linux/drivers/tty/serial/ioc3_serial.c

2201 lines
58 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2005 Silicon Graphics, Inc. All Rights Reserved.
*/
/*
* This file contains a module version of the ioc3 serial driver. This
* includes all the support functions needed (support functions, etc.)
* and the serial driver itself.
*/
#include <linux/errno.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/circ_buf.h>
#include <linux/serial_reg.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/serial_core.h>
#include <linux/ioc3.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
/*
* Interesting things about the ioc3
*/
#define LOGICAL_PORTS 2 /* rs232(0) and rs422(1) */
#define PORTS_PER_CARD 2
#define LOGICAL_PORTS_PER_CARD (PORTS_PER_CARD * LOGICAL_PORTS)
#define MAX_CARDS 8
#define MAX_LOGICAL_PORTS (LOGICAL_PORTS_PER_CARD * MAX_CARDS)
/* determine given the sio_ir what port it applies to */
#define GET_PORT_FROM_SIO_IR(_x) (_x & SIO_IR_SA) ? 0 : 1
/*
* we have 2 logical ports (rs232, rs422) for each physical port
* evens are rs232, odds are rs422
*/
#define GET_PHYSICAL_PORT(_x) ((_x) >> 1)
#define GET_LOGICAL_PORT(_x) ((_x) & 1)
#define IS_PHYSICAL_PORT(_x) !((_x) & 1)
#define IS_RS232(_x) !((_x) & 1)
static unsigned int Num_of_ioc3_cards;
static unsigned int Submodule_slot;
/* defining this will get you LOTS of great debug info */
//#define DEBUG_INTERRUPTS
#define DPRINT_CONFIG(_x...) ;
//#define DPRINT_CONFIG(_x...) printk _x
#define NOT_PROGRESS() ;
//#define NOT_PROGRESS() printk("%s : fails %d\n", __func__, __LINE__)
/* number of characters we want to transmit to the lower level at a time */
#define MAX_CHARS 256
#define FIFO_SIZE (MAX_CHARS-1) /* it's a uchar */
/* Device name we're using */
#define DEVICE_NAME "ttySIOC"
#define DEVICE_MAJOR 204
#define DEVICE_MINOR 116
/* flags for next_char_state */
#define NCS_BREAK 0x1
#define NCS_PARITY 0x2
#define NCS_FRAMING 0x4
#define NCS_OVERRUN 0x8
/* cause we need SOME parameters ... */
#define MIN_BAUD_SUPPORTED 1200
#define MAX_BAUD_SUPPORTED 115200
/* protocol types supported */
#define PROTO_RS232 0
#define PROTO_RS422 1
/* Notification types */
#define N_DATA_READY 0x01
#define N_OUTPUT_LOWAT 0x02
#define N_BREAK 0x04
#define N_PARITY_ERROR 0x08
#define N_FRAMING_ERROR 0x10
#define N_OVERRUN_ERROR 0x20
#define N_DDCD 0x40
#define N_DCTS 0x80
#define N_ALL_INPUT (N_DATA_READY | N_BREAK \
| N_PARITY_ERROR | N_FRAMING_ERROR \
| N_OVERRUN_ERROR | N_DDCD | N_DCTS)
#define N_ALL_OUTPUT N_OUTPUT_LOWAT
#define N_ALL_ERRORS (N_PARITY_ERROR | N_FRAMING_ERROR \
| N_OVERRUN_ERROR)
#define N_ALL (N_DATA_READY | N_OUTPUT_LOWAT | N_BREAK \
| N_PARITY_ERROR | N_FRAMING_ERROR \
| N_OVERRUN_ERROR | N_DDCD | N_DCTS)
#define SER_CLK_SPEED(prediv) ((22000000 << 1) / prediv)
#define SER_DIVISOR(x, clk) (((clk) + (x) * 8) / ((x) * 16))
#define DIVISOR_TO_BAUD(div, clk) ((clk) / 16 / (div))
/* Some masks */
#define LCR_MASK_BITS_CHAR (UART_LCR_WLEN5 | UART_LCR_WLEN6 \
| UART_LCR_WLEN7 | UART_LCR_WLEN8)
#define LCR_MASK_STOP_BITS (UART_LCR_STOP)
#define PENDING(_a, _p) (readl(&(_p)->vma->sio_ir) & (_a)->ic_enable)
#define RING_BUF_SIZE 4096
#define BUF_SIZE_BIT SBBR_L_SIZE
#define PROD_CONS_MASK PROD_CONS_PTR_4K
#define TOTAL_RING_BUF_SIZE (RING_BUF_SIZE * 4)
/* driver specific - one per card */
struct ioc3_card {
struct {
/* uart ports are allocated here */
struct uart_port icp_uart_port[LOGICAL_PORTS];
/* the ioc3_port used for this port */
struct ioc3_port *icp_port;
} ic_port[PORTS_PER_CARD];
/* currently enabled interrupts */
uint32_t ic_enable;
};
/* Local port info for each IOC3 serial port */
struct ioc3_port {
/* handy reference material */
struct uart_port *ip_port;
struct ioc3_card *ip_card;
struct ioc3_driver_data *ip_idd;
struct ioc3_submodule *ip_is;
/* pci mem addresses for this port */
struct ioc3_serialregs __iomem *ip_serial_regs;
struct ioc3_uartregs __iomem *ip_uart_regs;
/* Ring buffer page for this port */
dma_addr_t ip_dma_ringbuf;
/* vaddr of ring buffer */
struct ring_buffer *ip_cpu_ringbuf;
/* Rings for this port */
struct ring *ip_inring;
struct ring *ip_outring;
/* Hook to port specific values */
struct port_hooks *ip_hooks;
spinlock_t ip_lock;
/* Various rx/tx parameters */
int ip_baud;
int ip_tx_lowat;
int ip_rx_timeout;
/* Copy of notification bits */
int ip_notify;
/* Shadow copies of various registers so we don't need to PIO
* read them constantly
*/
uint32_t ip_sscr;
uint32_t ip_tx_prod;
uint32_t ip_rx_cons;
unsigned char ip_flags;
};
/* tx low water mark. We need to notify the driver whenever tx is getting
* close to empty so it can refill the tx buffer and keep things going.
* Let's assume that if we interrupt 1 ms before the tx goes idle, we'll
* have no trouble getting in more chars in time (I certainly hope so).
*/
#define TX_LOWAT_LATENCY 1000
#define TX_LOWAT_HZ (1000000 / TX_LOWAT_LATENCY)
#define TX_LOWAT_CHARS(baud) (baud / 10 / TX_LOWAT_HZ)
/* Flags per port */
#define INPUT_HIGH 0x01
/* used to signify that we have turned off the rx_high
* temporarily - we need to drain the fifo and don't
* want to get blasted with interrupts.
*/
#define DCD_ON 0x02
/* DCD state is on */
#define LOWAT_WRITTEN 0x04
#define READ_ABORTED 0x08
/* the read was aborted - used to avaoid infinate looping
* in the interrupt handler
*/
#define INPUT_ENABLE 0x10
/* Since each port has different register offsets and bitmasks
* for everything, we'll store those that we need in tables so we
* don't have to be constantly checking the port we are dealing with.
