linux/net/batman-adv/routing.c

1085 lines
31 KiB
C
Raw Normal View History

/* Copyright (C) 2007-2014 B.A.T.M.A.N. contributors:
*
* Marek Lindner, Simon Wunderlich
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "main.h"
#include "routing.h"
#include "send.h"
#include "soft-interface.h"
#include "hard-interface.h"
#include "icmp_socket.h"
#include "translation-table.h"
#include "originator.h"
#include "bridge_loop_avoidance.h"
#include "distributed-arp-table.h"
#include "network-coding.h"
#include "fragmentation.h"
#include <linux/if_vlan.h>
static int batadv_route_unicast_packet(struct sk_buff *skb,
struct batadv_hard_iface *recv_if);
/**
* _batadv_update_route - set the router for this originator
* @bat_priv: the bat priv with all the soft interface information
* @orig_node: orig node which is to be configured
* @recv_if: the receive interface for which this route is set
* @neigh_node: neighbor which should be the next router
*
* This function does not perform any error checks
*/
static void _batadv_update_route(struct batadv_priv *bat_priv,
struct batadv_orig_node *orig_node,
struct batadv_hard_iface *recv_if,
struct batadv_neigh_node *neigh_node)
{
struct batadv_orig_ifinfo *orig_ifinfo;
struct batadv_neigh_node *curr_router;
orig_ifinfo = batadv_orig_ifinfo_get(orig_node, recv_if);
if (!orig_ifinfo)
return;
rcu_read_lock();
curr_router = rcu_dereference(orig_ifinfo->router);
if (curr_router && !atomic_inc_not_zero(&curr_router->refcount))
curr_router = NULL;
rcu_read_unlock();
/* route deleted */
if ((curr_router) && (!neigh_node)) {
batadv_dbg(BATADV_DBG_ROUTES, bat_priv,
"Deleting route towards: %pM\n", orig_node->orig);
batadv_tt_global_del_orig(bat_priv, orig_node, -1,
"Deleted route towards originator");
/* route added */
} else if ((!curr_router) && (neigh_node)) {
batadv_dbg(BATADV_DBG_ROUTES, bat_priv,
"Adding route towards: %pM (via %pM)\n",
orig_node->orig, neigh_node->addr);
/* route changed */
} else if (neigh_node && curr_router) {
batadv_dbg(BATADV_DBG_ROUTES, bat_priv,
"Changing route towards: %pM (now via %pM - was via %pM)\n",
orig_node->orig, neigh_node->addr,
curr_router->addr);
}
if (curr_router)
batadv_neigh_node_free_ref(curr_router);
/* increase refcount of new best neighbor */
if (neigh_node && !atomic_inc_not_zero(&neigh_node->refcount))
neigh_node = NULL;
spin_lock_bh(&orig_node->neigh_list_lock);
rcu_assign_pointer(orig_ifinfo->router, neigh_node);
spin_unlock_bh(&orig_node->neigh_list_lock);
batadv_orig_ifinfo_free_ref(orig_ifinfo);
/* decrease refcount of previous best neighbor */
if (curr_router)
batadv_neigh_node_free_ref(curr_router);
}
/**
* batadv_update_route - set the router for this originator
* @bat_priv: the bat priv with all the soft interface information
* @orig_node: orig node which is to be configured
* @recv_if: the receive interface for which this route is set
* @neigh_node: neighbor which should be the next router
*/
void batadv_update_route(struct batadv_priv *bat_priv,
struct batadv_orig_node *orig_node,
struct batadv_hard_iface *recv_if,
struct batadv_neigh_node *neigh_node)
{
struct batadv_neigh_node *router = NULL;
if (!orig_node)
goto out;
router = batadv_orig_router_get(orig_node, recv_if);
if (router != neigh_node)
_batadv_update_route(bat_priv, orig_node, recv_if, neigh_node);
out:
if (router)
batadv_neigh_node_free_ref(router);
}
/* checks whether the host restarted and is in the protection time.
* returns:
* 0 if the packet is to be accepted
* 1 if the packet is to be ignored.
