITCH;
fs->eport = pi->port_id;
} else if (is_tcf_vlan(a)) {
u32 vlan_action = tcf_vlan_action(a);
u8 prio = tcf_vlan_push_prio(a);
u16 vid = tcf_vlan_push_vid(a);
u16 vlan_tci = (prio << VLAN_PRIO_SHIFT) | vid;
switch (vlan_action) {
case TCA_VLAN_ACT_POP:
fs->newvlan |= VLAN_REMOVE;
break;
case TCA_VLAN_ACT_PUSH:
fs->newvlan |= VLAN_INSERT;
fs->vlan = vlan_tci;
break;
case TCA_VLAN_ACT_MODIFY:
fs->newvlan |= VLAN_REWRITE;
fs->vlan = vlan_tci;
break;
default:
break;
}
} else if (is_tcf_pedit(a)) {
u32 mask, val, offset;
int nkeys, i;
u8 htype;
nkeys = tcf_pedit_nkeys(a);
for (i = 0; i < nkeys; i++) {
htype = tcf_pedit_htype(a, i);
mask = tcf_pedit_mask(a, i);
val = tcf_pedit_val(a, i);
offset = tcf_pedit_offset(a, i);
process_pedit_field(fs, val, mask, offset,
htype);
}
}
}
}
static bool valid_l4_mask(u32 mask)
{
u16 hi, lo;
/* Either the upper 16-bits (SPORT) OR the lower
* 16-bits (DPORT) can be set, but NOT BOTH.
*/
hi = (mask >> 16) & 0xFFFF;
lo = mask & 0xFFFF;
return hi && lo ? false : true;
}
static bool valid_pedit_action(struct net_device *dev,
const struct tc_action *a)
{
u32 mask, offset;
u8 cmd, htype;
int nkeys, i;
nkeys = tcf_pedit_nkeys(a);
for (i = 0; i < nkeys; i++) {
htype = tcf_pedit_htype(a, i);
cmd = tcf_pedit_cmd(a, i);
mask = tcf_pedit_mask(a, i);
offset = tcf_pedit_offset(a, i);
if (cmd != TCA_PEDIT_KEY_EX_CMD_SET) {
netdev_err(dev, "%s: Unsupported pedit cmd\n",
__func__);
return false;
}
switch (htype) {
case TCA_PEDIT_KEY_EX_HDR_TYPE_ETH:
switch (offset) {
case PEDIT_ETH_DMAC_31_0:
case PEDIT_ETH_DMAC_47_32_SMAC_15_0:
case PEDIT_ETH_SMAC_47_16:
break;
default:
netdev_err(dev, "%s: Unsupported pedit field\n",
__func__);
return false;
}
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_IP4:
switch (offset) {
case PEDIT_IP4_SRC:
case PEDIT_IP4_DST:
break;
default:
netdev_err(dev, "%s: Unsupported pedit field\n",
__func__);
return false;
}
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_IP6:
switch (offset) {
case PEDIT_IP6_SRC_31_0:
case PEDIT_IP6_SRC_63_32:
case PEDIT_IP6_SRC_95_64:
case PEDIT_IP6_SRC_127_96:
case PEDIT_IP6_DST_31_0:
case PEDIT_IP6_DST_63_32:
case PEDIT_IP6_DST_95_64:
case PEDIT_IP6_DST_127_96:
break;
default:
netdev_err(dev, "%s: Unsupported pedit field\n",
__func__);
return false;
}
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_TCP:
switch (offset) {
case PEDIT_TCP_SPORT_DPORT:
if (!valid_l4_mask(~mask)) {
netdev_err(dev, "%s: Unsupported mask for TCP L4 ports\n",
__func__);
return false;
}
break;
default:
netdev_err(dev, "%s: Unsupported pedit field\n",
__func__);
return false;
}
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_UDP:
switch (offset) {
case PEDIT_UDP_SPORT_DPORT:
if (!valid_l4_mask(~mask)) {
netdev_err(dev, "%s: Unsupported mask for UDP L4 ports\n",
__func__);
return false;
}
break;
default:
netdev_err(dev, "%s: Unsupported pedit field\n",
__func__);
return false;
}
break;
default:
netdev_err(dev, "%s: Unsupported pedit type\n",
__func__);
return false;
}
}
return true;
}
static int cxgb4_validate_flow_actions(struct net_device *dev,
struct tc_cls_flower_offload *cls)
{
const struct tc_action *a;
bool act_redir = false;
bool act_pedit = false;
bool act_vlan = false;
LIST_HEAD(actions);
tcf_exts_to_list(cls->exts, &actions);
list_for_each_entry(a, &actions, list) {
if (is_tcf_gact_ok(a)) {
/* Do nothing */
