linux/drivers/net/ethernet/chelsio/cxgb4/sge.c

2921 lines
81 KiB
C
Raw Normal View History

/*
* This file is part of the Chelsio T4 Ethernet driver for Linux.
*
* Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/dma-mapping.h>
#include <linux/jiffies.h>
#include <linux/prefetch.h>
#include <linux/export.h>
#include <net/ipv6.h>
#include <net/tcp.h>
#include "cxgb4.h"
#include "t4_regs.h"
#include "t4_values.h"
#include "t4_msg.h"
#include "t4fw_api.h"
/*
* Rx buffer size. We use largish buffers if possible but settle for single
* pages under memory shortage.
*/
#if PAGE_SHIFT >= 16
# define FL_PG_ORDER 0
#else
# define FL_PG_ORDER (16 - PAGE_SHIFT)
#endif
/* RX_PULL_LEN should be <= RX_COPY_THRES */
#define RX_COPY_THRES 256
#define RX_PULL_LEN 128
/*
* Main body length for sk_buffs used for Rx Ethernet packets with fragments.
* Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
*/
#define RX_PKT_SKB_LEN 512
/*
* Max number of Tx descriptors we clean up at a time. Should be modest as
* freeing skbs isn't cheap and it happens while holding locks. We just need
* to free packets faster than they arrive, we eventually catch up and keep
* the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
*/
#define MAX_TX_RECLAIM 16
/*
* Max number of Rx buffers we replenish at a time. Again keep this modest,
* allocating buffers isn't cheap either.
*/
#define MAX_RX_REFILL 16U
/*
* Period of the Rx queue check timer. This timer is infrequent as it has
* something to do only when the system experiences severe memory shortage.
*/
#define RX_QCHECK_PERIOD (HZ / 2)
/*
* Period of the Tx queue check timer.
*/
#define TX_QCHECK_PERIOD (HZ / 2)
/* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate
* (in RX_QCHECK_PERIOD multiples). If we find one of the SGE Ingress DMA
* State Machines in the same state for this amount of time (in HZ) then we'll
* issue a warning about a potential hang. We'll repeat the warning as the
* SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till
* the situation clears. If the situation clears, we'll note that as well.
*/
#define SGE_IDMA_WARN_THRESH (1 * HZ)
#define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD)
/*
* Max number of Tx descriptors to be reclaimed by the Tx timer.
*/
#define MAX_TIMER_TX_RECLAIM 100
/*
* Timer index used when backing off due to memory shortage.
*/
#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
/*
* An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
* attempt to refill it.
*/
#define FL_STARVE_THRES 4
/*
* Suspend an Ethernet Tx queue with fewer available descriptors than this.
* This is the same as calc_tx_descs() for a TSO packet with
* nr_frags == MAX_SKB_FRAGS.
*/
#define ETHTXQ_STOP_THRES \
(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
/*
* Suspension threshold for non-Ethernet Tx queues. We require enough room
* for a full sized WR.
*/
#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
/*
* Max Tx descriptor space we allow for an Ethernet packet to be inlined
* into a WR.
*/
#define MAX_IMM_TX_PKT_LEN 128
/*
* Max size of a WR sent through a control Tx queue.
*/
#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
struct tx_sw_desc { /* SW state per Tx descriptor */
struct sk_buff *skb;
struct ulptx_sgl *sgl;
};
struct rx_sw_desc { /* SW state per Rx descriptor */
struct page *page;
dma_addr_t dma_addr;
};
/*
* Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
* buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
* We could easily support more but there doesn't seem to be much need for
* that ...
*/
#define FL_MTU_SMALL 1500
#define FL_MTU_LARGE 9000
static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
unsigned int mtu)
{
struct sge *s = &adapter->sge;
return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
}
#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
/*
* Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
* these to specify the buffer size as an index into the SGE Free List Buffer
* Size register array. We also use bit 4, when the buffer has been unmapped
* for DMA, but this is of course never sent to the hardware and is only used
* to prevent double unmappings. All of the above requires that the Free List
* Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
* 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
* Free List Buffer alignment is 32 bytes, this works out for us ...
*/
enum {
RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
/*
* XXX We shouldn't depend on being able to use these indices.
* XXX Especially when some other Master PF has initialized the
* XXX adapter or we use the Firmware Configuration File. We
* XXX should really search through the Host Buffer Size register
* XXX array for the appropriately sized buffer indices.
*/
RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
};
static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
#define MIN_NAPI_WORK 1
static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
{
return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
}
static inline bool is_buf_mapped(const struct rx_sw_desc *d)
{
return !(d->dma_addr & RX_UNMAPPED_BUF);
}
/**
* txq_avail - return the number of available slots in a Tx queue
* @q: the Tx queue
*
* Returns the number of descriptors in a Tx queue available to write new
* packets.
*/
static inline unsigned int txq_avail(const struct sge_txq *q)
{
return q->size - 1 - q->in_use;
}
/**
* fl_cap - return the capacity of a free-buffer list
* @fl: the FL
*
* Returns the capacity of a free-buffer list. The capacity is less than
* the size because one descriptor needs to be left unpopulated, otherwise
* HW will think the FL is empty.
*/
static inline unsigned int fl_cap(const struct sge_fl *fl)
{
return fl->size - 8; /* 1 descriptor = 8 buffers */
}
static inline bool fl_starving(const struct sge_fl *fl)
{
return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
}
static int map_skb(struct device *dev, const struct sk_buff *skb,
dma_addr_t *addr)
{
const skb_frag_t *fp, *end;
const struct skb_shared_info *si;
*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
if (dma_mapping_error(dev, *addr))
goto out_err;
si = skb_shinfo(skb);
end = &si->frags[si->nr_frags];
for (fp = si->frags; fp < end; fp++) {
*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
DMA_TO_DEVICE);
if (dma_mapping_error(dev, *addr))
goto unwind;
}
return 0;
unwind:
while (fp-- > si->frags)
dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
out_err:
return -ENOMEM;
}
#ifdef CONFIG_NEED_DMA_MAP_STATE
static void unmap_skb(struct device *dev, const struct sk_buff *skb,
const dma_addr_t *addr)
{
const skb_frag_t *fp, *end;
const struct skb_shared_info *si;
dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
si = skb_shinfo(skb);
end = &si->frags[si->nr_frags];
for (fp = si->frags; fp < end; fp++)
dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
}
/**
* deferred_unmap_destructor - unmap a packet when it is freed
* @skb: the packet
*
* This is the packet destructor used for Tx packets that need to remain
* mapped until they are freed rather than until their Tx descriptors are
* freed.
*/
static void deferred_unmap_destructor(struct sk_buff *skb)
{
unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
}
#endif
static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
const struct ulptx_sgl *sgl, const struct sge_txq *q)
{
const struct ulptx_sge_pair *p;
unsigned int nfrags = skb_shinfo(skb)->nr_frags;
if (likely(skb_headlen(skb)))
dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
DMA_TO_DEVICE);
else {
dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
DMA_TO_DEVICE);
nfrags--;
}
/*
* the complexity below is because of the possibility of a wrap-around
* in the middle of an SGL
*/
for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
ntohl(p->len[0]), DMA_TO_DEVICE);
dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
ntohl(p->len[1]), DMA_TO_DEVICE);
p++;
} else if ((u8 *)p == (u8 *)q->stat) {
p = (const struct ulptx_sge_pair *)q->desc;
goto unmap;
} else if ((u8 *)p + 8 == (u8 *)q->stat) {
const __be64 *addr = (const __be64 *)q->desc;
dma_unmap_page(dev, be64_to_cpu(addr[0]),
ntohl(p->len[0]), DMA_TO_DEVICE);
dma_unmap_page(dev, be64_to_cpu(addr[1]),
ntohl(p->len[1]), DMA_TO_DEVICE);
p = (const struct ulptx_sge_pair *)&addr[2];
} else {
const __be64 *addr = (const __be64 *)q->desc;
dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
ntohl(p->len[0]), DMA_TO_DEVICE);
dma_unmap_page(dev, be64_to_cpu(addr[0]),
ntohl(p->len[1]), DMA_TO_DEVICE);
p = (const struct ulptx_sge_pair *)&addr[1];
}
}
if (nfrags) {
__be64 addr;
if ((u8 *)p == (u8 *)q->stat)
p = (const struct ulptx_sge_pair *)q->desc;
addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
*(const __be64 *)q->desc;
dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
DMA_TO_DEVICE);
}
}
/**
* free_tx_desc - reclaims Tx descriptors and their buffers
* @adapter: the adapter
* @q: the Tx queue to reclaim descriptors from
* @n: the number of descriptors to reclaim
* @unmap: whether the buffers should be unmapped for DMA
*
* Reclaims Tx descriptors from an SGE Tx queue and frees the associated
* Tx buffers. Called with the Tx queue lock held.
*/
static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
unsigned int n, bool unmap)
{
struct tx_sw_desc *d;
unsigned int cidx = q->cidx;
struct device *dev = adap->pdev_dev;
d = &q->sdesc[cidx];
while (n--) {
if (d->skb) { /* an SGL is present */
if (unmap)
unmap_sgl(dev, d->skb, d->sgl, q);
dev_consume_skb_any(d->skb);
d->skb = NULL;
}
++d;
if (++cidx == q->size) {
cidx = 0;
d = q->sdesc;
}
}
q->cidx = cidx;
}
/*
* Return the number of reclaimable descriptors in a Tx queue.