*/
struct port_hooks {
uint32_t intr_delta_dcd;
uint32_t intr_delta_cts;
uint32_t intr_tx_mt;
uint32_t intr_rx_timer;
uint32_t intr_rx_high;
uint32_t intr_tx_explicit;
uint32_t intr_clear;
uint32_t intr_all;
char rs422_select_pin;
};
static struct port_hooks hooks_array[PORTS_PER_CARD] = {
/* values for port A */
{
.intr_delta_dcd = SIO_IR_SA_DELTA_DCD,
.intr_delta_cts = SIO_IR_SA_DELTA_CTS,
.intr_tx_mt = SIO_IR_SA_TX_MT,
.intr_rx_timer = SIO_IR_SA_RX_TIMER,
.intr_rx_high = SIO_IR_SA_RX_HIGH,
.intr_tx_explicit = SIO_IR_SA_TX_EXPLICIT,
.intr_clear = (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL
| SIO_IR_SA_RX_HIGH
| SIO_IR_SA_RX_TIMER
| SIO_IR_SA_DELTA_DCD
| SIO_IR_SA_DELTA_CTS
| SIO_IR_SA_INT
| SIO_IR_SA_TX_EXPLICIT
| SIO_IR_SA_MEMERR),
.intr_all = SIO_IR_SA,
.rs422_select_pin = GPPR_UARTA_MODESEL_PIN,
},
/* values for port B */
{
.intr_delta_dcd = SIO_IR_SB_DELTA_DCD,
.intr_delta_cts = SIO_IR_SB_DELTA_CTS,
.intr_tx_mt = SIO_IR_SB_TX_MT,
.intr_rx_timer = SIO_IR_SB_RX_TIMER,
.intr_rx_high = SIO_IR_SB_RX_HIGH,
.intr_tx_explicit = SIO_IR_SB_TX_EXPLICIT,
.intr_clear = (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL
| SIO_IR_SB_RX_HIGH
| SIO_IR_SB_RX_TIMER
| SIO_IR_SB_DELTA_DCD
| SIO_IR_SB_DELTA_CTS
| SIO_IR_SB_INT
| SIO_IR_SB_TX_EXPLICIT
| SIO_IR_SB_MEMERR),
.intr_all = SIO_IR_SB,
.rs422_select_pin = GPPR_UARTB_MODESEL_PIN,
}
};
struct ring_entry {
union {
struct {
uint32_t alldata;
uint32_t allsc;
} all;
struct {
char data[4]; /* data bytes */
char sc[4]; /* status/control */
} s;
} u;
};
/* Test the valid bits in any of the 4 sc chars using "allsc" member */
#define RING_ANY_VALID \
((uint32_t)(RXSB_MODEM_VALID | RXSB_DATA_VALID) * 0x01010101)
#define ring_sc u.s.sc
#define ring_data u.s.data
#define ring_allsc u.all.allsc
/* Number of entries per ring buffer. */
#define ENTRIES_PER_RING (RING_BUF_SIZE / (int) sizeof(struct ring_entry))
/* An individual ring */
struct ring {
struct ring_entry entries[ENTRIES_PER_RING];
};
/* The whole enchilada */
struct ring_buffer {
struct ring TX_A;
struct ring RX_A;
struct ring TX_B;
struct ring RX_B;
};
/* Get a ring from a port struct */
#define RING(_p, _wh) &(((struct ring_buffer *)((_p)->ip_cpu_ringbuf))->_wh)
/* for Infinite loop detection */
#define MAXITER 10000000
/**
* set_baud - Baud rate setting code
* @port: port to set
* @baud: baud rate to use
*/
static int set_baud(struct ioc3_port *port, int baud)
{
int divisor;
int actual_baud;
int diff;
int lcr, prediv;
struct ioc3_uartregs __iomem *uart;
for (prediv = 6; prediv < 64; prediv++) {
divisor = SER_DIVISOR(baud, SER_CLK_SPEED(prediv));
if (!divisor)
continue; /* invalid divisor */
actual_baud = DIVISOR_TO_BAUD(divisor, SER_CLK_SPEED(prediv));
diff = actual_baud - baud;
if (diff < 0)
diff = -diff;
/* if we're within 1% we've found a match */
if (diff * 100 <= actual_baud)
break;
}
/* if the above loop completed, we didn't match
* the baud rate. give up.
*/
if (prediv == 64) {
NOT_PROGRESS();
return 1;
}
uart = port->ip_uart_regs;
lcr = readb(&uart->iu_lcr);
writeb(lcr | UART_LCR_DLAB, &uart->iu_lcr);
writeb((unsigned char)divisor, &uart->iu_dll);
writeb((unsigned char)(divisor >> 8), &uart->iu_dlm);
writeb((unsigned char)prediv, &uart->iu_scr);
writeb((unsigned char)lcr, &uart->iu_lcr);
return 0;
}
/**
* get_ioc3_port - given a uart port, return the control structure
* @the_port: uart port to find
*/
static struct ioc3_port *get_ioc3_port(struct uart_port *the_port)
{
struct ioc3_driver_data *idd = dev_get_drvdata(the_port->dev);
struct ioc3_card *card_ptr = idd->data[Submodule_slot];
int ii, jj;
if (!card_ptr) {
NOT_PROGRESS();
return NULL;
}
for (ii = 0; ii < PORTS_PER_CARD; ii++) {
for (jj = 0; jj < LOGICAL_PORTS; jj++) {
if (the_port == &card_ptr->ic_port[ii].icp_uart_port[jj])
return card_ptr->ic_port[ii].icp_port;
}
}
NOT_PROGRESS();
return NULL;
}
/**
* port_init - Initialize the sio and ioc3 hardware for a given port
* called per port from attach...
* @port: port to initialize
*/
static int inline port_init(struct ioc3_port *port)
{
uint32_t sio_cr;
struct port_hooks *hooks = port->ip_hooks;
struct ioc3_uartregs __iomem *uart;
int reset_loop_counter = 0xfffff;
struct ioc3_driver_data *idd = port->ip_idd;
/* Idle the IOC3 serial interface */
writel(SSCR_RESET, &port->ip_serial_regs->sscr);
/* Wait until any pending bus activity for this port has ceased */
do {
sio_cr = readl(&idd->vma->sio_cr);
if (reset_loop_counter-- <= 0) {
printk(KERN_WARNING
"IOC3 unable to come out of reset"
" scr 0x%x\n", sio_cr);
return -1;
}
} while (!(sio_cr & SIO_CR_ARB_DIAG_IDLE) &&
(((sio_cr &= SIO_CR_ARB_DIAG) == SIO_CR_ARB_DIAG_TXA)
|| sio_cr == SIO_CR_ARB_DIAG_TXB
|| sio_cr == SIO_CR_ARB_DIAG_RXA
|| sio_cr == SIO_CR_ARB_DIAG_RXB));
/* Finish reset sequence */
writel(0, &port->ip_serial_regs->sscr);
/* Once RESET is done, reload cached tx_prod and rx_cons values
* and set rings to empty by making prod == cons
*/
port->ip_tx_prod = readl(&port->ip_serial_regs->stcir) & PROD_CONS_MASK;
writel(port->ip_tx_prod, &port->ip_serial_regs->stpir);
port->ip_rx_cons = readl(&port->ip_serial_regs->srpir) & PROD_CONS_MASK;
writel(port->ip_rx_cons | SRCIR_ARM, &port->ip_serial_regs->srcir);
/* Disable interrupts for this 16550 */
uart = port->ip_uart_regs;
writeb(0, &uart->iu_lcr);
writeb(0, &uart->iu_ier);
/* Set the default baud */
set_baud(port, port->ip_baud);
/* Set line control to 8 bits no parity */
writeb(UART_LCR_WLEN8 | 0, &uart->iu_lcr);
/* UART_LCR_STOP == 1 stop */
/* Enable the FIFOs */
writeb(UART_FCR_ENABLE_FIFO, &uart->iu_fcr);
/* then reset 16550 FIFOs */
writeb(UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT,
&uart->iu_fcr);
/* Clear modem control register */
writeb(0, &uart->iu_mcr);
/* Clear deltas in modem status register */
writel(0, &port->ip_serial_regs->shadow);
/* Only do this once per port pair */
if (port->ip_hooks == &hooks_array[0]) {
unsigned long ring_pci_addr;
uint32_t __iomem *sbbr_l, *sbbr_h;
sbbr_l = &idd->vma->sbbr_l;
sbbr_h = &idd->vma->sbbr_h;
ring_pci_addr = (unsigned long __iomem)port->ip_dma_ringbuf;
DPRINT_CONFIG(("%s: ring_pci_addr 0x%p\n",
__func__, (void *)ring_pci_addr));
writel((unsigned int)((uint64_t) ring_pci_addr >> 32), sbbr_h);
writel((unsigned int)ring_pci_addr | BUF_SIZE_BIT, sbbr_l);
}
/* Set the receive timeout value to 10 msec */
writel(SRTR_HZ / 100, &port->ip_serial_regs->srtr);
/* Set rx threshold, enable DMA */
/* Set high water mark at 3/4 of full ring */
port->ip_sscr = (ENTRIES_PER_RING * 3 / 4);
/* uart experiences pauses at high baud rate reducing actual
* throughput by 10% or so unless we enable high speed polling
* XXX when this hardware bug is resolved we should revert to
* normal polling speed
*/
port->ip_sscr |= SSCR_HIGH_SPD;
writel(port->ip_sscr, &port->ip_serial_regs->sscr);
/* Disable and clear all serial related interrupt bits */
port->ip_card->ic_enable &= ~hooks->intr_clear;
ioc3_disable(port->ip_is, idd, hooks->intr_clear);
ioc3_ack(port->ip_is, idd, hooks->intr_clear);
return 0;
}
/**
* enable_intrs - enable interrupts
* @port: port to enable
* @mask: mask to use
*/
static void enable_intrs(struct ioc3_port *port, uint32_t mask)
{
if ((port->ip_card->ic_enable & mask) != mask) {
port->ip_card->ic_enable |= mask;
ioc3_enable(port->ip_is, port->ip_idd, mask);
}
}
/**
* local_open - local open a port
* @port: port to open
*/
static inline int local_open(struct ioc3_port *port)
{
int spiniter = 0;
port->ip_flags = INPUT_ENABLE;
/* Pause the DMA interface if necessary */
if (port->ip_sscr & SSCR_DMA_EN) {
writel(port->ip_sscr | SSCR_DMA_PAUSE,
&port->ip_serial_regs->sscr);
while ((readl(&port->ip_serial_regs->sscr)
& SSCR_PAUSE_STATE) == 0) {
spiniter++;
if (spiniter > MAXITER) {
NOT_PROGRESS();
return -1;
}
}
}
/* Reset the input fifo. If the uart received chars while the port
* was closed and DMA is not enabled, the uart may have a bunch of
* chars hanging around in its rx fifo which will not be discarded
* by rclr in the upper layer. We must get rid of them here.