} else if (is_tcf_gact_shot(a)) {
/* Do nothing */
} else if (is_tcf_mirred_egress_redirect(a)) {
struct adapter *adap = netdev2adap(dev);
struct net_device *n_dev;
unsigned int i, ifindex;
bool found = false;
ifindex = tcf_mirred_ifindex(a);
for_each_port(adap, i) {
n_dev = adap->port[i];
if (ifindex == n_dev->ifindex) {
found = true;
break;
}
}
/* If interface doesn't belong to our hw, then
* the provided output port is not valid
*/
if (!found) {
netdev_err(dev, "%s: Out port invalid\n",
__func__);
return -EINVAL;
}
act_redir = true;
} else if (is_tcf_vlan(a)) {
u16 proto = be16_to_cpu(tcf_vlan_push_proto(a));
u32 vlan_action = tcf_vlan_action(a);
switch (vlan_action) {
case TCA_VLAN_ACT_POP:
break;
case TCA_VLAN_ACT_PUSH:
case TCA_VLAN_ACT_MODIFY:
if (proto != ETH_P_8021Q) {
netdev_err(dev, "%s: Unsupported vlan proto\n",
__func__);
return -EOPNOTSUPP;
}
break;
default:
netdev_err(dev, "%s: Unsupported vlan action\n",
__func__);
return -EOPNOTSUPP;
}
act_vlan = true;
} else if (is_tcf_pedit(a)) {
bool pedit_valid = valid_pedit_action(dev, a);
if (!pedit_valid)
return -EOPNOTSUPP;
act_pedit = true;
} else {
netdev_err(dev, "%s: Unsupported action\n", __func__);
return -EOPNOTSUPP;
}
}
if ((act_pedit || act_vlan) && !act_redir) {
netdev_err(dev, "%s: pedit/vlan rewrite invalid without egress redirect\n",
__func__);
return -EINVAL;
}
return 0;
}
int cxgb4_tc_flower_replace(struct net_device *dev,
struct tc_cls_flower_offload *cls)
{
struct adapter *adap = netdev2adap(dev);
struct ch_tc_flower_entry *ch_flower;
struct ch_filter_specification *fs;
struct filter_ctx ctx;
int fidx;
int ret;
if (cxgb4_validate_flow_actions(dev, cls))
return -EOPNOTSUPP;
if (cxgb4_validate_flow_match(dev, cls))
return -EOPNOTSUPP;
ch_flower = allocate_flower_entry();
if (!ch_flower) {
netdev_err(dev, "%s: ch_flower alloc failed.\n", __func__);
return -ENOMEM;
}
fs = &ch_flower->fs;
fs->hitcnts = 1;
cxgb4_process_flow_match(dev, cls, fs);
cxgb4_process_flow_actions(dev, cls, fs);
fs->hash = is_filter_exact_match(adap, fs);
if (fs->hash) {
fidx = 0;
} else {
fidx = cxgb4_get_free_ftid(dev, fs->type ? PF_INET6 : PF_INET);
if (fidx < 0) {
netdev_err(dev, "%s: No fidx for offload.\n", __func__);
ret = -ENOMEM;
goto free_entry;
}
}
init_completion(&ctx.completion);
ret = __cxgb4_set_filter(dev, fidx, fs, &ctx);
if (ret) {
netdev_err(dev, "%s: filter creation err %d\n",
__func__, ret);
goto free_entry;
}
/* Wait for reply */
ret = wait_for_completion_timeout(&ctx.completion, 10 * HZ);
if (!ret) {
ret = -ETIMEDOUT;
goto free_entry;
}
ret = ctx.result;
/* Check if hw returned error for filter creation */
if (ret) {
netdev_err(dev, "%s: filter creation err %d\n",
__func__, ret);
goto free_entry;
}
ch_flower->tc_flower_cookie = cls->cookie;
ch_flower->filter_id = ctx.tid;
ret = rhashtable_insert_fast(&adap->flower_tbl, &ch_flower->node,
adap->flower_ht_params);
if (ret)
goto del_filter;
return 0;
del_filter:
cxgb4_del_filter(dev, ch_flower->filter_id, &ch_flower->fs);
free_entry:
kfree(ch_flower);
return ret;
}
int cxgb4_tc_flower_destroy(struct net_device *dev,
struct tc_cls_flower_offload *cls)
{
struct adapter *adap = netdev2adap(dev);
struct ch_tc_flower_entry *ch_flower;
int ret;
ch_flower = ch_flower_lookup(adap, cls->cookie);
if (!ch_flower)
return -ENOENT;
ret = cxgb4_del_filter(dev, ch_flower->filter_id, &ch_flower->fs);
if (ret)