*/
static inline int reclaimable(const struct sge_txq *q)
{
int hw_cidx = ntohs(q->stat->cidx);
hw_cidx -= q->cidx;
return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
}
/**
* reclaim_completed_tx - reclaims completed Tx descriptors
* @adap: the adapter
* @q: the Tx queue to reclaim completed descriptors from
* @unmap: whether the buffers should be unmapped for DMA
*
* Reclaims Tx descriptors that the SGE has indicated it has processed,
* and frees the associated buffers if possible. Called with the Tx
* queue locked.
*/
static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
bool unmap)
{
int avail = reclaimable(q);
if (avail) {
/*
* Limit the amount of clean up work we do at a time to keep
* the Tx lock hold time O(1).
*/
if (avail > MAX_TX_RECLAIM)
avail = MAX_TX_RECLAIM;
free_tx_desc(adap, q, avail, unmap);
q->in_use -= avail;
}
}
static inline int get_buf_size(struct adapter *adapter,
const struct rx_sw_desc *d)
{
struct sge *s = &adapter->sge;
unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
int buf_size;
switch (rx_buf_size_idx) {
case RX_SMALL_PG_BUF:
buf_size = PAGE_SIZE;
break;
case RX_LARGE_PG_BUF:
buf_size = PAGE_SIZE << s->fl_pg_order;
break;
case RX_SMALL_MTU_BUF:
buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
break;
case RX_LARGE_MTU_BUF:
buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
break;
default:
BUG_ON(1);
}
return buf_size;
}
/**
* free_rx_bufs - free the Rx buffers on an SGE free list
* @adap: the adapter
* @q: the SGE free list to free buffers from
* @n: how many buffers to free
*
* Release the next @n buffers on an SGE free-buffer Rx queue. The
* buffers must be made inaccessible to HW before calling this function.
*/
static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
{
while (n--) {
struct rx_sw_desc *d = &q->sdesc[q->cidx];
if (is_buf_mapped(d))
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
get_buf_size(adap, d),
PCI_DMA_FROMDEVICE);
put_page(d->page);
d->page = NULL;
if (++q->cidx == q->size)
q->cidx = 0;
q->avail--;
}
}
/**
* unmap_rx_buf - unmap the current Rx buffer on an SGE free list
* @adap: the adapter
* @q: the SGE free list
*
* Unmap the current buffer on an SGE free-buffer Rx queue. The
* buffer must be made inaccessible to HW before calling this function.
*
* This is similar to @free_rx_bufs above but does not free the buffer.
* Do note that the FL still loses any further access to the buffer.
*/
static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
{
struct rx_sw_desc *d = &q->sdesc[q->cidx];
if (is_buf_mapped(d))
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
d->page = NULL;
if (++q->cidx == q->size)
q->cidx = 0;
q->avail--;
}
static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
{
u32 val;
if (q->pend_cred >= 8) {
if (is_t4(adap->params.chip))
val = PIDX_V(q->pend_cred / 8);
else
val = PIDX_T5_V(q->pend_cred / 8) |
DBTYPE_F;
val |= DBPRIO_F;
wmb();
/* If we don't have access to the new User Doorbell (T5+), use
* the old doorbell mechanism; otherwise use the new BAR2
* mechanism.
*/
if (unlikely(q->bar2_addr == NULL)) {
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
val | QID_V(q->cntxt_id));
} else {
writel(val | QID_V(q->bar2_qid),
q->bar2_addr + SGE_UDB_KDOORBELL);
/* This Write memory Barrier will force the write to
* the User Doorbell area to be flushed.
*/
wmb();
}
q->pend_cred &= 7;
}
}
static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
dma_addr_t mapping)
{
sd->page = pg;
sd->dma_addr = mapping; /* includes size low bits */
}
/**
* refill_fl - refill an SGE Rx buffer ring
* @adap: the adapter
* @q: the ring to refill
* @n: the number of new buffers to allocate
* @gfp: the gfp flags for the allocations
*
* (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
* allocated with the supplied gfp flags. The caller must assure that
* @n does not exceed the queue's capacity. If afterwards the queue is
* found critically low mark it as starving in the bitmap of starving FLs.
*
* Returns the number of buffers allocated.
*/
static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
gfp_t gfp)
{
struct sge *s = &adap->sge;
struct page *pg;
dma_addr_t mapping;
unsigned int cred = q->avail;
__be64 *d = &q->desc[q->pidx];
struct rx_sw_desc *sd = &q->sdesc[q->pidx];
gfp |= __GFP_NOWARN;
if (s->fl_pg_order == 0)
goto alloc_small_pages;
/*
* Prefer large buffers
*/
while (n) {
pg = __dev_alloc_pages(gfp, s->fl_pg_order);
if (unlikely(!pg)) {
q->large_alloc_failed++;
break; /* fall back to single pages */
}
mapping = dma_map_page(adap->pdev_dev, pg, 0,
PAGE_SIZE << s->fl_pg_order,
PCI_DMA_FROMDEVICE);
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
__free_pages(pg, s->fl_pg_order);
goto out; /* do not try small pages for this error */
}
mapping |= RX_LARGE_PG_BUF;
*d++ = cpu_to_be64(mapping);
set_rx_sw_desc(sd, pg, mapping);
sd++;
q->avail++;
if (++q->pidx == q->size) {
q->pidx = 0;
sd = q->sdesc;
d = q->desc;
}
n--;
}
alloc_small_pages:
while (n--) {
pg = __dev_alloc_page(gfp);
if (unlikely(!pg)) {
q->alloc_failed++;
break;
}
mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
put_page(pg);
goto out;
}
*d++ = cpu_to_be64(mapping);
set_rx_sw_desc(sd, pg, mapping);
sd++;
q->avail++;
if (++q->pidx == q->size) {
q->pidx = 0;
sd = q->sdesc;
d = q->desc;
}
}
out: cred = q->avail - cred;
q->pend_cred += cred;
ring_fl_db(adap, q);
if (unlikely(fl_starving(q))) {
smp_wmb();
set_bit(q->cntxt_id - adap->sge.egr_start,
adap->sge.starving_fl);
}
return cred;
}
static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
{
refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
GFP_ATOMIC);
}
/**
* alloc_ring - allocate resources for an SGE descriptor ring
* @dev: the PCI device's core device
* @nelem: the number of descriptors
* @elem_size: the size of each descriptor
* @sw_size: the size of the SW state associated with each ring element
* @phys: the physical address of the allocated ring
* @metadata: address of the array holding the SW state for the ring
* @stat_size: extra space in HW ring for status information
* @node: preferred node for memory allocations
*
* Allocates resources for an SGE descriptor ring, such as Tx queues,
* free buffer lists, or response queues. Each SGE ring requires
* space for its HW descriptors plus, optionally, space for the SW state
* associated with each HW entry (the metadata). The function returns
* three values: the virtual address for the HW ring (the return value
* of the function), the bus address of the HW ring, and the address
* of the SW ring.
*/
static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
size_t sw_size, dma_addr_t *phys, void *metadata,
size_t stat_size, int node)
{
size_t len = nelem * elem_size + stat_size;
void *s = NULL;
void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
if (!p)
return NULL;
if (sw_size) {
s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
if (!s) {
dma_free_coherent(dev, len, p, *phys);
return NULL;
}
}
if (metadata)
*(void **)metadata = s;
memset(p, 0, len);
return p;
}
/**
* sgl_len - calculates the size of an SGL of the given capacity
* @n: the number of SGL entries
*
* Calculates the number of flits needed for a scatter/gather list that
* can hold the given number of entries.
*/
static inline unsigned int sgl_len(unsigned int n)
{
n--;
return (3 * n) / 2 + (n & 1) + 2;
}
/**
* flits_to_desc - returns the num of Tx descriptors for the given flits
* @n: the number of flits
*
* Returns the number of Tx descriptors needed for the supplied number
* of flits.
*/
static inline unsigned int flits_to_desc(unsigned int n)
{
BUG_ON(n > SGE_MAX_WR_LEN / 8);
return DIV_ROUND_UP(n, 8);
}
/**
* is_eth_imm - can an Ethernet packet be sent as immediate data?
* @skb: the packet
*
* Returns whether an Ethernet packet is small enough to fit as
* immediate data. Return value corresponds to headroom required.
*/
static inline int is_eth_imm(const struct sk_buff *skb)
{
int hdrlen = skb_shinfo(skb)->gso_size ?
sizeof(struct cpl_tx_pkt_lso_core) : 0;
hdrlen += sizeof(struct cpl_tx_pkt);
if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
return hdrlen;
return 0;
}
/**
* calc_tx_flits - calculate the number of flits for a packet Tx WR
* @skb: the packet
*
* Returns the number of flits needed for a Tx WR for the given Ethernet
* packet, including the needed WR and CPL headers.
*/
static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
{
unsigned int flits;
int hdrlen = is_eth_imm(skb);
if (hdrlen)
return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
if (skb_shinfo(skb)->gso_size)
flits += 2;
return flits;
}
/**
* calc_tx_descs - calculate the number of Tx descriptors for a packet
* @skb: the packet
*
* Returns the number of Tx descriptors needed for the given Ethernet
* packet, including the needed WR and CPL headers.
