linux/drivers/iio/imu/kmx61.c

890 lines
20 KiB
C
Raw Normal View History

/*
* KMX61 - Kionix 6-axis Accelerometer/Magnetometer
*
* Copyright (c) 2014, Intel Corporation.
*
* This file is subject to the terms and conditions of version 2 of
* the GNU General Public License. See the file COPYING in the main
* directory of this archive for more details.
*
* IIO driver for KMX61 (7-bit I2C slave address 0x0E or 0x0F).
*
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/acpi.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#define KMX61_DRV_NAME "kmx61"
#define KMX61_GPIO_NAME "kmx61_int"
#define KMX61_REG_WHO_AM_I 0x00
/*
* three 16-bit accelerometer output registers for X/Y/Z axis
* we use only XOUT_L as a base register, all other addresses
* can be obtained by applying an offset and are provided here
* only for clarity.
*/
#define KMX61_ACC_XOUT_L 0x0A
#define KMX61_ACC_XOUT_H 0x0B
#define KMX61_ACC_YOUT_L 0x0C
#define KMX61_ACC_YOUT_H 0x0D
#define KMX61_ACC_ZOUT_L 0x0E
#define KMX61_ACC_ZOUT_H 0x0F
/*
* one 16-bit temperature output register
*/
#define KMX61_TEMP_L 0x10
#define KMX61_TEMP_H 0x11
/*
* three 16-bit magnetometer output registers for X/Y/Z axis
*/
#define KMX61_MAG_XOUT_L 0x12
#define KMX61_MAG_XOUT_H 0x13
#define KMX61_MAG_YOUT_L 0x14
#define KMX61_MAG_YOUT_H 0x15
#define KMX61_MAG_ZOUT_L 0x16
#define KMX61_MAG_ZOUT_H 0x17
#define KMX61_REG_STBY 0x29
#define KMX61_REG_CTRL1 0x2A
#define KMX61_REG_ODCNTL 0x2C
#define KMX61_ACC_STBY_BIT BIT(0)
#define KMX61_MAG_STBY_BIT BIT(1)
#define KMX61_ACT_STBY_BIT BIT(7)
#define KMX61_ALL_STBY (KMX61_ACC_STBY_BIT | KMX61_MAG_STBY_BIT)
#define KMX61_REG_CTRL1_GSEL_MASK 0x03
#define KMX61_ACC_ODR_SHIFT 0
#define KMX61_MAG_ODR_SHIFT 4
#define KMX61_ACC_ODR_MASK 0x0F
#define KMX61_MAG_ODR_MASK 0xF0
#define KMX61_SLEEP_DELAY_MS 2000
#define KMX61_CHIP_ID 0x12
/* KMX61 devices */
#define KMX61_ACC 0x01
#define KMX61_MAG 0x02
struct kmx61_data {
struct i2c_client *client;
/* serialize access to non-atomic ops, e.g set_mode */
struct mutex lock;
/* standby state */
bool acc_stby;
bool mag_stby;
/* power state */
bool acc_ps;
bool mag_ps;
/* config bits */
u8 range;
u8 odr_bits;
/* accelerometer specific data */
struct iio_dev *acc_indio_dev;
/* magnetometer specific data */
struct iio_dev *mag_indio_dev;
};
enum kmx61_range {
KMX61_RANGE_2G,
KMX61_RANGE_4G,
KMX61_RANGE_8G,
};
enum kmx61_axis {
KMX61_AXIS_X,
KMX61_AXIS_Y,
KMX61_AXIS_Z,
};
static const u16 kmx61_uscale_table[] = {9582, 19163, 38326};
static const struct {
int val;
int val2;
u8 odr_bits;
} kmx61_samp_freq_table[] = { {12, 500000, 0x00},
{25, 0, 0x01},
{50, 0, 0x02},
{100, 0, 0x03},
{200, 0, 0x04},
{400, 0, 0x05},
{800, 0, 0x06},
{1600, 0, 0x07},
{0, 781000, 0x08},
{1, 563000, 0x09},
{3, 125000, 0x0A},
{6, 250000, 0x0B} };
static IIO_CONST_ATTR(accel_scale_available, "0.009582 0.019163 0.038326");
static IIO_CONST_ATTR(magn_scale_available, "0.001465");
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
"0.781000 1.563000 3.125000 6.250000 12.500000 25 50 100 200 400 800");
static struct attribute *kmx61_acc_attributes[] = {
&iio_const_attr_accel_scale_available.dev_attr.attr,
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static struct attribute *kmx61_mag_attributes[] = {
&iio_const_attr_magn_scale_available.dev_attr.attr,
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group kmx61_acc_attribute_group = {