*/
int batadv_window_protected(struct batadv_priv *bat_priv, int32_t seq_num_diff,
unsigned long *last_reset)
{
if (seq_num_diff <= -BATADV_TQ_LOCAL_WINDOW_SIZE ||
seq_num_diff >= BATADV_EXPECTED_SEQNO_RANGE) {
if (!batadv_has_timed_out(*last_reset,
BATADV_RESET_PROTECTION_MS))
return 1;
*last_reset = jiffies;
batadv_dbg(BATADV_DBG_BATMAN, bat_priv,
"old packet received, start protection\n");
}
return 0;
}
bool batadv_check_management_packet(struct sk_buff *skb,
struct batadv_hard_iface *hard_iface,
int header_len)
{
struct ethhdr *ethhdr;
/* drop packet if it has not necessary minimum size */
if (unlikely(!pskb_may_pull(skb, header_len)))
return false;
ethhdr = eth_hdr(skb);
/* packet with broadcast indication but unicast recipient */
if (!is_broadcast_ether_addr(ethhdr->h_dest))
return false;
/* packet with broadcast sender address */
if (is_broadcast_ether_addr(ethhdr->h_source))
return false;
/* create a copy of the skb, if needed, to modify it. */
if (skb_cow(skb, 0) < 0)
return false;
/* keep skb linear */
if (skb_linearize(skb) < 0)
return false;
return true;
}
/**
* batadv_recv_my_icmp_packet - receive an icmp packet locally
* @bat_priv: the bat priv with all the soft interface information
* @skb: icmp packet to process
*
* Returns NET_RX_SUCCESS if the packet has been consumed or NET_RX_DROP
* otherwise.
*/
static int batadv_recv_my_icmp_packet(struct batadv_priv *bat_priv,
struct sk_buff *skb)
{
struct batadv_hard_iface *primary_if = NULL;
struct batadv_orig_node *orig_node = NULL;
struct batadv_icmp_header *icmph;
int res, ret = NET_RX_DROP;
icmph = (struct batadv_icmp_header *)skb->data;
switch (icmph->msg_type) {
case BATADV_ECHO_REPLY:
case BATADV_DESTINATION_UNREACHABLE:
case BATADV_TTL_EXCEEDED:
/* receive the packet */
if (skb_linearize(skb) < 0)
break;
batadv_socket_receive_packet(icmph, skb->len);
break;
case BATADV_ECHO_REQUEST:
/* answer echo request (ping) */
primary_if = batadv_primary_if_get_selected(bat_priv);
if (!primary_if)
goto out;
/* get routing information */
orig_node = batadv_orig_hash_find(bat_priv, icmph->orig);
if (!orig_node)
goto out;
/* create a copy of the skb, if needed, to modify it. */
if (skb_cow(skb, ETH_HLEN) < 0)
goto out;
icmph = (struct batadv_icmp_header *)skb->data;
memcpy(icmph->dst, icmph->orig, ETH_ALEN);
memcpy(icmph->orig, primary_if->net_dev->dev_addr, ETH_ALEN);
icmph->msg_type = BATADV_ECHO_REPLY;
icmph->ttl = BATADV_TTL;
res = batadv_send_skb_to_orig(skb, orig_node, NULL);
if (res != NET_XMIT_DROP)
ret = NET_RX_SUCCESS;
break;
default:
/* drop unknown type */
goto out;
}
out:
if (primary_if)
batadv_hardif_free_ref(primary_if);
if (orig_node)
batadv_orig_node_free_ref(orig_node);
return ret;
}
static int batadv_recv_icmp_ttl_exceeded(struct batadv_priv *bat_priv,
struct sk_buff *skb)
{
struct batadv_hard_iface *primary_if = NULL;
struct batadv_orig_node *orig_node = NULL;
struct batadv_icmp_packet *icmp_packet;
int ret = NET_RX_DROP;
icmp_packet = (struct batadv_icmp_packet *)skb->data;
/* send TTL exceeded if packet is an echo request (traceroute) */
if (icmp_packet->msg_type != BATADV_ECHO_REQUEST) {
pr_debug("Warning - can't forward icmp packet from %pM to %pM: ttl exceeded\n",
icmp_packet->orig, icmp_packet->dst);
goto out;
}
primary_if = batadv_primary_if_get_selected(bat_priv);