*/
static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
{
return flits_to_desc(calc_tx_flits(skb));
}
/**
* write_sgl - populate a scatter/gather list for a packet
* @skb: the packet
* @q: the Tx queue we are writing into
* @sgl: starting location for writing the SGL
* @end: points right after the end of the SGL
* @start: start offset into skb main-body data to include in the SGL
* @addr: the list of bus addresses for the SGL elements
*
* Generates a gather list for the buffers that make up a packet.
* The caller must provide adequate space for the SGL that will be written.
* The SGL includes all of the packet's page fragments and the data in its
* main body except for the first @start bytes. @sgl must be 16-byte
* aligned and within a Tx descriptor with available space. @end points
* right after the end of the SGL but does not account for any potential
* wrap around, i.e., @end > @sgl.
*/
static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
struct ulptx_sgl *sgl, u64 *end, unsigned int start,
const dma_addr_t *addr)
{
unsigned int i, len;
struct ulptx_sge_pair *to;
const struct skb_shared_info *si = skb_shinfo(skb);
unsigned int nfrags = si->nr_frags;
struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
len = skb_headlen(skb) - start;
if (likely(len)) {
sgl->len0 = htonl(len);
sgl->addr0 = cpu_to_be64(addr[0] + start);
nfrags++;
} else {
sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
sgl->addr0 = cpu_to_be64(addr[1]);
}
sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
ULPTX_NSGE_V(nfrags));
if (likely(--nfrags == 0))
return;
/*
* Most of the complexity below deals with the possibility we hit the
* end of the queue in the middle of writing the SGL. For this case
* only we create the SGL in a temporary buffer and then copy it.
*/
to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
to->addr[0] = cpu_to_be64(addr[i]);
to->addr[1] = cpu_to_be64(addr[++i]);
}
if (nfrags) {
to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
to->len[1] = cpu_to_be32(0);
to->addr[0] = cpu_to_be64(addr[i + 1]);
}
if (unlikely((u8 *)end > (u8 *)q->stat)) {
unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
if (likely(part0))
memcpy(sgl->sge, buf, part0);
part1 = (u8 *)end - (u8 *)q->stat;
memcpy(q->desc, (u8 *)buf + part0, part1);
end = (void *)q->desc + part1;
}
if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
*end = 0;
}
/* This function copies 64 byte coalesced work request to
* memory mapped BAR2 space. For coalesced WR SGE fetches
* data from the FIFO instead of from Host.
*/
static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
{
int count = 8;
while (count) {
writeq(*src, dst);
src++;
dst++;
count--;
}
}
/**
* ring_tx_db - check and potentially ring a Tx queue's doorbell
* @adap: the adapter
* @q: the Tx queue
* @n: number of new descriptors to give to HW
*
* Ring the doorbel for a Tx queue.
*/
static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
{
wmb(); /* write descriptors before telling HW */
/* If we don't have access to the new User Doorbell (T5+), use the old
* doorbell mechanism; otherwise use the new BAR2 mechanism.
*/
if (unlikely(q->bar2_addr == NULL)) {
u32 val = PIDX_V(n);
unsigned long flags;
/* For T4 we need to participate in the Doorbell Recovery
* mechanism.
*/
spin_lock_irqsave(&q->db_lock, flags);
if (!q->db_disabled)
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
QID_V(q->cntxt_id) | val);
else
q->db_pidx_inc += n;
q->db_pidx = q->pidx;
spin_unlock_irqrestore(&q->db_lock, flags);
} else {
u32 val = PIDX_T5_V(n);
/* T4 and later chips share the same PIDX field offset within
* the doorbell, but T5 and later shrank the field in order to
* gain a bit for Doorbell Priority. The field was absurdly
* large in the first place (14 bits) so we just use the T5
* and later limits and warn if a Queue ID is too large.
*/
WARN_ON(val & DBPRIO_F);
/* If we're only writing a single TX Descriptor and we can use
* Inferred QID registers, we can use the Write Combining
* Gather Buffer; otherwise we use the simple doorbell.
*/
if (n == 1 && q->bar2_qid == 0) {
int index = (q->pidx
? (q->pidx - 1)
: (q->size - 1));
u64 *wr = (u64 *)&q->desc[index];
cxgb_pio_copy((u64 __iomem *)
(q->bar2_addr + SGE_UDB_WCDOORBELL),
wr);
} else {
writel(val | QID_V(q->bar2_qid),
q->bar2_addr + SGE_UDB_KDOORBELL);
}
/* This Write Memory Barrier will force the write to the User
* Doorbell area to be flushed. This is needed to prevent
* writes on different CPUs for the same queue from hitting
* the adapter out of order. This is required when some Work
* Requests take the Write Combine Gather Buffer path (user
* doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
* take the traditional path where we simply increment the
* PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
* hardware DMA read the actual Work Request.
*/
wmb();
}
}
/**
* inline_tx_skb - inline a packet's data into Tx descriptors
* @skb: the packet
* @q: the Tx queue where the packet will be inlined
* @pos: starting position in the Tx queue where to inline the packet
*
* Inline a packet's contents directly into Tx descriptors, starting at
* the given position within the Tx DMA ring.
* Most of the complexity of this operation is dealing with wrap arounds
* in the middle of the packet we want to inline.
*/
static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
void *pos)
{
u64 *p;
int left = (void *)q->stat - pos;
if (likely(skb->len <= left)) {
if (likely(!skb->data_len))
skb_copy_from_linear_data(skb, pos, skb->len);
else
skb_copy_bits(skb, 0, pos, skb->len);
pos += skb->len;
} else {
skb_copy_bits(skb, 0, pos, left);
skb_copy_bits(skb, left, q->desc, skb->len - left);
pos = (void *)q->desc + (skb->len - left);
}
/* 0-pad to multiple of 16 */
p = PTR_ALIGN(pos, 8);
if ((uintptr_t)p & 8)
*p = 0;
}
/*
* Figure out what HW csum a packet wants and return the appropriate control
* bits.
*/
static u64 hwcsum(const struct sk_buff *skb)
{
int csum_type;
const struct iphdr *iph = ip_hdr(skb);
if (iph->version == 4) {
if (iph->protocol == IPPROTO_TCP)
csum_type = TX_CSUM_TCPIP;
else if (iph->protocol == IPPROTO_UDP)
csum_type = TX_CSUM_UDPIP;
else {
nocsum: /*
* unknown protocol, disable HW csum
* and hope a bad packet is detected
*/
return TXPKT_L4CSUM_DIS;
}
} else {
/*
* this doesn't work with extension headers
*/
const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
if (ip6h->nexthdr == IPPROTO_TCP)
csum_type = TX_CSUM_TCPIP6;
else if (ip6h->nexthdr == IPPROTO_UDP)
csum_type = TX_CSUM_UDPIP6;
else
goto nocsum;
}
if (likely(csum_type >= TX_CSUM_TCPIP))
return TXPKT_CSUM_TYPE(csum_type) |
TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
else {
int start = skb_transport_offset(skb);
return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
TXPKT_CSUM_LOC(start + skb->csum_offset);
}
}
static void eth_txq_stop(struct sge_eth_txq *q)
{
netif_tx_stop_queue(q->txq);
q->q.stops++;
}
static inline void txq_advance(struct sge_txq *q, unsigned int n)
{
q->in_use += n;
q->pidx += n;
if (q->pidx >= q->size)
q->pidx -= q->size;
}
/**
* t4_eth_xmit - add a packet to an Ethernet Tx queue
* @skb: the packet
* @dev: the egress net device
*
* Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
*/
netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
{
int len;
u32 wr_mid;
u64 cntrl, *end;
int qidx, credits;
unsigned int flits, ndesc;
struct adapter *adap;
struct sge_eth_txq *q;
const struct port_info *pi;
struct fw_eth_tx_pkt_wr *wr;
struct cpl_tx_pkt_core *cpl;
const struct skb_shared_info *ssi;
dma_addr_t addr[MAX_SKB_FRAGS + 1];
bool immediate = false;
/*
* The chip min packet length is 10 octets but play safe and reject
* anything shorter than an Ethernet header.