*/
writeb(UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR,
&port->ip_uart_regs->iu_fcr);
writeb(UART_LCR_WLEN8, &port->ip_uart_regs->iu_lcr);
/* UART_LCR_STOP == 1 stop */
/* Re-enable DMA, set default threshold to intr whenever there is
* data available.
*/
port->ip_sscr &= ~SSCR_RX_THRESHOLD;
port->ip_sscr |= 1; /* default threshold */
/* Plug in the new sscr. This implicitly clears the DMA_PAUSE
* flag if it was set above
*/
writel(port->ip_sscr, &port->ip_serial_regs->sscr);
port->ip_tx_lowat = 1;
return 0;
}
/**
* set_rx_timeout - Set rx timeout and threshold values.
* @port: port to use
* @timeout: timeout value in ticks
*/
static inline int set_rx_timeout(struct ioc3_port *port, int timeout)
{
int threshold;
port->ip_rx_timeout = timeout;
/* Timeout is in ticks. Let's figure out how many chars we
* can receive at the current baud rate in that interval
* and set the rx threshold to that amount. There are 4 chars
* per ring entry, so we'll divide the number of chars that will
* arrive in timeout by 4.
* So .... timeout * baud / 10 / HZ / 4, with HZ = 100.
*/
threshold = timeout * port->ip_baud / 4000;
if (threshold == 0)
threshold = 1; /* otherwise we'll intr all the time! */
if ((unsigned)threshold > (unsigned)SSCR_RX_THRESHOLD)
return 1;
port->ip_sscr &= ~SSCR_RX_THRESHOLD;
port->ip_sscr |= threshold;
writel(port->ip_sscr, &port->ip_serial_regs->sscr);
/* Now set the rx timeout to the given value
* again timeout * SRTR_HZ / HZ
*/
timeout = timeout * SRTR_HZ / 100;
if (timeout > SRTR_CNT)
timeout = SRTR_CNT;
writel(timeout, &port->ip_serial_regs->srtr);
return 0;
}
/**
* config_port - config the hardware
* @port: port to config
* @baud: baud rate for the port
* @byte_size: data size
* @stop_bits: number of stop bits
* @parenb: parity enable ?
* @parodd: odd parity ?
*/
static inline int
config_port(struct ioc3_port *port,
int baud, int byte_size, int stop_bits, int parenb, int parodd)
{
char lcr, sizebits;
int spiniter = 0;
DPRINT_CONFIG(("%s: line %d baud %d byte_size %d stop %d parenb %d "
"parodd %d\n",
__func__, ((struct uart_port *)port->ip_port)->line,
baud, byte_size, stop_bits, parenb, parodd));
if (set_baud(port, baud))
return 1;
switch (byte_size) {
case 5:
sizebits = UART_LCR_WLEN5;
break;
case 6:
sizebits = UART_LCR_WLEN6;
break;
case 7:
sizebits = UART_LCR_WLEN7;
break;
case 8:
sizebits = UART_LCR_WLEN8;
break;
default:
return 1;
}
/* Pause the DMA interface if necessary */
if (port->ip_sscr & SSCR_DMA_EN) {
writel(port->ip_sscr | SSCR_DMA_PAUSE,
&port->ip_serial_regs->sscr);
while ((readl(&port->ip_serial_regs->sscr)
& SSCR_PAUSE_STATE) == 0) {
spiniter++;
if (spiniter > MAXITER)
return -1;
}
}
/* Clear relevant fields in lcr */
lcr = readb(&port->ip_uart_regs->iu_lcr);
lcr &= ~(LCR_MASK_BITS_CHAR | UART_LCR_EPAR |
UART_LCR_PARITY | LCR_MASK_STOP_BITS);
/* Set byte size in lcr */
lcr |= sizebits;
/* Set parity */
if (parenb) {
lcr |= UART_LCR_PARITY;
if (!parodd)
lcr |= UART_LCR_EPAR;
}
/* Set stop bits */
if (stop_bits)
lcr |= UART_LCR_STOP /* 2 stop bits */ ;
writeb(lcr, &port->ip_uart_regs->iu_lcr);
/* Re-enable the DMA interface if necessary */
if (port->ip_sscr & SSCR_DMA_EN) {
writel(port->ip_sscr, &port->ip_serial_regs->sscr);
}
port->ip_baud = baud;
/* When we get within this number of ring entries of filling the
* entire ring on tx, place an EXPLICIT intr to generate a lowat
* notification when output has drained.
*/
port->ip_tx_lowat = (TX_LOWAT_CHARS(baud) + 3) / 4;
if (port->ip_tx_lowat == 0)
port->ip_tx_lowat = 1;
set_rx_timeout(port, 2);
return 0;
}
/**
* do_write - Write bytes to the port. Returns the number of bytes
* actually written. Called from transmit_chars
* @port: port to use
* @buf: the stuff to write
* @len: how many bytes in 'buf'
*/
static inline int do_write(struct ioc3_port *port, char *buf, int len)
{
int prod_ptr, cons_ptr, total = 0;
struct ring *outring;
struct ring_entry *entry;
struct port_hooks *hooks = port->ip_hooks;
BUG_ON(!(len >= 0));
prod_ptr = port->ip_tx_prod;
cons_ptr = readl(&port->ip_serial_regs->stcir) & PROD_CONS_MASK;
outring = port->ip_outring;
/* Maintain a 1-entry red-zone. The ring buffer is full when
* (cons - prod) % ring_size is 1. Rather than do this subtraction
* in the body of the loop, I'll do it now.
*/
cons_ptr = (cons_ptr - (int)sizeof(struct ring_entry)) & PROD_CONS_MASK;
/* Stuff the bytes into the output */
while ((prod_ptr != cons_ptr) && (len > 0)) {
int xx;
/* Get 4 bytes (one ring entry) at a time */
entry = (struct ring_entry *)((caddr_t) outring + prod_ptr);
/* Invalidate all entries */
entry->ring_allsc = 0;
/* Copy in some bytes */
for (xx = 0; (xx < 4) && (len > 0); xx++) {
entry->ring_data[xx] = *buf++;
entry->ring_sc[xx] = TXCB_VALID;
len--;
total++;
}
/* If we are within some small threshold of filling up the
* entire ring buffer, we must place an EXPLICIT intr here
* to generate a lowat interrupt in case we subsequently
* really do fill up the ring and the caller goes to sleep.
* No need to place more than one though.
*/
if (!(port->ip_flags & LOWAT_WRITTEN) &&
((cons_ptr - prod_ptr) & PROD_CONS_MASK)
<= port->ip_tx_lowat * (int)sizeof(struct ring_entry)) {
port->ip_flags |= LOWAT_WRITTEN;
entry->ring_sc[0] |= TXCB_INT_WHEN_DONE;
}
/* Go on to next entry */
prod_ptr += sizeof(struct ring_entry);
prod_ptr &= PROD_CONS_MASK;
}
/* If we sent something, start DMA if necessary */
if (total > 0 && !(port->ip_sscr & SSCR_DMA_EN)) {
port->ip_sscr |= SSCR_DMA_EN;
writel(port->ip_sscr, &port->ip_serial_regs->sscr);
}
/* Store the new producer pointer. If tx is disabled, we stuff the
* data into the ring buffer, but we don't actually start tx.
*/
if (!uart_tx_stopped(port->ip_port)) {
writel(prod_ptr, &port->ip_serial_regs->stpir);
/* If we are now transmitting, enable tx_mt interrupt so we
* can disable DMA if necessary when the tx finishes.
*/
if (total > 0)
enable_intrs(port, hooks->intr_tx_mt);
}
port->ip_tx_prod = prod_ptr;
return total;
}
/**
* disable_intrs - disable interrupts
* @port: port to enable
* @mask: mask to use
*/
static inline void disable_intrs(struct ioc3_port *port, uint32_t mask)
{
if (port->ip_card->ic_enable & mask) {
ioc3_disable(port->ip_is, port->ip_idd, mask);
port->ip_card->ic_enable &= ~mask;
}
}
/**
* set_notification - Modify event notification
* @port: port to use
* @mask: events mask
* @set_on: set ?