.attrs = kmx61_acc_attributes,
};
static const struct attribute_group kmx61_mag_attribute_group = {
.attrs = kmx61_mag_attributes,
};
#define KMX61_ACC_CHAN(_axis) { \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_ ## _axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.address = KMX61_ACC, \
.scan_index = KMX61_AXIS_ ## _axis, \
.scan_type = { \
.sign = 's', \
.realbits = 12, \
.storagebits = 16, \
.shift = 4, \
.endianness = IIO_LE, \
}, \
}
#define KMX61_MAG_CHAN(_axis) { \
.type = IIO_MAGN, \
.modified = 1, \
.channel2 = IIO_MOD_ ## _axis, \
.address = KMX61_MAG, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = KMX61_AXIS_ ## _axis, \
.scan_type = { \
.sign = 's', \
.realbits = 14, \
.storagebits = 16, \
.shift = 2, \
.endianness = IIO_LE, \
}, \
}
static const struct iio_chan_spec kmx61_acc_channels[] = {
KMX61_ACC_CHAN(X),
KMX61_ACC_CHAN(Y),
KMX61_ACC_CHAN(Z),
};
static const struct iio_chan_spec kmx61_mag_channels[] = {
KMX61_MAG_CHAN(X),
KMX61_MAG_CHAN(Y),
KMX61_MAG_CHAN(Z),
};
static void kmx61_set_data(struct iio_dev *indio_dev, struct kmx61_data *data)
{
struct kmx61_data **priv = iio_priv(indio_dev);
*priv = data;
}
static struct kmx61_data *kmx61_get_data(struct iio_dev *indio_dev)
{
return *(struct kmx61_data **)iio_priv(indio_dev);
}
static int kmx61_convert_freq_to_bit(int val, int val2)
{
int i;
for (i = 0; i < ARRAY_SIZE(kmx61_samp_freq_table); i++)
if (val == kmx61_samp_freq_table[i].val &&
val2 == kmx61_samp_freq_table[i].val2)
return kmx61_samp_freq_table[i].odr_bits;
return -EINVAL;
}
/**
* kmx61_set_mode() - set KMX61 device operating mode
* @data - kmx61 device private data pointer
* @mode - bitmask, indicating operating mode for @device
* @device - bitmask, indicating device for which @mode needs to be set
* @update - update stby bits stored in device's private @data
*
* For each sensor (accelerometer/magnetometer) there are two operating modes
* STANDBY and OPERATION. Neither accel nor magn can be disabled independently
* if they are both enabled. Internal sensors state is saved in acc_stby and
* mag_stby members of driver's private @data.
*/
static int kmx61_set_mode(struct kmx61_data *data, u8 mode, u8 device,
bool update)
{
int ret;
int acc_stby = -1, mag_stby = -1;
ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_stby\n");
return ret;
}
if (device & KMX61_ACC) {
if (mode & KMX61_ACC_STBY_BIT) {
ret |= KMX61_ACC_STBY_BIT;
acc_stby = 1;
} else {
ret &= ~KMX61_ACC_STBY_BIT;
acc_stby = 0;
}
}
if (device & KMX61_MAG) {
if (mode & KMX61_MAG_STBY_BIT) {
ret |= KMX61_MAG_STBY_BIT;
mag_stby = 1;
} else {
ret &= ~KMX61_MAG_STBY_BIT;
mag_stby = 0;
}
}
if (mode & KMX61_ACT_STBY_BIT)
ret |= KMX61_ACT_STBY_BIT;
ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_STBY, ret);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_stby\n");
return ret;
}
if (acc_stby != -1 && update)
data->acc_stby = acc_stby;
if (mag_stby != -1 && update)
data->mag_stby = mag_stby;
return 0;
}
static int kmx61_get_mode(struct kmx61_data *data, u8 *mode, u8 device)
{
int ret;
ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_stby\n");
return ret;
}
*mode = 0;
if (device & KMX61_ACC) {
if (ret & KMX61_ACC_STBY_BIT)
*mode |= KMX61_ACC_STBY_BIT;
else
*mode &= ~KMX61_ACC_STBY_BIT;
}
if (device & KMX61_MAG) {
if (ret & KMX61_MAG_STBY_BIT)
*mode |= KMX61_MAG_STBY_BIT;
else
*mode &= ~KMX61_MAG_STBY_BIT;