*/
if (unlikely(skb->len < ETH_HLEN)) {
out_free: dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
pi = netdev_priv(dev);
adap = pi->adapter;
qidx = skb_get_queue_mapping(skb);
q = &adap->sge.ethtxq[qidx + pi->first_qset];
reclaim_completed_tx(adap, &q->q, true);
flits = calc_tx_flits(skb);
ndesc = flits_to_desc(flits);
credits = txq_avail(&q->q) - ndesc;
if (unlikely(credits < 0)) {
eth_txq_stop(q);
dev_err(adap->pdev_dev,
"%s: Tx ring %u full while queue awake!\n",
dev->name, qidx);
return NETDEV_TX_BUSY;
}
if (is_eth_imm(skb))
immediate = true;
if (!immediate &&
unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
q->mapping_err++;
goto out_free;
}
wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
if (unlikely(credits < ETHTXQ_STOP_THRES)) {
eth_txq_stop(q);
wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
}
wr = (void *)&q->q.desc[q->q.pidx];
wr->equiq_to_len16 = htonl(wr_mid);
wr->r3 = cpu_to_be64(0);
end = (u64 *)wr + flits;
len = immediate ? skb->len : 0;
ssi = skb_shinfo(skb);
if (ssi->gso_size) {
struct cpl_tx_pkt_lso *lso = (void *)wr;
bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
int l3hdr_len = skb_network_header_len(skb);
int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
len += sizeof(*lso);
wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
FW_WR_IMMDLEN_V(len));
lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
LSO_FIRST_SLICE | LSO_LAST_SLICE |
LSO_IPV6(v6) |
LSO_ETHHDR_LEN(eth_xtra_len / 4) |
LSO_IPHDR_LEN(l3hdr_len / 4) |
LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
lso->c.ipid_ofst = htons(0);
lso->c.mss = htons(ssi->gso_size);
lso->c.seqno_offset = htonl(0);
if (is_t4(adap->params.chip))
lso->c.len = htonl(skb->len);
else
lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len));
cpl = (void *)(lso + 1);
cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
TXPKT_IPHDR_LEN(l3hdr_len) |
TXPKT_ETHHDR_LEN(eth_xtra_len);
q->tso++;
q->tx_cso += ssi->gso_segs;
} else {
len += sizeof(*cpl);
wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
FW_WR_IMMDLEN_V(len));
cpl = (void *)(wr + 1);
if (skb->ip_summed == CHECKSUM_PARTIAL) {
cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
q->tx_cso++;
} else
cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
}
if (skb_vlan_tag_present(skb)) {
q->vlan_ins++;
cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb));
}
cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
cpl->pack = htons(0);
cpl->len = htons(skb->len);
cpl->ctrl1 = cpu_to_be64(cntrl);
if (immediate) {
inline_tx_skb(skb, &q->q, cpl + 1);
dev_consume_skb_any(skb);
} else {
int last_desc;
write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
addr);
skb_orphan(skb);
last_desc = q->q.pidx + ndesc - 1;
if (last_desc >= q->q.size)
last_desc -= q->q.size;
q->q.sdesc[last_desc].skb = skb;
q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
}
txq_advance(&q->q, ndesc);
ring_tx_db(adap, &q->q, ndesc);
return NETDEV_TX_OK;
}
/**
* reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
* @q: the SGE control Tx queue
*
* This is a variant of reclaim_completed_tx() that is used for Tx queues
* that send only immediate data (presently just the control queues) and
* thus do not have any sk_buffs to release.
*/
static inline void reclaim_completed_tx_imm(struct sge_txq *q)
{
int hw_cidx = ntohs(q->stat->cidx);
int reclaim = hw_cidx - q->cidx;
if (reclaim < 0)
reclaim += q->size;
q->in_use -= reclaim;
q->cidx = hw_cidx;
}
/**
* is_imm - check whether a packet can be sent as immediate data
* @skb: the packet
*
* Returns true if a packet can be sent as a WR with immediate data.
*/
static inline int is_imm(const struct sk_buff *skb)
{
return skb->len <= MAX_CTRL_WR_LEN;
}
/**
* ctrlq_check_stop - check if a control queue is full and should stop
* @q: the queue
* @wr: most recent WR written to the queue
*
* Check if a control queue has become full and should be stopped.
* We clean up control queue descriptors very lazily, only when we are out.
* If the queue is still full after reclaiming any completed descriptors
* we suspend it and have the last WR wake it up.
*/
static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
{
reclaim_completed_tx_imm(&q->q);
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
q->q.stops++;
q->full = 1;
}
}
/**
* ctrl_xmit - send a packet through an SGE control Tx queue
* @q: the control queue
* @skb: the packet
*
* Send a packet through an SGE control Tx queue. Packets sent through
* a control queue must fit entirely as immediate data.
*/
static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
{
unsigned int ndesc;
struct fw_wr_hdr *wr;
if (unlikely(!is_imm(skb))) {
WARN_ON(1);
dev_kfree_skb(skb);
return NET_XMIT_DROP;
}
ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
spin_lock(&q->sendq.lock);
if (unlikely(q->full)) {
skb->priority = ndesc; /* save for restart */
__skb_queue_tail(&q->sendq, skb);
spin_unlock(&q->sendq.lock);
return NET_XMIT_CN;
}
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
inline_tx_skb(skb, &q->q, wr);
txq_advance(&q->q, ndesc);
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
ctrlq_check_stop(q, wr);
ring_tx_db(q->adap, &q->q, ndesc);
spin_unlock(&q->sendq.lock);
kfree_skb(skb);
return NET_XMIT_SUCCESS;
}
/**
* restart_ctrlq - restart a suspended control queue
* @data: the control queue to restart
*
* Resumes transmission on a suspended Tx control queue.
*/
static void restart_ctrlq(unsigned long data)
{
struct sk_buff *skb;
unsigned int written = 0;
struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
spin_lock(&q->sendq.lock);
reclaim_completed_tx_imm(&q->q);
BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
struct fw_wr_hdr *wr;
unsigned int ndesc = skb->priority; /* previously saved */
/*
* Write descriptors and free skbs outside the lock to limit
* wait times. q->full is still set so new skbs will be queued.
*/
spin_unlock(&q->sendq.lock);
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
inline_tx_skb(skb, &q->q, wr);
kfree_skb(skb);
written += ndesc;
txq_advance(&q->q, ndesc);
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
unsigned long old = q->q.stops;
ctrlq_check_stop(q, wr);
if (q->q.stops != old) { /* suspended anew */
spin_lock(&q->sendq.lock);
goto ringdb;
}
}
if (written > 16) {
ring_tx_db(q->adap, &q->q, written);
written = 0;
}
spin_lock(&q->sendq.lock);
}
q->full = 0;
ringdb: if (written)
ring_tx_db(q->adap, &q->q, written);
spin_unlock(&q->sendq.lock);
}
/**
* t4_mgmt_tx - send a management message
* @adap: the adapter
* @skb: the packet containing the management message
*
* Send a management message through control queue 0.
*/
int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
{
int ret;
local_bh_disable();
ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
local_bh_enable();
return ret;
}
/**
* is_ofld_imm - check whether a packet can be sent as immediate data
* @skb: the packet
*
* Returns true if a packet can be sent as an offload WR with immediate
* data. We currently use the same limit as for Ethernet packets.
*/
static inline int is_ofld_imm(const struct sk_buff *skb)
{
return skb->len <= MAX_IMM_TX_PKT_LEN;
}
/**
* calc_tx_flits_ofld - calculate # of flits for an offload packet
* @skb: the packet
*
* Returns the number of flits needed for the given offload packet.
* These packets are already fully constructed and no additional headers
* will be added.
*/
static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
{
unsigned int flits, cnt;
if (is_ofld_imm(skb))
return DIV_ROUND_UP(skb->len, 8);
flits = skb_transport_offset(skb) / 8U; /* headers */
cnt = skb_shinfo(skb)->nr_frags;
if (skb_tail_pointer(skb) != skb_transport_header(skb))
cnt++;
return flits + sgl_len(cnt);
}
/**
* txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
* @adap: the adapter
* @q: the queue to stop
*
* Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
* inability to map packets. A periodic timer attempts to restart
* queues so marked.
*/
static void txq_stop_maperr(struct sge_ofld_txq *q)
{
q->mapping_err++;
q->q.stops++;
set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
q->adap->sge.txq_maperr);
}
/**
* ofldtxq_stop - stop an offload Tx queue that has become full
* @q: the queue to stop
* @skb: the packet causing the queue to become full
*
* Stops an offload Tx queue that has become full and modifies the packet
* being written to request a wakeup.
*/
static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
{
struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
q->q.stops++;
q->full = 1;
}
/**
* service_ofldq - restart a suspended offload queue
* @q: the offload queue
*
* Services an offload Tx queue by moving packets from its packet queue
* to the HW Tx ring. The function starts and ends with the queue locked.
*/
static void service_ofldq(struct sge_ofld_txq *q)
{
u64 *pos;
int credits;
struct sk_buff *skb;
unsigned int written = 0;
unsigned int flits, ndesc;
while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
/*
* We drop the lock but leave skb on sendq, thus retaining
* exclusive access to the state of the queue.
*/
spin_unlock(&q->sendq.lock);
reclaim_completed_tx(q->adap, &q->q, false);
flits = skb->priority; /* previously saved */
ndesc = flits_to_desc(flits);
credits = txq_avail(&q->q) - ndesc;
BUG_ON(credits < 0);
if (unlikely(credits < TXQ_STOP_THRES))
ofldtxq_stop(q, skb);
pos = (u64 *)&q->q.desc[q->q.pidx];
if (is_ofld_imm(skb))
inline_tx_skb(skb, &q->q, pos);
else if (map_skb(q->adap->pdev_dev, skb,
(dma_addr_t *)skb->head)) {
txq_stop_maperr(q);
spin_lock(&q->sendq.lock);
break;
} else {
int last_desc, hdr_len = skb_transport_offset(skb);
memcpy(pos, skb->data, hdr_len);
write_sgl(skb, &q->q, (void *)pos + hdr_len,
pos + flits, hdr_len,
(dma_addr_t *)skb->head);
#ifdef CONFIG_NEED_DMA_MAP_STATE
skb->dev = q->adap->port[0];
skb->destructor = deferred_unmap_destructor;
#endif
last_desc = q->q.pidx + ndesc - 1;
if (last_desc >= q->q.size)
last_desc -= q->q.size;
q->q.sdesc[last_desc].skb = skb;
}
txq_advance(&q->q, ndesc);
written += ndesc;
if (unlikely(written > 32)) {
ring_tx_db(q->adap, &q->q, written);
written = 0;
}
spin_lock(&q->sendq.lock);
__skb_unlink(skb, &q->sendq);
if (is_ofld_imm(skb))
kfree_skb(skb);
}
if (likely(written))
ring_tx_db(q->adap, &q->q, written);
}
/**
* ofld_xmit - send a packet through an offload queue
* @q: the Tx offload queue
* @skb: the packet
*
* Send an offload packet through an SGE offload queue.