if (!primary_if)
goto out;
/* get routing information */
orig_node = batadv_orig_hash_find(bat_priv, icmp_packet->orig);
if (!orig_node)
goto out;
/* create a copy of the skb, if needed, to modify it. */
if (skb_cow(skb, ETH_HLEN) < 0)
goto out;
icmp_packet = (struct batadv_icmp_packet *)skb->data;
memcpy(icmp_packet->dst, icmp_packet->orig, ETH_ALEN);
memcpy(icmp_packet->orig, primary_if->net_dev->dev_addr,
ETH_ALEN);
icmp_packet->msg_type = BATADV_TTL_EXCEEDED;
icmp_packet->ttl = BATADV_TTL;
if (batadv_send_skb_to_orig(skb, orig_node, NULL) != NET_XMIT_DROP)
ret = NET_RX_SUCCESS;
out:
if (primary_if)
batadv_hardif_free_ref(primary_if);
if (orig_node)
batadv_orig_node_free_ref(orig_node);
return ret;
}
int batadv_recv_icmp_packet(struct sk_buff *skb,
struct batadv_hard_iface *recv_if)
{
struct batadv_priv *bat_priv = netdev_priv(recv_if->soft_iface);
struct batadv_icmp_header *icmph;
struct batadv_icmp_packet_rr *icmp_packet_rr;
struct ethhdr *ethhdr;
struct batadv_orig_node *orig_node = NULL;
int hdr_size = sizeof(struct batadv_icmp_header);
int ret = NET_RX_DROP;
/* drop packet if it has not necessary minimum size */
if (unlikely(!pskb_may_pull(skb, hdr_size)))
goto out;
ethhdr = eth_hdr(skb);
/* packet with unicast indication but broadcast recipient */
if (is_broadcast_ether_addr(ethhdr->h_dest))
goto out;
/* packet with broadcast sender address */
if (is_broadcast_ether_addr(ethhdr->h_source))
goto out;
/* not for me */
if (!batadv_is_my_mac(bat_priv, ethhdr->h_dest))
goto out;
icmph = (struct batadv_icmp_header *)skb->data;
/* add record route information if not full */
if ((icmph->msg_type == BATADV_ECHO_REPLY ||
icmph->msg_type == BATADV_ECHO_REQUEST) &&
(skb->len >= sizeof(struct batadv_icmp_packet_rr))) {
if (skb_linearize(skb) < 0)
goto out;
/* create a copy of the skb, if needed, to modify it. */
if (skb_cow(skb, ETH_HLEN) < 0)
goto out;
icmph = (struct batadv_icmp_header *)skb->data;
icmp_packet_rr = (struct batadv_icmp_packet_rr *)icmph;
if (icmp_packet_rr->rr_cur >= BATADV_RR_LEN)
goto out;
memcpy(&(icmp_packet_rr->rr[icmp_packet_rr->rr_cur]),
ethhdr->h_dest, ETH_ALEN);
icmp_packet_rr->rr_cur++;
}
/* packet for me */
if (batadv_is_my_mac(bat_priv, icmph->dst))
return batadv_recv_my_icmp_packet(bat_priv, skb);
/* TTL exceeded */
if (icmph->ttl < 2)
return batadv_recv_icmp_ttl_exceeded(bat_priv, skb);
/* get routing information */
orig_node = batadv_orig_hash_find(bat_priv, icmph->dst);
if (!orig_node)
goto out;
/* create a copy of the skb, if needed, to modify it. */
if (skb_cow(skb, ETH_HLEN) < 0)
goto out;
icmph = (struct batadv_icmp_header *)skb->data;
/* decrement ttl */
icmph->ttl--;
/* route it */
if (batadv_send_skb_to_orig(skb, orig_node, recv_if) != NET_XMIT_DROP)
ret = NET_RX_SUCCESS;
out:
if (orig_node)
batadv_orig_node_free_ref(orig_node);
return ret;
}
/**
* batadv_check_unicast_packet - Check for malformed unicast packets
* @bat_priv: the bat priv with all the soft interface information
* @skb: packet to check
* @hdr_size: size of header to pull
*
* Check for short header and bad addresses in given packet. Returns negative
* value when check fails and 0 otherwise. The negative value depends on the
* reason: -ENODATA for bad header, -EBADR for broadcast destination or source,
* and -EREMOTE for non-local (other host) destination.