*/
static int set_notification(struct ioc3_port *port, int mask, int set_on)
{
struct port_hooks *hooks = port->ip_hooks;
uint32_t intrbits, sscrbits;
BUG_ON(!mask);
intrbits = sscrbits = 0;
if (mask & N_DATA_READY)
intrbits |= (hooks->intr_rx_timer | hooks->intr_rx_high);
if (mask & N_OUTPUT_LOWAT)
intrbits |= hooks->intr_tx_explicit;
if (mask & N_DDCD) {
intrbits |= hooks->intr_delta_dcd;
sscrbits |= SSCR_RX_RING_DCD;
}
if (mask & N_DCTS)
intrbits |= hooks->intr_delta_cts;
if (set_on) {
enable_intrs(port, intrbits);
port->ip_notify |= mask;
port->ip_sscr |= sscrbits;
} else {
disable_intrs(port, intrbits);
port->ip_notify &= ~mask;
port->ip_sscr &= ~sscrbits;
}
/* We require DMA if either DATA_READY or DDCD notification is
* currently requested. If neither of these is requested and
* there is currently no tx in progress, DMA may be disabled.
*/
if (port->ip_notify & (N_DATA_READY | N_DDCD))
port->ip_sscr |= SSCR_DMA_EN;
else if (!(port->ip_card->ic_enable & hooks->intr_tx_mt))
port->ip_sscr &= ~SSCR_DMA_EN;
writel(port->ip_sscr, &port->ip_serial_regs->sscr);
return 0;
}
/**
* set_mcr - set the master control reg
* @the_port: port to use
* @mask1: mcr mask
* @mask2: shadow mask
*/
static inline int set_mcr(struct uart_port *the_port,
int mask1, int mask2)
{
struct ioc3_port *port = get_ioc3_port(the_port);
uint32_t shadow;
int spiniter = 0;
char mcr;
if (!port)
return -1;
/* Pause the DMA interface if necessary */
if (port->ip_sscr & SSCR_DMA_EN) {
writel(port->ip_sscr | SSCR_DMA_PAUSE,
&port->ip_serial_regs->sscr);
while ((readl(&port->ip_serial_regs->sscr)
& SSCR_PAUSE_STATE) == 0) {
spiniter++;
if (spiniter > MAXITER)
return -1;
}
}
shadow = readl(&port->ip_serial_regs->shadow);
mcr = (shadow & 0xff000000) >> 24;
/* Set new value */
mcr |= mask1;
shadow |= mask2;
writeb(mcr, &port->ip_uart_regs->iu_mcr);
writel(shadow, &port->ip_serial_regs->shadow);
/* Re-enable the DMA interface if necessary */
if (port->ip_sscr & SSCR_DMA_EN) {
writel(port->ip_sscr, &port->ip_serial_regs->sscr);
}
return 0;
}
/**
* ioc3_set_proto - set the protocol for the port
* @port: port to use
* @proto: protocol to use
*/
static int ioc3_set_proto(struct ioc3_port *port, int proto)
{
struct port_hooks *hooks = port->ip_hooks;
switch (proto) {
default:
case PROTO_RS232:
/* Clear the appropriate GIO pin */
DPRINT_CONFIG(("%s: rs232\n", __func__));
writel(0, (&port->ip_idd->vma->gppr[0]
+ hooks->rs422_select_pin));
break;
case PROTO_RS422:
/* Set the appropriate GIO pin */
DPRINT_CONFIG(("%s: rs422\n", __func__));
writel(1, (&port->ip_idd->vma->gppr[0]
+ hooks->rs422_select_pin));
break;
}
return 0;
}
/**
* transmit_chars - upper level write, called with the_port->lock
* @the_port: port to write
*/
static void transmit_chars(struct uart_port *the_port)
{
int xmit_count, tail, head;
int result;
char *start;
struct tty_struct *tty;
struct ioc3_port *port = get_ioc3_port(the_port);
struct uart_state *state;
if (!the_port)
return;
if (!port)
return;
state = the_port->state;
tty = state->port.tty;
if (uart_circ_empty(&state->xmit) || uart_tx_stopped(the_port)) {
/* Nothing to do or hw stopped */
set_notification(port, N_ALL_OUTPUT, 0);
return;
}
head = state->xmit.head;
tail = state->xmit.tail;
start = (char *)&state->xmit.buf[tail];
/* write out all the data or until the end of the buffer */
xmit_count = (head < tail) ? (UART_XMIT_SIZE - tail) : (head - tail);
if (xmit_count > 0) {
result = do_write(port, start, xmit_count);
if (result > 0) {
/* booking */
xmit_count -= result;
the_port->icount.tx += result;
/* advance the pointers */
tail += result;
tail &= UART_XMIT_SIZE - 1;
state->xmit.tail = tail;
start = (char *)&state->xmit.buf[tail];
}
}
if (uart_circ_chars_pending(&state->xmit) < WAKEUP_CHARS)
uart_write_wakeup(the_port);
if (uart_circ_empty(&state->xmit)) {
set_notification(port, N_OUTPUT_LOWAT, 0);
} else {
set_notification(port, N_OUTPUT_LOWAT, 1);
}
}
/**
* ioc3_change_speed - change the speed of the port
* @the_port: port to change
* @new_termios: new termios settings
* @old_termios: old termios settings
*/
static void
ioc3_change_speed(struct uart_port *the_port,
struct ktermios *new_termios, struct ktermios *old_termios)
{
struct ioc3_port *port = get_ioc3_port(the_port);
unsigned int cflag, iflag;
int baud;
int new_parity = 0, new_parity_enable = 0, new_stop = 0, new_data = 8;
struct uart_state *state = the_port->state;
cflag = new_termios->c_cflag;
iflag = new_termios->c_iflag;
switch (cflag & CSIZE) {
case CS5:
new_data = 5;
break;
case CS6:
new_data = 6;
break;
case CS7:
new_data = 7;
break;
case CS8:
new_data = 8;
break;
default:
/* cuz we always need a default ... */
new_data = 5;
break;
}
if (cflag & CSTOPB) {
new_stop = 1;
}
if (cflag & PARENB) {
new_parity_enable = 1;
if (cflag & PARODD)
new_parity = 1;
}
baud = uart_get_baud_rate(the_port, new_termios, old_termios,
MIN_BAUD_SUPPORTED, MAX_BAUD_SUPPORTED);
DPRINT_CONFIG(("%s: returned baud %d for line %d\n", __func__, baud,
the_port->line));
if (!the_port->fifosize)
the_port->fifosize = FIFO_SIZE;
uart_update_timeout(the_port, cflag, baud);
the_port->ignore_status_mask = N_ALL_INPUT;
state->port.tty->low_latency = 1;
if (iflag & IGNPAR)
the_port->ignore_status_mask &= ~(N_PARITY_ERROR
| N_FRAMING_ERROR);
if (iflag & IGNBRK) {
the_port->ignore_status_mask &= ~N_BREAK;
if (iflag & IGNPAR)
the_port->ignore_status_mask &= ~N_OVERRUN_ERROR;
}
if (!(cflag & CREAD)) {
/* ignore everything */
the_port->ignore_status_mask &= ~N_DATA_READY;
}
if (cflag & CRTSCTS) {
/* enable hardware flow control */
port->ip_sscr |= SSCR_HFC_EN;
}
else {
/* disable hardware flow control */
port->ip_sscr &= ~SSCR_HFC_EN;
}
writel(port->ip_sscr, &port->ip_serial_regs->sscr);
/* Set the configuration and proper notification call */
DPRINT_CONFIG(("%s : port 0x%p line %d cflag 0%o "
"config_port(baud %d data %d stop %d penable %d "
" parity %d), notification 0x%x\n",
__func__, (void *)port, the_port->line, cflag, baud,
new_data, new_stop, new_parity_enable, new_parity,
the_port->ignore_status_mask));
if ((config_port(port, baud, /* baud */
new_data, /* byte size */
new_stop, /* stop bits */
new_parity_enable, /* set parity */
new_parity)) >= 0) { /* parity 1==odd */
set_notification(port, the_port->ignore_status_mask, 1);
}
}
/**
* ic3_startup_local - Start up the serial port - returns >= 0 if no errors
* @the_port: Port to operate on
*/
static inline int ic3_startup_local(struct uart_port *the_port)
{
struct ioc3_port *port;
if (!the_port) {
NOT_PROGRESS();
return -1;
}
port = get_ioc3_port(the_port);
if (!port) {
NOT_PROGRESS();
return -1;
}
local_open(port);
/* set the protocol */
ioc3_set_proto(port, IS_RS232(the_port->line) ? PROTO_RS232 :
PROTO_RS422);
return 0;
}
/*
* ioc3_cb_output_lowat - called when the output low water mark is hit
* @port: port to output
*/
static void ioc3_cb_output_lowat(struct ioc3_port *port)
{
unsigned long pflags;
/* the_port->lock is set on the call here */
if (port->ip_port) {
spin_lock_irqsave(&port->ip_port->lock, pflags);
transmit_chars(port->ip_port);
spin_unlock_irqrestore(&port->ip_port->lock, pflags);
}
}
/*
* ioc3_cb_post_ncs - called for some basic errors
* @port: port to use
* @ncs: event
*/
static void ioc3_cb_post_ncs(struct uart_port *the_port, int ncs)
{
struct uart_icount *icount;
icount = &the_port->icount;
if (ncs & NCS_BREAK)
icount->brk++;
if (ncs & NCS_FRAMING)
icount->frame++;
if (ncs & NCS_OVERRUN)
icount->overrun++;
if (ncs & NCS_PARITY)
icount->parity++;
}
/**
* do_read - Read in bytes from the port. Return the number of bytes
* actually read.