*/
static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
{
skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
spin_lock(&q->sendq.lock);
__skb_queue_tail(&q->sendq, skb);
if (q->sendq.qlen == 1)
service_ofldq(q);
spin_unlock(&q->sendq.lock);
return NET_XMIT_SUCCESS;
}
/**
* restart_ofldq - restart a suspended offload queue
* @data: the offload queue to restart
*
* Resumes transmission on a suspended Tx offload queue.
*/
static void restart_ofldq(unsigned long data)
{
struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
spin_lock(&q->sendq.lock);
q->full = 0; /* the queue actually is completely empty now */
service_ofldq(q);
spin_unlock(&q->sendq.lock);
}
/**
* skb_txq - return the Tx queue an offload packet should use
* @skb: the packet
*
* Returns the Tx queue an offload packet should use as indicated by bits
* 1-15 in the packet's queue_mapping.
*/
static inline unsigned int skb_txq(const struct sk_buff *skb)
{
return skb->queue_mapping >> 1;
}
/**
* is_ctrl_pkt - return whether an offload packet is a control packet
* @skb: the packet
*
* Returns whether an offload packet should use an OFLD or a CTRL
* Tx queue as indicated by bit 0 in the packet's queue_mapping.
*/
static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
{
return skb->queue_mapping & 1;
}
static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
{
unsigned int idx = skb_txq(skb);
if (unlikely(is_ctrl_pkt(skb))) {
/* Single ctrl queue is a requirement for LE workaround path */
if (adap->tids.nsftids)
idx = 0;
return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
}
return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
}
/**
* t4_ofld_send - send an offload packet
* @adap: the adapter
* @skb: the packet
*
* Sends an offload packet. We use the packet queue_mapping to select the
* appropriate Tx queue as follows: bit 0 indicates whether the packet
* should be sent as regular or control, bits 1-15 select the queue.
*/
int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
{
int ret;
local_bh_disable();
ret = ofld_send(adap, skb);
local_bh_enable();
return ret;
}
/**
* cxgb4_ofld_send - send an offload packet
* @dev: the net device
* @skb: the packet
*
* Sends an offload packet. This is an exported version of @t4_ofld_send,
* intended for ULDs.
*/
int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
{
return t4_ofld_send(netdev2adap(dev), skb);
}
EXPORT_SYMBOL(cxgb4_ofld_send);
static inline void copy_frags(struct sk_buff *skb,
const struct pkt_gl *gl, unsigned int offset)
{
int i;
/* usually there's just one frag */
__skb_fill_page_desc(skb, 0, gl->frags[0].page,
gl->frags[0].offset + offset,
gl->frags[0].size - offset);
skb_shinfo(skb)->nr_frags = gl->nfrags;
for (i = 1; i < gl->nfrags; i++)
__skb_fill_page_desc(skb, i, gl->frags[i].page,
gl->frags[i].offset,
gl->frags[i].size);
/* get a reference to the last page, we don't own it */
get_page(gl->frags[gl->nfrags - 1].page);
}
/**
* cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
* @gl: the gather list
* @skb_len: size of sk_buff main body if it carries fragments
* @pull_len: amount of data to move to the sk_buff's main body
*
* Builds an sk_buff from the given packet gather list. Returns the
* sk_buff or %NULL if sk_buff allocation failed.
*/
struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
unsigned int skb_len, unsigned int pull_len)
{
struct sk_buff *skb;
/*
* Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
* size, which is expected since buffers are at least PAGE_SIZEd.
* In this case packets up to RX_COPY_THRES have only one fragment.
*/
if (gl->tot_len <= RX_COPY_THRES) {
skb = dev_alloc_skb(gl->tot_len);
if (unlikely(!skb))
goto out;
__skb_put(skb, gl->tot_len);
skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
} else {
skb = dev_alloc_skb(skb_len);
if (unlikely(!skb))
goto out;
__skb_put(skb, pull_len);
skb_copy_to_linear_data(skb, gl->va, pull_len);
copy_frags(skb, gl, pull_len);
skb->len = gl->tot_len;
skb->data_len = skb->len - pull_len;
skb->truesize += skb->data_len;
}
out: return skb;
}
EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
/**
* t4_pktgl_free - free a packet gather list
* @gl: the gather list
*
* Releases the pages of a packet gather list. We do not own the last
* page on the list and do not free it.
*/
static void t4_pktgl_free(const struct pkt_gl *gl)
{
int n;
const struct page_frag *p;
for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
put_page(p->page);
}
/*
* Process an MPS trace packet. Give it an unused protocol number so it won't
* be delivered to anyone and send it to the stack for capture.
*/
static noinline int handle_trace_pkt(struct adapter *adap,
const struct pkt_gl *gl)
{
struct sk_buff *skb;
skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
if (unlikely(!skb)) {
t4_pktgl_free(gl);
return 0;
}
if (is_t4(adap->params.chip))
__skb_pull(skb, sizeof(struct cpl_trace_pkt));
else
__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
skb_reset_mac_header(skb);
skb->protocol = htons(0xffff);
skb->dev = adap->port[0];
netif_receive_skb(skb);
return 0;
}
static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
const struct cpl_rx_pkt *pkt)
{
struct adapter *adapter = rxq->rspq.adap;
struct sge *s = &adapter->sge;
int ret;
struct sk_buff *skb;
skb = napi_get_frags(&rxq->rspq.napi);
if (unlikely(!skb)) {
t4_pktgl_free(gl);
rxq->stats.rx_drops++;
return;
}
copy_frags(skb, gl, s->pktshift);
skb->len = gl->tot_len - s->pktshift;
skb->data_len = skb->len;
skb->truesize += skb->data_len;
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb_record_rx_queue(skb, rxq->rspq.idx);
if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
PKT_HASH_TYPE_L3);
if (unlikely(pkt->vlan_ex)) {
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
rxq->stats.vlan_ex++;
}
ret = napi_gro_frags(&rxq->rspq.napi);
if (ret == GRO_HELD)
rxq->stats.lro_pkts++;
else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
rxq->stats.lro_merged++;
rxq->stats.pkts++;
rxq->stats.rx_cso++;
}
/**
* t4_ethrx_handler - process an ingress ethernet packet
* @q: the response queue that received the packet
* @rsp: the response queue descriptor holding the RX_PKT message
* @si: the gather list of packet fragments
*
* Process an ingress ethernet packet and deliver it to the stack.
*/
int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
const struct pkt_gl *si)
{
bool csum_ok;
struct sk_buff *skb;
const struct cpl_rx_pkt *pkt;
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
struct sge *s = &q->adap->sge;
int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
return handle_trace_pkt(q->adap, si);
pkt = (const struct cpl_rx_pkt *)rsp;
csum_ok = pkt->csum_calc && !pkt->err_vec &&
(q->netdev->features & NETIF_F_RXCSUM);
if ((pkt->l2info & htonl(RXF_TCP_F)) &&
(q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
do_gro(rxq, si, pkt);
return 0;
}
skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
if (unlikely(!skb)) {
t4_pktgl_free(si);
rxq->stats.rx_drops++;
return 0;
}
__skb_pull(skb, s->pktshift); /* remove ethernet header padding */
skb->protocol = eth_type_trans(skb, q->netdev);
skb_record_rx_queue(skb, q->idx);
if (skb->dev->features & NETIF_F_RXHASH)
skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
PKT_HASH_TYPE_L3);
rxq->stats.pkts++;
if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
if (!pkt->ip_frag) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
rxq->stats.rx_cso++;
} else if (pkt->l2info & htonl(RXF_IP_F)) {
__sum16 c = (__force __sum16)pkt->csum;
skb->csum = csum_unfold(c);
skb->ip_summed = CHECKSUM_COMPLETE;
rxq->stats.rx_cso++;
}
} else
skb_checksum_none_assert(skb);
if (unlikely(pkt->vlan_ex)) {
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
rxq->stats.vlan_ex++;
}
netif_receive_skb(skb);
return 0;
}
/**
* restore_rx_bufs - put back a packet's Rx buffers
* @si: the packet gather list
* @q: the SGE free list
* @frags: number of FL buffers to restore
*
* Puts back on an FL the Rx buffers associated with @si. The buffers
* have already been unmapped and are left unmapped, we mark them so to
* prevent further unmapping attempts.
*
* This function undoes a series of @unmap_rx_buf calls when we find out
* that the current packet can't be processed right away afterall and we
* need to come back to it later. This is a very rare event and there's
* no effort to make this particularly efficient.
*/
static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
int frags)
{
struct rx_sw_desc *d;
while (frags--) {
if (q->cidx == 0)
q->cidx = q->size - 1;
else
q->cidx--;
d = &q->sdesc[q->cidx];
d->page = si->frags[frags].page;
d->dma_addr |= RX_UNMAPPED_BUF;
q->avail++;
}
}
/**
* is_new_response - check if a response is newly written
* @r: the response descriptor
* @q: the response queue
*
* Returns true if a response descriptor contains a yet unprocessed
* response.