}
return 0;
}
static int kmx61_set_odr(struct kmx61_data *data, int val, int val2, u8 device)
{
int ret;
u8 mode;
int lodr_bits, odr_bits;
ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
if (ret < 0)
return ret;
lodr_bits = kmx61_convert_freq_to_bit(val, val2);
if (lodr_bits < 0)
return lodr_bits;
/* To change ODR, accel and magn must be in STDBY */
ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG,
true);
if (ret < 0)
return ret;
odr_bits = 0;
if (device & KMX61_ACC)
odr_bits |= lodr_bits << KMX61_ACC_ODR_SHIFT;
if (device & KMX61_MAG)
odr_bits |= lodr_bits << KMX61_MAG_ODR_SHIFT;
ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_ODCNTL,
odr_bits);
if (ret < 0)
return ret;
return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
}
static int kmx61_get_odr(struct kmx61_data *data, int *val, int *val2,
u8 device)
{ int i;
u8 lodr_bits;
if (device & KMX61_ACC)
lodr_bits = (data->odr_bits >> KMX61_ACC_ODR_SHIFT) &
KMX61_ACC_ODR_MASK;
else if (device & KMX61_MAG)
lodr_bits = (data->odr_bits >> KMX61_MAG_ODR_SHIFT) &
KMX61_MAG_ODR_MASK;
else
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(kmx61_samp_freq_table); i++)
if (lodr_bits == kmx61_samp_freq_table[i].odr_bits) {
*val = kmx61_samp_freq_table[i].val;
*val2 = kmx61_samp_freq_table[i].val2;
return 0;
}
return -EINVAL;
}
static int kmx61_set_range(struct kmx61_data *data, u8 range)
{
int ret;
ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
return ret;
}
ret &= ~KMX61_REG_CTRL1_GSEL_MASK;
ret |= range & KMX61_REG_CTRL1_GSEL_MASK;
ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
return ret;
}
data->range = range;
return 0;
}
static int kmx61_set_scale(struct kmx61_data *data, u16 uscale)
{
int ret, i;
u8 mode;
for (i = 0; i < ARRAY_SIZE(kmx61_uscale_table); i++) {
if (kmx61_uscale_table[i] == uscale) {
ret = kmx61_get_mode(data, &mode,
KMX61_ACC | KMX61_MAG);
if (ret < 0)
return ret;
ret = kmx61_set_mode(data, KMX61_ALL_STBY,
KMX61_ACC | KMX61_MAG, true);
if (ret < 0)
return ret;
ret = kmx61_set_range(data, i);
if (ret < 0)
return ret;
return kmx61_set_mode(data, mode,
KMX61_ACC | KMX61_MAG, true);
}
}
return -EINVAL;
}
static int kmx61_chip_init(struct kmx61_data *data)
{
int ret;
ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_WHO_AM_I);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading who_am_i\n");
return ret;
}
if (ret != KMX61_CHIP_ID) {
dev_err(&data->client->dev,
"Wrong chip id, got %x expected %x\n",
ret, KMX61_CHIP_ID);
return -EINVAL;
}
/* set accel 12bit, 4g range */
ret = kmx61_set_range(data, KMX61_RANGE_4G);
if (ret < 0)
return ret;
ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_ODCNTL);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_odcntl\n");
return ret;
}
data->odr_bits = ret;
/* set acc/magn to OPERATION mode */
ret = kmx61_set_mode(data, 0, KMX61_ACC | KMX61_MAG, true);
if (ret < 0)
return ret;
return 0;
}
/**
* kmx61_set_power_state() - set power state for kmx61 @device
* @data - kmx61 device private pointer
* @on - power state to be set for @device
* @device - bitmask indicating device for which @on state needs to be set
*
* Notice that when ACC power state needs to be set to ON and MAG is in
* OPERATION then we know that kmx61_runtime_resume was already called
* so we must set ACC OPERATION mode here. The same happens when MAG power
* state needs to be set to ON and ACC is in OPERATION.