* @the_port: port to use
* @buf: place to put the stuff we read
* @len: how big 'buf' is
*/
static inline int do_read(struct uart_port *the_port, char *buf, int len)
{
int prod_ptr, cons_ptr, total;
struct ioc3_port *port = get_ioc3_port(the_port);
struct ring *inring;
struct ring_entry *entry;
struct port_hooks *hooks = port->ip_hooks;
int byte_num;
char *sc;
int loop_counter;
BUG_ON(!(len >= 0));
BUG_ON(!port);
/* There is a nasty timing issue in the IOC3. When the rx_timer
* expires or the rx_high condition arises, we take an interrupt.
* At some point while servicing the interrupt, we read bytes from
* the ring buffer and re-arm the rx_timer. However the rx_timer is
* not started until the first byte is received *after* it is armed,
* and any bytes pending in the rx construction buffers are not drained
* to memory until either there are 4 bytes available or the rx_timer
* expires. This leads to a potential situation where data is left
* in the construction buffers forever - 1 to 3 bytes were received
* after the interrupt was generated but before the rx_timer was
* re-armed. At that point as long as no subsequent bytes are received
* the timer will never be started and the bytes will remain in the
* construction buffer forever. The solution is to execute a DRAIN
* command after rearming the timer. This way any bytes received before
* the DRAIN will be drained to memory, and any bytes received after
* the DRAIN will start the TIMER and be drained when it expires.
* Luckily, this only needs to be done when the DMA buffer is empty
* since there is no requirement that this function return all
* available data as long as it returns some.
*/
/* Re-arm the timer */
writel(port->ip_rx_cons | SRCIR_ARM, &port->ip_serial_regs->srcir);
prod_ptr = readl(&port->ip_serial_regs->srpir) & PROD_CONS_MASK;
cons_ptr = port->ip_rx_cons;
if (prod_ptr == cons_ptr) {
int reset_dma = 0;
/* Input buffer appears empty, do a flush. */
/* DMA must be enabled for this to work. */
if (!(port->ip_sscr & SSCR_DMA_EN)) {
port->ip_sscr |= SSCR_DMA_EN;
reset_dma = 1;
}
/* Potential race condition: we must reload the srpir after
* issuing the drain command, otherwise we could think the rx
* buffer is empty, then take a very long interrupt, and when
* we come back it's full and we wait forever for the drain to
* complete.
*/
writel(port->ip_sscr | SSCR_RX_DRAIN,
&port->ip_serial_regs->sscr);
prod_ptr = readl(&port->ip_serial_regs->srpir) & PROD_CONS_MASK;
/* We must not wait for the DRAIN to complete unless there are
* at least 8 bytes (2 ring entries) available to receive the
* data otherwise the DRAIN will never complete and we'll
* deadlock here.
* In fact, to make things easier, I'll just ignore the flush if
* there is any data at all now available.
*/
if (prod_ptr == cons_ptr) {
loop_counter = 0;
while (readl(&port->ip_serial_regs->sscr) &
SSCR_RX_DRAIN) {
loop_counter++;
if (loop_counter > MAXITER)
return -1;
}
/* SIGH. We have to reload the prod_ptr *again* since
* the drain may have caused it to change
*/
prod_ptr = readl(&port->ip_serial_regs->srpir)
& PROD_CONS_MASK;
}
if (reset_dma) {
port->ip_sscr &= ~SSCR_DMA_EN;
writel(port->ip_sscr, &port->ip_serial_regs->sscr);
}
}
inring = port->ip_inring;
port->ip_flags &= ~READ_ABORTED;
total = 0;
loop_counter = 0xfffff; /* to avoid hangs */
/* Grab bytes from the hardware */
while ((prod_ptr != cons_ptr) && (len > 0)) {
entry = (struct ring_entry *)((caddr_t) inring + cons_ptr);
if (loop_counter-- <= 0) {
printk(KERN_WARNING "IOC3 serial: "
"possible hang condition/"
"port stuck on read (line %d).\n",
the_port->line);
break;
}
/* According to the producer pointer, this ring entry
* must contain some data. But if the PIO happened faster
* than the DMA, the data may not be available yet, so let's
* wait until it arrives.
*/
if ((entry->ring_allsc & RING_ANY_VALID) == 0) {
/* Indicate the read is aborted so we don't disable
* the interrupt thinking that the consumer is
* congested.
*/
port->ip_flags |= READ_ABORTED;
len = 0;
break;
}
/* Load the bytes/status out of the ring entry */
for (byte_num = 0; byte_num < 4 && len > 0; byte_num++) {
sc = &(entry->ring_sc[byte_num]);
/* Check for change in modem state or overrun */
if ((*sc & RXSB_MODEM_VALID)
&& (port->ip_notify & N_DDCD)) {
/* Notify upper layer if DCD dropped */
if ((port->ip_flags & DCD_ON)
&& !(*sc & RXSB_DCD)) {
/* If we have already copied some data,
* return it. We'll pick up the carrier
* drop on the next pass. That way we
* don't throw away the data that has
* already been copied back to
* the caller's buffer.
*/
if (total > 0) {
len = 0;
break;
}
port->ip_flags &= ~DCD_ON;
/* Turn off this notification so the
* carrier drop protocol won't see it
* again when it does a read.
*/
*sc &= ~RXSB_MODEM_VALID;
/* To keep things consistent, we need
* to update the consumer pointer so
* the next reader won't come in and
* try to read the same ring entries
* again. This must be done here before
* the dcd change.
*/
if ((entry->ring_allsc & RING_ANY_VALID)
== 0) {
cons_ptr += (int)sizeof
(struct ring_entry);
cons_ptr &= PROD_CONS_MASK;
}
writel(cons_ptr,
&port->ip_serial_regs->srcir);
port->ip_rx_cons = cons_ptr;
/* Notify upper layer of carrier drop */
if ((port->ip_notify & N_DDCD)
&& port->ip_port) {
uart_handle_dcd_change
(port->ip_port, 0);
wake_up_interruptible
(&the_port->state->
port.delta_msr_wait);
}
/* If we had any data to return, we
* would have returned it above.
*/
return 0;
}
}
if (*sc & RXSB_MODEM_VALID) {
/* Notify that an input overrun occurred */
if ((*sc & RXSB_OVERRUN)
&& (port->ip_notify & N_OVERRUN_ERROR)) {
ioc3_cb_post_ncs(the_port, NCS_OVERRUN);
}
/* Don't look at this byte again */
*sc &= ~RXSB_MODEM_VALID;
}
/* Check for valid data or RX errors */
if ((*sc & RXSB_DATA_VALID) &&
((*sc & (RXSB_PAR_ERR
| RXSB_FRAME_ERR | RXSB_BREAK))
&& (port->ip_notify & (N_PARITY_ERROR
| N_FRAMING_ERROR
| N_BREAK)))) {
/* There is an error condition on the next byte.
* If we have already transferred some bytes,
* we'll stop here. Otherwise if this is the
* first byte to be read, we'll just transfer
* it alone after notifying the
* upper layer of its status.
*/
if (total > 0) {
len = 0;
break;
} else {
if ((*sc & RXSB_PAR_ERR) &&
(port->
ip_notify & N_PARITY_ERROR)) {
ioc3_cb_post_ncs(the_port,
NCS_PARITY);
}
if ((*sc & RXSB_FRAME_ERR) &&
(port->
ip_notify & N_FRAMING_ERROR)) {
ioc3_cb_post_ncs(the_port,
NCS_FRAMING);
}
if ((*sc & RXSB_BREAK)
&& (port->ip_notify & N_BREAK)) {
ioc3_cb_post_ncs
(the_port, NCS_BREAK);
}
len = 1;
}
}
if (*sc & RXSB_DATA_VALID) {
*sc &= ~RXSB_DATA_VALID;
*buf = entry->ring_data[byte_num];
buf++;
len--;
total++;
}
}
/* If we used up this entry entirely, go on to the next one,
* otherwise we must have run out of buffer space, so
* leave the consumer pointer here for the next read in case
* there are still unread bytes in this entry.