*/
static inline bool is_new_response(const struct rsp_ctrl *r,
const struct sge_rspq *q)
{
return RSPD_GEN(r->type_gen) == q->gen;
}
/**
* rspq_next - advance to the next entry in a response queue
* @q: the queue
*
* Updates the state of a response queue to advance it to the next entry.
*/
static inline void rspq_next(struct sge_rspq *q)
{
q->cur_desc = (void *)q->cur_desc + q->iqe_len;
if (unlikely(++q->cidx == q->size)) {
q->cidx = 0;
q->gen ^= 1;
q->cur_desc = q->desc;
}
}
/**
* process_responses - process responses from an SGE response queue
* @q: the ingress queue to process
* @budget: how many responses can be processed in this round
*
* Process responses from an SGE response queue up to the supplied budget.
* Responses include received packets as well as control messages from FW
* or HW.
*
* Additionally choose the interrupt holdoff time for the next interrupt
* on this queue. If the system is under memory shortage use a fairly
* long delay to help recovery.
*/
static int process_responses(struct sge_rspq *q, int budget)
{
int ret, rsp_type;
int budget_left = budget;
const struct rsp_ctrl *rc;
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
struct adapter *adapter = q->adap;
struct sge *s = &adapter->sge;
while (likely(budget_left)) {
rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
if (!is_new_response(rc, q))
break;
rmb();
rsp_type = RSPD_TYPE(rc->type_gen);
if (likely(rsp_type == RSP_TYPE_FLBUF)) {
struct page_frag *fp;
struct pkt_gl si;
const struct rx_sw_desc *rsd;
u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
if (len & RSPD_NEWBUF) {
if (likely(q->offset > 0)) {
free_rx_bufs(q->adap, &rxq->fl, 1);
q->offset = 0;
}
len = RSPD_LEN(len);
}
si.tot_len = len;
/* gather packet fragments */
for (frags = 0, fp = si.frags; ; frags++, fp++) {
rsd = &rxq->fl.sdesc[rxq->fl.cidx];
bufsz = get_buf_size(adapter, rsd);
fp->page = rsd->page;
fp->offset = q->offset;
fp->size = min(bufsz, len);
len -= fp->size;
if (!len)
break;
unmap_rx_buf(q->adap, &rxq->fl);
}
/*
* Last buffer remains mapped so explicitly make it
* coherent for CPU access.
*/
dma_sync_single_for_cpu(q->adap->pdev_dev,
get_buf_addr(rsd),
fp->size, DMA_FROM_DEVICE);
si.va = page_address(si.frags[0].page) +
si.frags[0].offset;
prefetch(si.va);
si.nfrags = frags + 1;
ret = q->handler(q, q->cur_desc, &si);
if (likely(ret == 0))
q->offset += ALIGN(fp->size, s->fl_align);
else
restore_rx_bufs(&si, &rxq->fl, frags);
} else if (likely(rsp_type == RSP_TYPE_CPL)) {
ret = q->handler(q, q->cur_desc, NULL);
} else {
ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
}
if (unlikely(ret)) {
/* couldn't process descriptor, back off for recovery */
q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
break;
}
rspq_next(q);
budget_left--;
}
if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
__refill_fl(q->adap, &rxq->fl);
return budget - budget_left;
}
/**
* napi_rx_handler - the NAPI handler for Rx processing
* @napi: the napi instance
* @budget: how many packets we can process in this round
*
* Handler for new data events when using NAPI. This does not need any
* locking or protection from interrupts as data interrupts are off at
* this point and other adapter interrupts do not interfere (the latter
* in not a concern at all with MSI-X as non-data interrupts then have
* a separate handler).
*/
static int napi_rx_handler(struct napi_struct *napi, int budget)
{
unsigned int params;
struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
int work_done = process_responses(q, budget);
u32 val;
if (likely(work_done < budget)) {
int timer_index;
napi_complete(napi);
timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params);
if (q->adaptive_rx) {
if (work_done > max(timer_pkt_quota[timer_index],
MIN_NAPI_WORK))
timer_index = (timer_index + 1);
else
timer_index = timer_index - 1;
timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
q->next_intr_params = QINTR_TIMER_IDX(timer_index) |
V_QINTR_CNT_EN;
params = q->next_intr_params;
} else {
params = q->next_intr_params;
q->next_intr_params = q->intr_params;
}
} else
params = QINTR_TIMER_IDX(7);
val = CIDXINC_V(work_done) | SEINTARM_V(params);
/* If we don't have access to the new User GTS (T5+), use the old
* doorbell mechanism; otherwise use the new BAR2 mechanism.
*/
if (unlikely(q->bar2_addr == NULL)) {
t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
val | INGRESSQID_V((u32)q->cntxt_id));
} else {
writel(val | INGRESSQID_V(q->bar2_qid),
q->bar2_addr + SGE_UDB_GTS);
wmb();
}
return work_done;
}
/*
* The MSI-X interrupt handler for an SGE response queue.
*/
irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
{
struct sge_rspq *q = cookie;
napi_schedule(&q->napi);
return IRQ_HANDLED;
}
/*
* Process the indirect interrupt entries in the interrupt queue and kick off
* NAPI for each queue that has generated an entry.
*/
static unsigned int process_intrq(struct adapter *adap)
{
unsigned int credits;
const struct rsp_ctrl *rc;
struct sge_rspq *q = &adap->sge.intrq;
u32 val;
spin_lock(&adap->sge.intrq_lock);
for (credits = 0; ; credits++) {
rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
if (!is_new_response(rc, q))
break;
rmb();
if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
unsigned int qid = ntohl(rc->pldbuflen_qid);
qid -= adap->sge.ingr_start;
napi_schedule(&adap->sge.ingr_map[qid]->napi);
}
rspq_next(q);
}
val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
/* If we don't have access to the new User GTS (T5+), use the old
* doorbell mechanism; otherwise use the new BAR2 mechanism.
*/
if (unlikely(q->bar2_addr == NULL)) {
t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
val | INGRESSQID_V(q->cntxt_id));
} else {
writel(val | INGRESSQID_V(q->bar2_qid),
q->bar2_addr + SGE_UDB_GTS);
wmb();
}
spin_unlock(&adap->sge.intrq_lock);
return credits;
}
/*
* The MSI interrupt handler, which handles data events from SGE response queues
* as well as error and other async events as they all use the same MSI vector.
*/
static irqreturn_t t4_intr_msi(int irq, void *cookie)
{
struct adapter *adap = cookie;
t4_slow_intr_handler(adap);
process_intrq(adap);
return IRQ_HANDLED;
}
/*
* Interrupt handler for legacy INTx interrupts.
* Handles data events from SGE response queues as well as error and other
* async events as they all use the same interrupt line.
*/
static irqreturn_t t4_intr_intx(int irq, void *cookie)
{
struct adapter *adap = cookie;
t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
if (t4_slow_intr_handler(adap) | process_intrq(adap))
return IRQ_HANDLED;
return IRQ_NONE; /* probably shared interrupt */
}
/**
* t4_intr_handler - select the top-level interrupt handler
* @adap: the adapter
*
* Selects the top-level interrupt handler based on the type of interrupts
* (MSI-X, MSI, or INTx).
*/
irq_handler_t t4_intr_handler(struct adapter *adap)
{
if (adap->flags & USING_MSIX)
return t4_sge_intr_msix;
if (adap->flags & USING_MSI)
return t4_intr_msi;
return t4_intr_intx;
}
static void sge_rx_timer_cb(unsigned long data)
{
unsigned long m;
unsigned int i, idma_same_state_cnt[2];
struct adapter *adap = (struct adapter *)data;
struct sge *s = &adap->sge;
for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
for (m = s->starving_fl[i]; m; m &= m - 1) {
struct sge_eth_rxq *rxq;
unsigned int id = __ffs(m) + i * BITS_PER_LONG;
struct sge_fl *fl = s->egr_map[id];
clear_bit(id, s->starving_fl);
smp_mb__after_atomic();
if (fl_starving(fl)) {
rxq = container_of(fl, struct sge_eth_rxq, fl);
if (napi_reschedule(&rxq->rspq.napi))
fl->starving++;
else
set_bit(id, s->starving_fl);
}
}
t4_write_reg(adap, SGE_DEBUG_INDEX_A, 13);
idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH_A);
idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
for (i = 0; i < 2; i++) {
u32 debug0, debug11;
/* If the Ingress DMA Same State Counter ("timer") is less
* than 1s, then we can reset our synthesized Stall Timer and
* continue. If we have previously emitted warnings about a
* potential stalled Ingress Queue, issue a note indicating
* that the Ingress Queue has resumed forward progress.
*/
if (idma_same_state_cnt[i] < s->idma_1s_thresh) {
if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH)
CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n",
i, s->idma_qid[i],
s->idma_stalled[i]/HZ);
s->idma_stalled[i] = 0;
continue;
}
/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
* domain. The first time we get here it'll be because we
* passed the 1s Threshold; each additional time it'll be
* because the RX Timer Callback is being fired on its regular
* schedule.
*
* If the stall is below our Potential Hung Ingress Queue
* Warning Threshold, continue.
*/
if (s->idma_stalled[i] == 0)
s->idma_stalled[i] = HZ;
else
s->idma_stalled[i] += RX_QCHECK_PERIOD;
if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH)
continue;
/* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */
if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0)
continue;
/* Read and save the SGE IDMA State and Queue ID information.