*/
static int kmx61_set_power_state(struct kmx61_data *data, bool on, u8 device)
{
#ifdef CONFIG_PM_RUNTIME
int ret;
if (device & KMX61_ACC) {
if (on && !data->acc_ps && !data->mag_stby) {
ret = kmx61_set_mode(data, 0, KMX61_ACC, true);
if (ret < 0)
return ret;
}
data->acc_ps = on;
}
if (device & KMX61_MAG) {
if (on && !data->mag_ps && !data->acc_stby) {
ret = kmx61_set_mode(data, 0, KMX61_MAG, true);
if (ret < 0)
return ret;
}
data->mag_ps = on;
}
if (on) {
ret = pm_runtime_get_sync(&data->client->dev);
} else {
pm_runtime_mark_last_busy(&data->client->dev);
ret = pm_runtime_put_autosuspend(&data->client->dev);
}
if (ret < 0) {
dev_err(&data->client->dev,
"Failed: kmx61_set_power_state for %d, ret %d\n",
on, ret);
if (on)
pm_runtime_put_noidle(&data->client->dev);
return ret;
}
#endif
return 0;
}
static int kmx61_read_measurement(struct kmx61_data *data, u8 base, u8 offset)
{
int ret;
u8 reg = base + offset * 2;
ret = i2c_smbus_read_word_data(data->client, reg);
if (ret < 0)
dev_err(&data->client->dev, "failed to read reg at %x\n", reg);
return ret;
}
static int kmx61_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
int ret;
u8 base_reg;
struct kmx61_data *data = kmx61_get_data(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_ACCEL:
base_reg = KMX61_ACC_XOUT_L;
break;
case IIO_MAGN:
base_reg = KMX61_MAG_XOUT_L;
break;
default:
return -EINVAL;
}
mutex_lock(&data->lock);
kmx61_set_power_state(data, true, chan->address);
ret = kmx61_read_measurement(data, base_reg, chan->scan_index);
if (ret < 0) {
kmx61_set_power_state(data, false, chan->address);
mutex_unlock(&data->lock);
return ret;
}
*val = sign_extend32(ret >> chan->scan_type.shift,
chan->scan_type.realbits - 1);
kmx61_set_power_state(data, false, chan->address);
mutex_unlock(&data->lock);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ACCEL:
*val = 0;
*val2 = kmx61_uscale_table[data->range];
return IIO_VAL_INT_PLUS_MICRO;
case IIO_MAGN:
/* 14 bits res, 1465 microGauss per magn count */
*val = 0;
*val2 = 1465;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SAMP_FREQ:
if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN)
return -EINVAL;
mutex_lock(&data->lock);
ret = kmx61_get_odr(data, val, val2, chan->address);
mutex_unlock(&data->lock);
if (ret)
return -EINVAL;
return IIO_VAL_INT_PLUS_MICRO;
}
return -EINVAL;
}
static int kmx61_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
int ret;
struct kmx61_data *data = kmx61_get_data(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN)
return -EINVAL;
mutex_lock(&data->lock);
ret = kmx61_set_odr(data, val, val2, chan->address);
mutex_unlock(&data->lock);
return ret;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ACCEL:
if (val != 0)
return -EINVAL;
mutex_lock(&data->lock);
ret = kmx61_set_scale(data, val2);
mutex_unlock(&data->lock);
return ret;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static const struct iio_info kmx61_acc_info = {
.driver_module = THIS_MODULE,
.read_raw = kmx61_read_raw,
.write_raw = kmx61_write_raw,
.attrs = &kmx61_acc_attribute_group,
};
static const struct iio_info kmx61_mag_info = {
.driver_module = THIS_MODULE,
.read_raw = kmx61_read_raw,
.write_raw = kmx61_write_raw,
.attrs = &kmx61_mag_attribute_group,
};
static const char *kmx61_match_acpi_device(struct device *dev)
{
const struct acpi_device_id *id;
id = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!id)
return NULL;
return dev_name(dev);
}
static int kmx61_gpio_probe(struct i2c_client *client, struct kmx61_data *data)
{
struct device *dev;
struct gpio_desc *gpio;
int ret;
if (!client)
return -EINVAL;
dev = &client->dev;
/* data ready gpio interrupt pin */
gpio = devm_gpiod_get_index(dev, KMX61_GPIO_NAME, 0);
if (IS_ERR(gpio)) {
dev_err(dev, "acpi gpio get index failed\n");
return PTR_ERR(gpio);
}
ret = gpiod_direction_input(gpio);
if (ret)
return ret;
ret = gpiod_to_irq(gpio);
dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
return ret;
}
static struct iio_dev *kmx61_indiodev_setup(struct kmx61_data *data,
const struct iio_info *info,
const struct iio_chan_spec *chan,
int num_channels,
const char *name)
{
struct iio_dev *indio_dev;
indio_dev = devm_iio_device_alloc(&data->client->dev, sizeof(data));
if (!indio_dev)
return ERR_PTR(-ENOMEM);