*/
if ((entry->ring_allsc & RING_ANY_VALID) == 0) {
cons_ptr += (int)sizeof(struct ring_entry);
cons_ptr &= PROD_CONS_MASK;
}
}
/* Update consumer pointer and re-arm rx timer interrupt */
writel(cons_ptr, &port->ip_serial_regs->srcir);
port->ip_rx_cons = cons_ptr;
/* If we have now dipped below the rx high water mark and we have
* rx_high interrupt turned off, we can now turn it back on again.
*/
if ((port->ip_flags & INPUT_HIGH) && (((prod_ptr - cons_ptr)
& PROD_CONS_MASK) <
((port->
ip_sscr &
SSCR_RX_THRESHOLD)
<< PROD_CONS_PTR_OFF))) {
port->ip_flags &= ~INPUT_HIGH;
enable_intrs(port, hooks->intr_rx_high);
}
return total;
}
/**
* receive_chars - upper level read.
* @the_port: port to read from
*/
static int receive_chars(struct uart_port *the_port)
{
struct tty_struct *tty;
unsigned char ch[MAX_CHARS];
int read_count = 0, read_room, flip = 0;
struct uart_state *state = the_port->state;
struct ioc3_port *port = get_ioc3_port(the_port);
unsigned long pflags;
/* Make sure all the pointers are "good" ones */
if (!state)
return 0;
if (!state->port.tty)
return 0;
if (!(port->ip_flags & INPUT_ENABLE))
return 0;
spin_lock_irqsave(&the_port->lock, pflags);
tty = state->port.tty;
read_count = do_read(the_port, ch, MAX_CHARS);
if (read_count > 0) {
flip = 1;
read_room = tty_insert_flip_string(tty, ch, read_count);
the_port->icount.rx += read_count;
}
spin_unlock_irqrestore(&the_port->lock, pflags);
if (flip)
tty_flip_buffer_push(tty);
return read_count;
}
/**
* ioc3uart_intr_one - lowest level (per port) interrupt handler.
* @is : submodule
* @idd: driver data
* @pending: interrupts to handle
*/
static int inline
ioc3uart_intr_one(struct ioc3_submodule *is,
struct ioc3_driver_data *idd,
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
unsigned int pending)
{
int port_num = GET_PORT_FROM_SIO_IR(pending);
struct port_hooks *hooks;
unsigned int rx_high_rd_aborted = 0;
unsigned long flags;
struct uart_port *the_port;
struct ioc3_port *port;
int loop_counter;
struct ioc3_card *card_ptr;
unsigned int sio_ir;
card_ptr = idd->data[is->id];
port = card_ptr->ic_port[port_num].icp_port;
hooks = port->ip_hooks;
/* Possible race condition here: The tx_mt interrupt bit may be
* cleared without the intervention of the interrupt handler,
* e.g. by a write. If the top level interrupt handler reads a
* tx_mt, then some other processor does a write, starting up
* output, then we come in here, see the tx_mt and stop DMA, the
* output started by the other processor will hang. Thus we can
* only rely on tx_mt being legitimate if it is read while the
* port lock is held. Therefore this bit must be ignored in the
* passed in interrupt mask which was read by the top level
* interrupt handler since the port lock was not held at the time
* it was read. We can only rely on this bit being accurate if it
* is read while the port lock is held. So we'll clear it for now,
* and reload it later once we have the port lock.
*/
sio_ir = pending & ~(hooks->intr_tx_mt);
spin_lock_irqsave(&port->ip_lock, flags);
loop_counter = MAXITER; /* to avoid hangs */
do {
uint32_t shadow;
if (loop_counter-- <= 0) {
printk(KERN_WARNING "IOC3 serial: "
"possible hang condition/"
"port stuck on interrupt (line %d).\n",
((struct uart_port *)port->ip_port)->line);
break;
}
/* Handle a DCD change */
if (sio_ir & hooks->intr_delta_dcd) {
ioc3_ack(is, idd, hooks->intr_delta_dcd);
shadow = readl(&port->ip_serial_regs->shadow);
if ((port->ip_notify & N_DDCD)
&& (shadow & SHADOW_DCD)
&& (port->ip_port)) {
the_port = port->ip_port;
uart_handle_dcd_change(the_port,
shadow & SHADOW_DCD);
wake_up_interruptible
(&the_port->state->port.delta_msr_wait);
} else if ((port->ip_notify & N_DDCD)
&& !(shadow & SHADOW_DCD)) {
/* Flag delta DCD/no DCD */
uart_handle_dcd_change(port->ip_port,
shadow & SHADOW_DCD);
port->ip_flags |= DCD_ON;
}
}
/* Handle a CTS change */
if (sio_ir & hooks->intr_delta_cts) {
ioc3_ack(is, idd, hooks->intr_delta_cts);
shadow = readl(&port->ip_serial_regs->shadow);
if ((port->ip_notify & N_DCTS) && (port->ip_port)) {
the_port = port->ip_port;
uart_handle_cts_change(the_port, shadow
& SHADOW_CTS);
wake_up_interruptible
(&the_port->state->port.delta_msr_wait);
}
}
/* rx timeout interrupt. Must be some data available. Put this
* before the check for rx_high since servicing this condition
* may cause that condition to clear.
*/
if (sio_ir & hooks->intr_rx_timer) {
ioc3_ack(is, idd, hooks->intr_rx_timer);
if ((port->ip_notify & N_DATA_READY)
&& (port->ip_port)) {
receive_chars(port->ip_port);
}
}
/* rx high interrupt. Must be after rx_timer. */
else if (sio_ir & hooks->intr_rx_high) {
/* Data available, notify upper layer */
if ((port->ip_notify & N_DATA_READY) && port->ip_port) {
receive_chars(port->ip_port);
}
/* We can't ACK this interrupt. If receive_chars didn't
* cause the condition to clear, we'll have to disable
* the interrupt until the data is drained.
* If the read was aborted, don't disable the interrupt
* as this may cause us to hang indefinitely. An
* aborted read generally means that this interrupt
* hasn't been delivered to the cpu yet anyway, even
* though we see it as asserted when we read the sio_ir.
*/
if ((sio_ir = PENDING(card_ptr, idd))
& hooks->intr_rx_high) {
if (port->ip_flags & READ_ABORTED) {
rx_high_rd_aborted++;
}
else {
card_ptr->ic_enable &= ~hooks->intr_rx_high;
port->ip_flags |= INPUT_HIGH;
}
}
}
/* We got a low water interrupt: notify upper layer to
* send more data. Must come before tx_mt since servicing
* this condition may cause that condition to clear.
*/
if (sio_ir & hooks->intr_tx_explicit) {
port->ip_flags &= ~LOWAT_WRITTEN;
ioc3_ack(is, idd, hooks->intr_tx_explicit);
if (port->ip_notify & N_OUTPUT_LOWAT)
ioc3_cb_output_lowat(port);
}
/* Handle tx_mt. Must come after tx_explicit. */
else if (sio_ir & hooks->intr_tx_mt) {
/* If we are expecting a lowat notification
* and we get to this point it probably means that for
* some reason the tx_explicit didn't work as expected
* (that can legitimately happen if the output buffer is
* filled up in just the right way).
* So send the notification now.
*/
if (port->ip_notify & N_OUTPUT_LOWAT) {
ioc3_cb_output_lowat(port);
/* We need to reload the sio_ir since the lowat
* call may have caused another write to occur,
* clearing the tx_mt condition.
*/
sio_ir = PENDING(card_ptr, idd);
}
/* If the tx_mt condition still persists even after the
* lowat call, we've got some work to do.
*/
if (sio_ir & hooks->intr_tx_mt) {
/* If we are not currently expecting DMA input,
* and the transmitter has just gone idle,
* there is no longer any reason for DMA, so
* disable it.
*/
if (!(port->ip_notify
& (N_DATA_READY | N_DDCD))) {
BUG_ON(!(port->ip_sscr
& SSCR_DMA_EN));
port->ip_sscr &= ~SSCR_DMA_EN;
writel(port->ip_sscr,
&port->ip_serial_regs->sscr);
}
/* Prevent infinite tx_mt interrupt */
card_ptr->ic_enable &= ~hooks->intr_tx_mt;
}
}
sio_ir = PENDING(card_ptr, idd);
/* if the read was aborted and only hooks->intr_rx_high,
* clear hooks->intr_rx_high, so we do not loop forever.