* We do this every time in case it changes across time ...
*/
t4_write_reg(adap, SGE_DEBUG_INDEX_A, 0);
debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
t4_write_reg(adap, SGE_DEBUG_INDEX_A, 11);
debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n",
i, s->idma_qid[i], s->idma_state[i],
s->idma_stalled[i]/HZ, debug0, debug11);
t4_sge_decode_idma_state(adap, s->idma_state[i]);
}
mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
}
static void sge_tx_timer_cb(unsigned long data)
{
unsigned long m;
unsigned int i, budget;
struct adapter *adap = (struct adapter *)data;
struct sge *s = &adap->sge;
for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
for (m = s->txq_maperr[i]; m; m &= m - 1) {
unsigned long id = __ffs(m) + i * BITS_PER_LONG;
struct sge_ofld_txq *txq = s->egr_map[id];
clear_bit(id, s->txq_maperr);
tasklet_schedule(&txq->qresume_tsk);
}
budget = MAX_TIMER_TX_RECLAIM;
i = s->ethtxq_rover;
do {
struct sge_eth_txq *q = &s->ethtxq[i];
if (q->q.in_use &&
time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
__netif_tx_trylock(q->txq)) {
int avail = reclaimable(&q->q);
if (avail) {
if (avail > budget)
avail = budget;
free_tx_desc(adap, &q->q, avail, true);
q->q.in_use -= avail;
budget -= avail;
}
__netif_tx_unlock(q->txq);
}
if (++i >= s->ethqsets)
i = 0;
} while (budget && i != s->ethtxq_rover);
s->ethtxq_rover = i;
mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
}
/**
* bar2_address - return the BAR2 address for an SGE Queue's Registers
* @adapter: the adapter
* @qid: the SGE Queue ID
* @qtype: the SGE Queue Type (Egress or Ingress)
* @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
*
* Returns the BAR2 address for the SGE Queue Registers associated with
* @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
* returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
* Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
* Registers are supported (e.g. the Write Combining Doorbell Buffer).
*/
static void __iomem *bar2_address(struct adapter *adapter,
unsigned int qid,
enum t4_bar2_qtype qtype,
unsigned int *pbar2_qid)
{
u64 bar2_qoffset;
int ret;
ret = cxgb4_t4_bar2_sge_qregs(adapter, qid, qtype,
&bar2_qoffset, pbar2_qid);
if (ret)
return NULL;
return adapter->bar2 + bar2_qoffset;
}
int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
struct net_device *dev, int intr_idx,
struct sge_fl *fl, rspq_handler_t hnd)
{
int ret, flsz = 0;
struct fw_iq_cmd c;
struct sge *s = &adap->sge;
struct port_info *pi = netdev_priv(dev);
/* Size needs to be multiple of 16, including status entry. */
iq->size = roundup(iq->size, 16);
iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
&iq->phys_addr, NULL, 0, NUMA_NO_NODE);
if (!iq->desc)
return -ENOMEM;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
FW_IQ_CMD_PFN_V(adap->fn) | FW_IQ_CMD_VFN_V(0));
c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
FW_LEN16(c));
c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
FW_IQ_CMD_IQANDST_V(intr_idx < 0) | FW_IQ_CMD_IQANUD_V(1) |
FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
-intr_idx - 1));
c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
FW_IQ_CMD_IQGTSMODE_F |
FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
c.iqsize = htons(iq->size);
c.iqaddr = cpu_to_be64(iq->phys_addr);
if (fl) {
fl->size = roundup(fl->size, 8);
fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
sizeof(struct rx_sw_desc), &fl->addr,
&fl->sdesc, s->stat_len, NUMA_NO_NODE);
if (!fl->desc)
goto fl_nomem;
flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN_F |
FW_IQ_CMD_FL0FETCHRO_F |
FW_IQ_CMD_FL0DATARO_F |
FW_IQ_CMD_FL0PADEN_F);
c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN_V(2) |
FW_IQ_CMD_FL0FBMAX_V(3));
c.fl0size = htons(flsz);
c.fl0addr = cpu_to_be64(fl->addr);
}
ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
if (ret)
goto err;
netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
iq->cur_desc = iq->desc;
iq->cidx = 0;
iq->gen = 1;
iq->next_intr_params = iq->intr_params;
iq->cntxt_id = ntohs(c.iqid);
iq->abs_id = ntohs(c.physiqid);
iq->bar2_addr = bar2_address(adap,
iq->cntxt_id,
T4_BAR2_QTYPE_INGRESS,
&iq->bar2_qid);
iq->size--; /* subtract status entry */
iq->netdev = dev;
iq->handler = hnd;
/* set offset to -1 to distinguish ingress queues without FL */
iq->offset = fl ? 0 : -1;
adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
if (fl) {
fl->cntxt_id = ntohs(c.fl0id);
fl->avail = fl->pend_cred = 0;
fl->pidx = fl->cidx = 0;
fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
/* Note, we must initialize the BAR2 Free List User Doorbell
* information before refilling the Free List!
*/
fl->bar2_addr = bar2_address(adap,
fl->cntxt_id,
T4_BAR2_QTYPE_EGRESS,
&fl->bar2_qid);
refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
}
return 0;
fl_nomem:
ret = -ENOMEM;
err:
if (iq->desc) {
dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
iq->desc, iq->phys_addr);
iq->desc = NULL;
}
if (fl && fl->desc) {
kfree(fl->sdesc);
fl->sdesc = NULL;
dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
fl->desc, fl->addr);
fl->desc = NULL;
}
return ret;
}
static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
{
q->cntxt_id = id;
q->bar2_addr = bar2_address(adap,
q->cntxt_id,
T4_BAR2_QTYPE_EGRESS,
&q->bar2_qid);
q->in_use = 0;
q->cidx = q->pidx = 0;
q->stops = q->restarts = 0;
q->stat = (void *)&q->desc[q->size];
spin_lock_init(&q->db_lock);
adap->sge.egr_map[id - adap->sge.egr_start] = q;
}
int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
struct net_device *dev, struct netdev_queue *netdevq,
unsigned int iqid)
{
int ret, nentries;
struct fw_eq_eth_cmd c;
struct sge *s = &adap->sge;
struct port_info *pi = netdev_priv(dev);
/* Add status entries */
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
netdev_queue_numa_node_read(netdevq));
if (!txq->q.desc)
return -ENOMEM;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
FW_EQ_ETH_CMD_PFN_V(adap->fn) |
FW_EQ_ETH_CMD_VFN_V(0));
c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
FW_EQ_ETH_CMD_VIID_V(pi->viid));
c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(2) |
FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
FW_EQ_ETH_CMD_FETCHRO_V(1) |
FW_EQ_ETH_CMD_IQID_V(iqid));
c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN_V(2) |
FW_EQ_ETH_CMD_FBMAX_V(3) |
FW_EQ_ETH_CMD_CIDXFTHRESH_V(5) |
FW_EQ_ETH_CMD_EQSIZE_V(nentries));
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
if (ret) {
kfree(txq->q.sdesc);
txq->q.sdesc = NULL;
dma_free_coherent(adap->pdev_dev,
nentries * sizeof(struct tx_desc),
txq->q.desc, txq->q.phys_addr);
txq->q.desc = NULL;
return ret;
}
init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
txq->txq = netdevq;
txq->tso = txq->tx_cso = txq->vlan_ins = 0;
txq->mapping_err = 0;
return 0;
}
int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
struct net_device *dev, unsigned int iqid,
unsigned int cmplqid)
{
int ret, nentries;
struct fw_eq_ctrl_cmd c;
struct sge *s = &adap->sge;
struct port_info *pi = netdev_priv(dev);
/* Add status entries */
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
sizeof(struct tx_desc), 0, &txq->q.phys_addr,
NULL, 0, NUMA_NO_NODE);
if (!txq->q.desc)
return -ENOMEM;
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
FW_EQ_CTRL_CMD_PFN_V(adap->fn) |
FW_EQ_CTRL_CMD_VFN_V(0));
c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
c.physeqid_pkd = htonl(0);
c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(2) |
FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
FW_EQ_CTRL_CMD_FETCHRO_F |
FW_EQ_CTRL_CMD_IQID_V(iqid));
c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN_V(2) |
FW_EQ_CTRL_CMD_FBMAX_V(3) |
FW_EQ_CTRL_CMD_CIDXFTHRESH_V(5) |
FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
if (ret) {
dma_free_coherent(adap->pdev_dev,
nentries * sizeof(struct tx_desc),
txq->q.desc, txq->q.phys_addr);
txq->q.desc = NULL;
return ret;
}
init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
txq->adap = adap;
skb_queue_head_init(&txq->sendq);
tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
txq->full = 0;
return 0;
}
int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
struct net_device *dev, unsigned int iqid)
{
int ret, nentries;
struct fw_eq_ofld_cmd c;
struct sge *s = &adap->sge;
struct port_info *pi = netdev_priv(dev);
/* Add status entries */
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
NUMA_NO_NODE);
if (!txq->q.desc)
return -ENOMEM;
memset(&c, 0, sizeof(c));
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
FW_EQ_OFLD_CMD_PFN_V(adap->fn) |
FW_EQ_OFLD_CMD_VFN_V(0));
c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(2) |
FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
FW_EQ_OFLD_CMD_FETCHRO_F |
FW_EQ_OFLD_CMD_IQID_V(iqid));
c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN_V(2) |
FW_EQ_OFLD_CMD_FBMAX_V(3) |
FW_EQ_OFLD_CMD_CIDXFTHRESH_V(5) |
FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
if (ret) {
kfree(txq->q.sdesc);
txq->q.sdesc = NULL;
dma_free_coherent(adap->pdev_dev,
nentries * sizeof(struct tx_desc),
txq->q.desc, txq->q.phys_addr);
txq->q.desc = NULL;
return ret;
}
init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
txq->adap = adap;
skb_queue_head_init(&txq->sendq);
tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
txq->full = 0;
txq->mapping_err = 0;
return 0;
}
static void free_txq(struct adapter *adap, struct sge_txq *q)
{
struct sge *s = &adap->sge;
dma_free_coherent(adap->pdev_dev,
q->size * sizeof(struct tx_desc) + s->stat_len,
q->desc, q->phys_addr);
q->cntxt_id = 0;
q->sdesc = NULL;
q->desc = NULL;
}
static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
struct sge_fl *fl)
{
struct sge *s = &adap->sge;
unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
rq->cntxt_id, fl_id, 0xffff);
dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
rq->desc, rq->phys_addr);
netif_napi_del(&rq->napi);
rq->netdev = NULL;
rq->cntxt_id = rq->abs_id = 0;
rq->desc = NULL;
if (fl) {
free_rx_bufs(adap, fl, fl->avail);
dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
fl->desc, fl->addr);
kfree(fl->sdesc);
fl->sdesc = NULL;
fl->cntxt_id = 0;
fl->desc = NULL;
}
}
/**
* t4_free_ofld_rxqs - free a block of consecutive Rx queues
* @adap: the adapter
* @n: number of queues
* @q: pointer to first queue
*
* Release the resources of a consecutive block of offload Rx queues.