kmx61_set_data(indio_dev, data);
indio_dev->dev.parent = &data->client->dev;
indio_dev->channels = chan;
indio_dev->num_channels = num_channels;
indio_dev->name = name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = info;
return indio_dev;
}
static int kmx61_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int ret;
struct kmx61_data *data;
const char *name = NULL;
data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
data->client = client;
mutex_init(&data->lock);
if (id)
name = id->name;
else if (ACPI_HANDLE(&client->dev))
name = kmx61_match_acpi_device(&client->dev);
else
return -ENODEV;
data->acc_indio_dev =
kmx61_indiodev_setup(data, &kmx61_acc_info,
kmx61_acc_channels,
ARRAY_SIZE(kmx61_acc_channels),
name);
if (IS_ERR(data->acc_indio_dev))
return PTR_ERR(data->acc_indio_dev);
data->mag_indio_dev =
kmx61_indiodev_setup(data, &kmx61_mag_info,
kmx61_mag_channels,
ARRAY_SIZE(kmx61_mag_channels),
name);
if (IS_ERR(data->mag_indio_dev))
return PTR_ERR(data->mag_indio_dev);
ret = kmx61_chip_init(data);
if (ret < 0)
return ret;
if (client->irq < 0)
client->irq = kmx61_gpio_probe(client, data);
ret = iio_device_register(data->acc_indio_dev);
if (ret < 0) {
dev_err(&client->dev, "Failed to register acc iio device\n");
goto err_chip_uninit;
}
ret = iio_device_register(data->mag_indio_dev);
if (ret < 0) {
dev_err(&client->dev, "Failed to register mag iio device\n");
goto err_iio_unregister_acc;
}
ret = pm_runtime_set_active(&client->dev);
if (ret < 0)
goto err_iio_unregister_mag;
pm_runtime_enable(&client->dev);
pm_runtime_set_autosuspend_delay(&client->dev, KMX61_SLEEP_DELAY_MS);
pm_runtime_use_autosuspend(&client->dev);
return 0;
err_iio_unregister_mag:
iio_device_unregister(data->mag_indio_dev);
err_iio_unregister_acc:
iio_device_unregister(data->acc_indio_dev);
err_chip_uninit:
kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
return ret;
}
static int kmx61_remove(struct i2c_client *client)
{
struct kmx61_data *data = i2c_get_clientdata(client);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
pm_runtime_put_noidle(&client->dev);
iio_device_unregister(data->acc_indio_dev);
iio_device_unregister(data->mag_indio_dev);
mutex_lock(&data->lock);
kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
mutex_unlock(&data->lock);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int kmx61_suspend(struct device *dev)
{
int ret;
struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
mutex_lock(&data->lock);
ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG,
false);
mutex_unlock(&data->lock);
return ret;
}
static int kmx61_resume(struct device *dev)
{
u8 stby = 0;
struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
if (data->acc_stby)
stby |= KMX61_ACC_STBY_BIT;
if (data->mag_stby)
stby |= KMX61_MAG_STBY_BIT;
return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true);
}
#endif
#ifdef CONFIG_PM_RUNTIME
static int kmx61_runtime_suspend(struct device *dev)
{
struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
int ret;
mutex_lock(&data->lock);
ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
mutex_unlock(&data->lock);
return ret;
}
static int kmx61_runtime_resume(struct device *dev)
{
struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
u8 stby = 0;
if (!data->acc_ps)
stby |= KMX61_ACC_STBY_BIT;
if (!data->mag_ps)
stby |= KMX61_MAG_STBY_BIT;
return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true);
}
#endif
static const struct dev_pm_ops kmx61_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(kmx61_suspend, kmx61_resume)
SET_RUNTIME_PM_OPS(kmx61_runtime_suspend, kmx61_runtime_resume, NULL)
};
static const struct acpi_device_id kmx61_acpi_match[] = {
{"KMX61021", 0},
{}
};
MODULE_DEVICE_TABLE(acpi, kmx61_acpi_match);
static const struct i2c_device_id kmx61_id[] = {
{"kmx611021", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, kmx61_id);
static struct i2c_driver kmx61_driver = {
.driver = {
.name = KMX61_DRV_NAME,
.acpi_match_table = ACPI_PTR(kmx61_acpi_match),
.pm = &kmx61_pm_ops,
},
.probe = kmx61_probe,
.remove = kmx61_remove,
.id_table = kmx61_id,
};
module_i2c_driver(kmx61_driver);
MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
MODULE_DESCRIPTION("KMX61 accelerometer/magnetometer driver");
MODULE_LICENSE("GPL v2");