*/
if (rx_high_rd_aborted && (sio_ir == hooks->intr_rx_high)) {
sio_ir &= ~hooks->intr_rx_high;
}
} while (sio_ir & hooks->intr_all);
spin_unlock_irqrestore(&port->ip_lock, flags);
ioc3_enable(is, idd, card_ptr->ic_enable);
return 0;
}
/**
* ioc3uart_intr - field all serial interrupts
* @is : submodule
* @idd: driver data
* @pending: interrupts to handle
*
*/
static int ioc3uart_intr(struct ioc3_submodule *is,
struct ioc3_driver_data *idd,
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
unsigned int pending)
{
int ret = 0;
/*
* The upper level interrupt handler sends interrupts for both ports
* here. So we need to call for each port with its interrupts.
*/
if (pending & SIO_IR_SA)
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
ret |= ioc3uart_intr_one(is, idd, pending & SIO_IR_SA);
if (pending & SIO_IR_SB)
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
ret |= ioc3uart_intr_one(is, idd, pending & SIO_IR_SB);
return ret;
}
/**
* ic3_type
* @port: Port to operate with (we ignore since we only have one port)
*
*/
static const char *ic3_type(struct uart_port *the_port)
{
if (IS_RS232(the_port->line))
return "SGI IOC3 Serial [rs232]";
else
return "SGI IOC3 Serial [rs422]";
}
/**
* ic3_tx_empty - Is the transmitter empty?
* @port: Port to operate on
*
*/
static unsigned int ic3_tx_empty(struct uart_port *the_port)
{
unsigned int ret = 0;
struct ioc3_port *port = get_ioc3_port(the_port);
if (readl(&port->ip_serial_regs->shadow) & SHADOW_TEMT)
ret = TIOCSER_TEMT;
return ret;
}
/**
* ic3_stop_tx - stop the transmitter
* @port: Port to operate on
*
*/
static void ic3_stop_tx(struct uart_port *the_port)
{
struct ioc3_port *port = get_ioc3_port(the_port);
if (port)
set_notification(port, N_OUTPUT_LOWAT, 0);
}
/**
* ic3_stop_rx - stop the receiver
* @port: Port to operate on
*
*/
static void ic3_stop_rx(struct uart_port *the_port)
{
struct ioc3_port *port = get_ioc3_port(the_port);
if (port)
port->ip_flags &= ~INPUT_ENABLE;
}
/**
* null_void_function
* @port: Port to operate on
*
*/
static void null_void_function(struct uart_port *the_port)
{
}
/**
* ic3_shutdown - shut down the port - free irq and disable
* @port: port to shut down
*
*/
static void ic3_shutdown(struct uart_port *the_port)
{
unsigned long port_flags;
struct ioc3_port *port;
struct uart_state *state;
port = get_ioc3_port(the_port);
if (!port)
return;
state = the_port->state;
wake_up_interruptible(&state->port.delta_msr_wait);
spin_lock_irqsave(&the_port->lock, port_flags);
set_notification(port, N_ALL, 0);
spin_unlock_irqrestore(&the_port->lock, port_flags);
}
/**
* ic3_set_mctrl - set control lines (dtr, rts, etc)
* @port: Port to operate on
* @mctrl: Lines to set/unset
*
*/
static void ic3_set_mctrl(struct uart_port *the_port, unsigned int mctrl)
{
unsigned char mcr = 0;
if (mctrl & TIOCM_RTS)
mcr |= UART_MCR_RTS;
if (mctrl & TIOCM_DTR)
mcr |= UART_MCR_DTR;
if (mctrl & TIOCM_OUT1)
mcr |= UART_MCR_OUT1;
if (mctrl & TIOCM_OUT2)
mcr |= UART_MCR_OUT2;
if (mctrl & TIOCM_LOOP)
mcr |= UART_MCR_LOOP;
set_mcr(the_port, mcr, SHADOW_DTR);
}
/**
* ic3_get_mctrl - get control line info
* @port: port to operate on
*
*/
static unsigned int ic3_get_mctrl(struct uart_port *the_port)
{
struct ioc3_port *port = get_ioc3_port(the_port);
uint32_t shadow;
unsigned int ret = 0;
if (!port)
return 0;
shadow = readl(&port->ip_serial_regs->shadow);
if (shadow & SHADOW_DCD)
ret |= TIOCM_CD;
if (shadow & SHADOW_DR)
ret |= TIOCM_DSR;
if (shadow & SHADOW_CTS)
ret |= TIOCM_CTS;
return ret;
}
/**
* ic3_start_tx - Start transmitter. Called with the_port->lock
* @port: Port to operate on
*
*/
static void ic3_start_tx(struct uart_port *the_port)
{
struct ioc3_port *port = get_ioc3_port(the_port);
if (port) {
set_notification(port, N_OUTPUT_LOWAT, 1);
enable_intrs(port, port->ip_hooks->intr_tx_mt);
}
}
/**
* ic3_break_ctl - handle breaks
* @port: Port to operate on
* @break_state: Break state
*
*/
static void ic3_break_ctl(struct uart_port *the_port, int break_state)
{
}
/**
* ic3_startup - Start up the serial port - always return 0 (We're always on)
* @port: Port to operate on
*
*/
static int ic3_startup(struct uart_port *the_port)
{
int retval;
struct ioc3_port *port;
struct ioc3_card *card_ptr;
unsigned long port_flags;
if (!the_port) {
NOT_PROGRESS();
return -ENODEV;
}
port = get_ioc3_port(the_port);
if (!port) {
NOT_PROGRESS();
return -ENODEV;
}
card_ptr = port->ip_card;
port->ip_port = the_port;
if (!card_ptr) {
NOT_PROGRESS();
return -ENODEV;
}
/* Start up the serial port */
spin_lock_irqsave(&the_port->lock, port_flags);
retval = ic3_startup_local(the_port);
spin_unlock_irqrestore(&the_port->lock, port_flags);
return retval;
}
/**
* ic3_set_termios - set termios stuff
* @port: port to operate on
* @termios: New settings
* @termios: Old
*
*/
static void
ic3_set_termios(struct uart_port *the_port,
struct ktermios *termios, struct ktermios *old_termios)
{
unsigned long port_flags;
spin_lock_irqsave(&the_port->lock, port_flags);
ioc3_change_speed(the_port, termios, old_termios);
spin_unlock_irqrestore(&the_port->lock, port_flags);
}
/**
* ic3_request_port - allocate resources for port - no op....
* @port: port to operate on
*
*/
static int ic3_request_port(struct uart_port *port)
{
return 0;
}
/* Associate the uart functions above - given to serial core */
static struct uart_ops ioc3_ops = {
.tx_empty = ic3_tx_empty,
.set_mctrl = ic3_set_mctrl,
.get_mctrl = ic3_get_mctrl,
.stop_tx = ic3_stop_tx,
.start_tx = ic3_start_tx,
.stop_rx = ic3_stop_rx,
.enable_ms = null_void_function,
.break_ctl = ic3_break_ctl,
.startup = ic3_startup,
.shutdown = ic3_shutdown,
.set_termios = ic3_set_termios,
.type = ic3_type,
.release_port = null_void_function,
.request_port = ic3_request_port,
};
/*
* Boot-time initialization code
*/
static struct uart_driver ioc3_uart = {
.owner = THIS_MODULE,
.driver_name = "ioc3_serial",
.dev_name = DEVICE_NAME,
.major = DEVICE_MAJOR,
.minor = DEVICE_MINOR,
.nr = MAX_LOGICAL_PORTS
};
/**
* ioc3_serial_core_attach - register with serial core
* This is done during pci probing
* @is: submodule struct for this
* @idd: handle for this card
*/
static inline int ioc3_serial_core_attach( struct ioc3_submodule *is,
struct ioc3_driver_data *idd)
{
struct ioc3_port *port;
struct uart_port *the_port;
struct ioc3_card *card_ptr = idd->data[is->id];
int ii, phys_port;
struct pci_dev *pdev = idd->pdev;
DPRINT_CONFIG(("%s: attach pdev 0x%p - card_ptr 0x%p\n",
__func__, pdev, (void *)card_ptr));
if (!card_ptr)
return -ENODEV;
/* once around for each logical port on this card */
for (ii = 0; ii < LOGICAL_PORTS_PER_CARD; ii++) {
phys_port = GET_PHYSICAL_PORT(ii);
the_port = &card_ptr->ic_port[phys_port].