*/
void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
{
for ( ; n; n--, q++)
if (q->rspq.desc)
free_rspq_fl(adap, &q->rspq,
q->fl.size ? &q->fl : NULL);
}
/**
* t4_free_sge_resources - free SGE resources
* @adap: the adapter
*
* Frees resources used by the SGE queue sets.
*/
void t4_free_sge_resources(struct adapter *adap)
{
int i;
struct sge_eth_rxq *eq = adap->sge.ethrxq;
struct sge_eth_txq *etq = adap->sge.ethtxq;
/* clean up Ethernet Tx/Rx queues */
for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
if (eq->rspq.desc)
free_rspq_fl(adap, &eq->rspq,
eq->fl.size ? &eq->fl : NULL);
if (etq->q.desc) {
t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
etq->q.cntxt_id);
free_tx_desc(adap, &etq->q, etq->q.in_use, true);
kfree(etq->q.sdesc);
free_txq(adap, &etq->q);
}
}
/* clean up RDMA and iSCSI Rx queues */
t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq);
t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
/* clean up offload Tx queues */
for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
if (q->q.desc) {
tasklet_kill(&q->qresume_tsk);
t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
q->q.cntxt_id);
free_tx_desc(adap, &q->q, q->q.in_use, false);
kfree(q->q.sdesc);
__skb_queue_purge(&q->sendq);
free_txq(adap, &q->q);
}
}
/* clean up control Tx queues */
for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
if (cq->q.desc) {
tasklet_kill(&cq->qresume_tsk);
t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
cq->q.cntxt_id);
__skb_queue_purge(&cq->sendq);
free_txq(adap, &cq->q);
}
}
if (adap->sge.fw_evtq.desc)
free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
if (adap->sge.intrq.desc)
free_rspq_fl(adap, &adap->sge.intrq, NULL);
/* clear the reverse egress queue map */
memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
}
void t4_sge_start(struct adapter *adap)
{
adap->sge.ethtxq_rover = 0;
mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
}
/**
* t4_sge_stop - disable SGE operation
* @adap: the adapter
*
* Stop tasklets and timers associated with the DMA engine. Note that
* this is effective only if measures have been taken to disable any HW
* events that may restart them.
*/
void t4_sge_stop(struct adapter *adap)
{
int i;
struct sge *s = &adap->sge;
if (in_interrupt()) /* actions below require waiting */
return;
if (s->rx_timer.function)
del_timer_sync(&s->rx_timer);
if (s->tx_timer.function)
del_timer_sync(&s->tx_timer);
for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
struct sge_ofld_txq *q = &s->ofldtxq[i];
if (q->q.desc)
tasklet_kill(&q->qresume_tsk);
}
for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
struct sge_ctrl_txq *cq = &s->ctrlq[i];
if (cq->q.desc)
tasklet_kill(&cq->qresume_tsk);
}
}
/**
* t4_sge_init_soft - grab core SGE values needed by SGE code
* @adap: the adapter
*
* We need to grab the SGE operating parameters that we need to have
* in order to do our job and make sure we can live with them.
*/
static int t4_sge_init_soft(struct adapter *adap)
{
struct sge *s = &adap->sge;
u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
u32 ingress_rx_threshold;
/*
* Verify that CPL messages are going to the Ingress Queue for
* process_responses() and that only packet data is going to the
* Free Lists.
*/
if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
return -EINVAL;
}
/*
* Validate the Host Buffer Register Array indices that we want to
* use ...
*
* XXX Note that we should really read through the Host Buffer Size
* XXX register array and find the indices of the Buffer Sizes which
* XXX meet our needs!
*/
#define READ_FL_BUF(x) \
t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
/* We only bother using the Large Page logic if the Large Page Buffer
* is larger than our Page Size Buffer.
*/
if (fl_large_pg <= fl_small_pg)
fl_large_pg = 0;
#undef READ_FL_BUF
/* The Page Size Buffer must be exactly equal to our Page Size and the
* Large Page Size Buffer should be 0 (per above) or a power of 2.
*/
if (fl_small_pg != PAGE_SIZE ||
(fl_large_pg & (fl_large_pg-1)) != 0) {
dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
fl_small_pg, fl_large_pg);
return -EINVAL;
}
if (fl_large_pg)
s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
fl_small_mtu, fl_large_mtu);
return -EINVAL;
}
/*
* Retrieve our RX interrupt holdoff timer values and counter
* threshold values from the SGE parameters.
*/
timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
s->timer_val[0] = core_ticks_to_us(adap,
TIMERVALUE0_G(timer_value_0_and_1));
s->timer_val[1] = core_ticks_to_us(adap,
TIMERVALUE1_G(timer_value_0_and_1));
s->timer_val[2] = core_ticks_to_us(adap,
TIMERVALUE2_G(timer_value_2_and_3));
s->timer_val[3] = core_ticks_to_us(adap,
TIMERVALUE3_G(timer_value_2_and_3));
s->timer_val[4] = core_ticks_to_us(adap,
TIMERVALUE4_G(timer_value_4_and_5));
s->timer_val[5] = core_ticks_to_us(adap,
TIMERVALUE5_G(timer_value_4_and_5));
ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
return 0;
}
/**
* t4_sge_init - initialize SGE
* @adap: the adapter
*
* Perform low-level SGE code initialization needed every time after a
* chip reset.
*/
int t4_sge_init(struct adapter *adap)
{
struct sge *s = &adap->sge;
u32 sge_control, sge_control2, sge_conm_ctrl;
unsigned int ingpadboundary, ingpackboundary;
int ret, egress_threshold;
/*
* Ingress Padding Boundary and Egress Status Page Size are set up by
* t4_fixup_host_params().
*/
sge_control = t4_read_reg(adap, SGE_CONTROL_A);
s->pktshift = PKTSHIFT_G(sge_control);
s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
/* T4 uses a single control field to specify both the PCIe Padding and
* Packing Boundary. T5 introduced the ability to specify these
* separately. The actual Ingress Packet Data alignment boundary
* within Packed Buffer Mode is the maximum of these two
* specifications.
*/
ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) +
INGPADBOUNDARY_SHIFT_X);
if (is_t4(adap->params.chip)) {
s->fl_align = ingpadboundary;
} else {
/* T5 has a different interpretation of one of the PCIe Packing
* Boundary values.
*/
sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
if (ingpackboundary == INGPACKBOUNDARY_16B_X)
ingpackboundary = 16;
else
ingpackboundary = 1 << (ingpackboundary +
INGPACKBOUNDARY_SHIFT_X);
s->fl_align = max(ingpadboundary, ingpackboundary);
}
ret = t4_sge_init_soft(adap);
if (ret < 0)
return ret;
/*
* A FL with <= fl_starve_thres buffers is starving and a periodic
* timer will attempt to refill it. This needs to be larger than the
* SGE's Egress Congestion Threshold. If it isn't, then we can get
* stuck waiting for new packets while the SGE is waiting for us to
* give it more Free List entries. (Note that the SGE's Egress
* Congestion Threshold is in units of 2 Free List pointers.) For T4,
* there was only a single field to control this. For T5 there's the
* original field which now only applies to Unpacked Mode Free List
* buffers and a new field which only applies to Packed Mode Free List
* buffers.
*/
sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
if (is_t4(adap->params.chip))
egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
else
egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
s->fl_starve_thres = 2*egress_threshold + 1;
setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000; /* 1 s */
s->idma_stalled[0] = 0;
s->idma_stalled[1] = 0;
spin_lock_init(&s->intrq_lock);
return 0;
}