goto err;
ret = rhashtable_remove_fast(&adap->flower_tbl, &ch_flower->node,
adap->flower_ht_params);
if (ret) {
netdev_err(dev, "Flow remove from rhashtable failed");
goto err;
}
kfree_rcu(ch_flower, rcu);
err:
return ret;
}
static void ch_flower_stats_handler(struct work_struct *work)
{
struct adapter *adap = container_of(work, struct adapter,
flower_stats_work);
struct ch_tc_flower_entry *flower_entry;
struct ch_tc_flower_stats *ofld_stats;
struct rhashtable_iter iter;
u64 packets;
u64 bytes;
int ret;
rhashtable_walk_enter(&adap->flower_tbl, &iter);
do {
flower_entry = ERR_PTR(rhashtable_walk_start(&iter));
if (IS_ERR(flower_entry))
goto walk_stop;
while ((flower_entry = rhashtable_walk_next(&iter)) &&
!IS_ERR(flower_entry)) {
ret = cxgb4_get_filter_counters(adap->port[0],
flower_entry->filter_id,
&packets, &bytes,
flower_entry->fs.hash);
if (!ret) {
spin_lock(&flower_entry->lock);
ofld_stats = &flower_entry->stats;
if (ofld_stats->prev_packet_count != packets) {
ofld_stats->prev_packet_count = packets;
ofld_stats->last_used = jiffies;
}
spin_unlock(&flower_entry->lock);
}
}
walk_stop:
rhashtable_walk_stop(&iter);
} while (flower_entry == ERR_PTR(-EAGAIN));
rhashtable_walk_exit(&iter);
mod_timer(&adap->flower_stats_timer, jiffies + STATS_CHECK_PERIOD);
}
static void ch_flower_stats_cb(struct timer_list *t)
{
struct adapter *adap = from_timer(adap, t, flower_stats_timer);
schedule_work(&adap->flower_stats_work);
}
int cxgb4_tc_flower_stats(struct net_device *dev,
struct tc_cls_flower_offload *cls)
{
struct adapter *adap = netdev2adap(dev);
struct ch_tc_flower_stats *ofld_stats;
struct ch_tc_flower_entry *ch_flower;
u64 packets;
u64 bytes;
int ret;
ch_flower = ch_flower_lookup(adap, cls->cookie);
if (!ch_flower) {
ret = -ENOENT;
goto err;
}
ret = cxgb4_get_filter_counters(dev, ch_flower->filter_id,
&packets, &bytes,
ch_flower->fs.hash);
if (ret < 0)
goto err;
spin_lock_bh(&ch_flower->lock);
ofld_stats = &ch_flower->stats;
if (ofld_stats->packet_count != packets) {
if (ofld_stats->prev_packet_count != packets)
ofld_stats->last_used = jiffies;
tcf_exts_stats_update(cls->exts, bytes - ofld_stats->byte_count,
packets - ofld_stats->packet_count,
ofld_stats->last_used);
ofld_stats->packet_count = packets;
ofld_stats->byte_count = bytes;
ofld_stats->prev_packet_count = packets;
}
spin_unlock_bh(&ch_flower->lock);
return 0;
err:
return ret;
}
static const struct rhashtable_params cxgb4_tc_flower_ht_params = {
.nelem_hint = 384,
.head_offset = offsetof(struct ch_tc_flower_entry, node),
.key_offset = offsetof(struct ch_tc_flower_entry, tc_flower_cookie),
.key_len = sizeof(((struct ch_tc_flower_entry *)0)->tc_flower_cookie),
.max_size = 524288,
.min_size = 512,
.automatic_shrinking = true
};
int cxgb4_init_tc_flower(struct adapter *adap)
{
int ret;
adap->flower_ht_params = cxgb4_tc_flower_ht_params;
ret = rhashtable_init(&adap->flower_tbl, &adap->flower_ht_params);
if (ret)
return ret;
INIT_WORK(&adap->flower_stats_work, ch_flower_stats_handler);
timer_setup(&adap->flower_stats_timer, ch_flower_stats_cb, 0);
mod_timer(&adap->flower_stats_timer, jiffies + STATS_CHECK_PERIOD);
return 0;
}
void cxgb4_cleanup_tc_flower(struct adapter *adap)
{
if (adap->flower_stats_timer.function)
del_timer_sync(&adap->flower_stats_timer);
cancel_work_sync(&adap->flower_stats_work);
rhashtable_destroy(&adap->flower_tbl);
}