icp_uart_port[GET_LOGICAL_PORT(ii)];
port = card_ptr->ic_port[phys_port].icp_port;
port->ip_port = the_port;
DPRINT_CONFIG(("%s: attach the_port 0x%p / port 0x%p [%d/%d]\n",
__func__, (void *)the_port, (void *)port,
phys_port, ii));
/* membase, iobase and mapbase just need to be non-0 */
the_port->membase = (unsigned char __iomem *)1;
the_port->iobase = (pdev->bus->number << 16) | ii;
the_port->line = (Num_of_ioc3_cards << 2) | ii;
the_port->mapbase = 1;
the_port->type = PORT_16550A;
the_port->fifosize = FIFO_SIZE;
the_port->ops = &ioc3_ops;
the_port->irq = idd->irq_io;
the_port->dev = &pdev->dev;
if (uart_add_one_port(&ioc3_uart, the_port) < 0) {
printk(KERN_WARNING
"%s: unable to add port %d bus %d\n",
__func__, the_port->line, pdev->bus->number);
} else {
DPRINT_CONFIG(("IOC3 serial port %d irq %d bus %d\n",
the_port->line, the_port->irq, pdev->bus->number));
}
/* all ports are rs232 for now */
if (IS_PHYSICAL_PORT(ii))
ioc3_set_proto(port, PROTO_RS232);
}
return 0;
}
/**
* ioc3uart_remove - register detach function
* @is: submodule struct for this submodule
* @idd: ioc3 driver data for this submodule
*/
static int ioc3uart_remove(struct ioc3_submodule *is,
struct ioc3_driver_data *idd)
{
struct ioc3_card *card_ptr = idd->data[is->id];
struct uart_port *the_port;
struct ioc3_port *port;
int ii;
if (card_ptr) {
for (ii = 0; ii < LOGICAL_PORTS_PER_CARD; ii++) {
the_port = &card_ptr->ic_port[GET_PHYSICAL_PORT(ii)].
icp_uart_port[GET_LOGICAL_PORT(ii)];
if (the_port)
uart_remove_one_port(&ioc3_uart, the_port);
port = card_ptr->ic_port[GET_PHYSICAL_PORT(ii)].icp_port;
if (port && IS_PHYSICAL_PORT(ii)
&& (GET_PHYSICAL_PORT(ii) == 0)) {
pci_free_consistent(port->ip_idd->pdev,
TOTAL_RING_BUF_SIZE,
(void *)port->ip_cpu_ringbuf,
port->ip_dma_ringbuf);
kfree(port);
card_ptr->ic_port[GET_PHYSICAL_PORT(ii)].
icp_port = NULL;
}
}
kfree(card_ptr);
idd->data[is->id] = NULL;
}
return 0;
}
/**
* ioc3uart_probe - card probe function called from shim driver
* @is: submodule struct for this submodule
* @idd: ioc3 driver data for this card
*/
static int __devinit
ioc3uart_probe(struct ioc3_submodule *is, struct ioc3_driver_data *idd)
{
struct pci_dev *pdev = idd->pdev;
struct ioc3_card *card_ptr;
int ret = 0;
struct ioc3_port *port;
struct ioc3_port *ports[PORTS_PER_CARD];
int phys_port;
int cnt;
DPRINT_CONFIG(("%s (0x%p, 0x%p)\n", __func__, is, idd));
card_ptr = kzalloc(sizeof(struct ioc3_card), GFP_KERNEL);
if (!card_ptr) {
printk(KERN_WARNING "ioc3_attach_one"
": unable to get memory for the IOC3\n");
return -ENOMEM;
}
idd->data[is->id] = card_ptr;
Submodule_slot = is->id;
writel(((UARTA_BASE >> 3) << SIO_CR_SER_A_BASE_SHIFT) |
((UARTB_BASE >> 3) << SIO_CR_SER_B_BASE_SHIFT) |
(0xf << SIO_CR_CMD_PULSE_SHIFT), &idd->vma->sio_cr);
pci_write_config_dword(pdev, PCI_LAT, 0xff00);
/* Enable serial port mode select generic PIO pins as outputs */
ioc3_gpcr_set(idd, GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL);
/* Create port structures for each port */
for (phys_port = 0; phys_port < PORTS_PER_CARD; phys_port++) {
port = kzalloc(sizeof(struct ioc3_port), GFP_KERNEL);
if (!port) {
printk(KERN_WARNING
"IOC3 serial memory not available for port\n");
ret = -ENOMEM;
goto out4;
}
spin_lock_init(&port->ip_lock);
/* we need to remember the previous ones, to point back to
* them farther down - setting up the ring buffers.
*/
ports[phys_port] = port;
/* init to something useful */
card_ptr->ic_port[phys_port].icp_port = port;
port->ip_is = is;
port->ip_idd = idd;
port->ip_baud = 9600;
port->ip_card = card_ptr;
port->ip_hooks = &hooks_array[phys_port];
/* Setup each port */
if (phys_port == 0) {
port->ip_serial_regs = &idd->vma->port_a;
port->ip_uart_regs = &idd->vma->sregs.uarta;
DPRINT_CONFIG(("%s : Port A ip_serial_regs 0x%p "
"ip_uart_regs 0x%p\n",
__func__,
(void *)port->ip_serial_regs,
(void *)port->ip_uart_regs));
/* setup ring buffers */
port->ip_cpu_ringbuf = pci_alloc_consistent(pdev,
TOTAL_RING_BUF_SIZE, &port->ip_dma_ringbuf);
BUG_ON(!((((int64_t) port->ip_dma_ringbuf) &
(TOTAL_RING_BUF_SIZE - 1)) == 0));
port->ip_inring = RING(port, RX_A);
port->ip_outring = RING(port, TX_A);
DPRINT_CONFIG(("%s : Port A ip_cpu_ringbuf 0x%p "
"ip_dma_ringbuf 0x%p, ip_inring 0x%p "
"ip_outring 0x%p\n",
__func__,
(void *)port->ip_cpu_ringbuf,
(void *)port->ip_dma_ringbuf,
(void *)port->ip_inring,
(void *)port->ip_outring));
}
else {
port->ip_serial_regs = &idd->vma->port_b;
port->ip_uart_regs = &idd->vma->sregs.uartb;
DPRINT_CONFIG(("%s : Port B ip_serial_regs 0x%p "
"ip_uart_regs 0x%p\n",
__func__,
(void *)port->ip_serial_regs,
(void *)port->ip_uart_regs));
/* share the ring buffers */
port->ip_dma_ringbuf =
ports[phys_port - 1]->ip_dma_ringbuf;
port->ip_cpu_ringbuf =
ports[phys_port - 1]->ip_cpu_ringbuf;
port->ip_inring = RING(port, RX_B);
port->ip_outring = RING(port, TX_B);
DPRINT_CONFIG(("%s : Port B ip_cpu_ringbuf 0x%p "
"ip_dma_ringbuf 0x%p, ip_inring 0x%p "
"ip_outring 0x%p\n",
__func__,
(void *)port->ip_cpu_ringbuf,
(void *)port->ip_dma_ringbuf,
(void *)port->ip_inring,
(void *)port->ip_outring));
}
DPRINT_CONFIG(("%s : port %d [addr 0x%p] card_ptr 0x%p",
__func__,
phys_port, (void *)port, (void *)card_ptr));
DPRINT_CONFIG((" ip_serial_regs 0x%p ip_uart_regs 0x%p\n",
(void *)port->ip_serial_regs,
(void *)port->ip_uart_regs));
/* Initialize the hardware for IOC3 */
port_init(port);
DPRINT_CONFIG(("%s: phys_port %d port 0x%p inring 0x%p "
"outring 0x%p\n",
__func__,
phys_port, (void *)port,
(void *)port->ip_inring,
(void *)port->ip_outring));
}
/* register port with the serial core */
if ((ret = ioc3_serial_core_attach(is, idd)))
goto out4;
Num_of_ioc3_cards++;
return ret;
/* error exits that give back resources */
out4:
for (cnt = 0; cnt < phys_port; cnt++)
kfree(ports[cnt]);
kfree(card_ptr);
return ret;
}
static struct ioc3_submodule ioc3uart_ops = {
.name = "IOC3uart",
.probe = ioc3uart_probe,
.remove = ioc3uart_remove,
/* call .intr for both ports initially */
.irq_mask = SIO_IR_SA | SIO_IR_SB,
.intr = ioc3uart_intr,
.owner = THIS_MODULE,
};
/**
* ioc3_detect - module init called,
*/
static int __init ioc3uart_init(void)
{
int ret;
/* register with serial core */
if ((ret = uart_register_driver(&ioc3_uart)) < 0) {
printk(KERN_WARNING
"%s: Couldn't register IOC3 uart serial driver\n",
__func__);
return ret;
}
ret = ioc3_register_submodule(&ioc3uart_ops);
if (ret)
uart_unregister_driver(&ioc3_uart);
return ret;
}
static void __exit ioc3uart_exit(void)
{
ioc3_unregister_submodule(&ioc3uart_ops);
uart_unregister_driver(&ioc3_uart);
}
module_init(ioc3uart_init);
module_exit(ioc3uart_exit);
MODULE_AUTHOR("Pat Gefre - Silicon Graphics Inc. (SGI) <pfg@sgi.com>");
MODULE_DESCRIPTION("Serial PCI driver module for SGI IOC3 card");
MODULE_LICENSE("GPL");