*/
static int batadv_check_unicast_packet(struct batadv_priv *bat_priv,
struct sk_buff *skb, int hdr_size)
{
struct ethhdr *ethhdr;
/* drop packet if it has not necessary minimum size */
if (unlikely(!pskb_may_pull(skb, hdr_size)))
return -ENODATA;
ethhdr = eth_hdr(skb);
/* packet with unicast indication but broadcast recipient */
if (is_broadcast_ether_addr(ethhdr->h_dest))
return -EBADR;
/* packet with broadcast sender address */
if (is_broadcast_ether_addr(ethhdr->h_source))
return -EBADR;
/* not for me */
if (!batadv_is_my_mac(bat_priv, ethhdr->h_dest))
return -EREMOTE;
return 0;
}
/**
* batadv_find_router - find a suitable router for this originator
* @bat_priv: the bat priv with all the soft interface information
* @orig_node: the destination node
* @recv_if: pointer to interface this packet was received on
*
* Returns the router which should be used for this orig_node on
* this interface, or NULL if not available.
*/
struct batadv_neigh_node *
batadv_find_router(struct batadv_priv *bat_priv,
struct batadv_orig_node *orig_node,
struct batadv_hard_iface *recv_if)
{
struct batadv_algo_ops *bao = bat_priv->bat_algo_ops;
struct batadv_neigh_node *first_candidate_router = NULL;
struct batadv_neigh_node *next_candidate_router = NULL;
struct batadv_neigh_node *router, *cand_router = NULL;
struct batadv_neigh_node *last_cand_router = NULL;
struct batadv_orig_ifinfo *cand, *first_candidate = NULL;
struct batadv_orig_ifinfo *next_candidate = NULL;
struct batadv_orig_ifinfo *last_candidate;
bool last_candidate_found = false;
if (!orig_node)
return NULL;
router = batadv_orig_router_get(orig_node, recv_if);
/* only consider bonding for recv_if == BATADV_IF_DEFAULT (first hop)
* and if activated.
*/
if (recv_if == BATADV_IF_DEFAULT || !atomic_read(&bat_priv->bonding) ||
!router)
return router;
/* bonding: loop through the list of possible routers found
* for the various outgoing interfaces and find a candidate after
* the last chosen bonding candidate (next_candidate). If no such
* router is found, use the first candidate found (the previously
* chosen bonding candidate might have been the last one in the list).
* If this can't be found either, return the previously choosen
* router - obviously there are no other candidates.
*/
rcu_read_lock();
last_candidate = orig_node->last_bonding_candidate;
if (last_candidate)
last_cand_router = rcu_dereference(last_candidate->router);
hlist_for_each_entry_rcu(cand, &orig_node->ifinfo_list, list) {
/* acquire some structures and references ... */
if (!atomic_inc_not_zero(&cand->refcount))
continue;
cand_router = rcu_dereference(cand->router);
if (!cand_router)
goto next;
if (!atomic_inc_not_zero(&cand_router->refcount)) {
cand_router = NULL;
goto next;
}
/* alternative candidate should be good enough to be
* considered
*/
if (!bao->bat_neigh_is_equiv_or_better(cand_router,
cand->if_outgoing,
router, recv_if))
goto next;
/* don't use the same router twice */
if (last_cand_router == cand_router)
goto next;
/* mark the first possible candidate */
if (!first_candidate) {
atomic_inc(&cand_router->refcount);
atomic_inc(&cand->refcount);
first_candidate = cand;
first_candidate_router = cand_router;
}
/* check if the loop has already passed the previously selected
* candidate ... this function should select the next candidate
* AFTER the previously used bonding candidate.
*/
if (!last_candidate || last_candidate_found) {
next_candidate = cand;
next_candidate_router = cand_router;
break;
}
if (last_candidate == cand)
last_candidate_found = true;
next:
/* free references */
if (cand_router) {
batadv_neigh_node_free_ref(cand_router);
cand_router = NULL;
}
batadv_orig_ifinfo_free_ref(cand);
}
rcu_read_unlock();
/* last_bonding_candidate is reset below, remove the old reference. */
if (orig_node->last_bonding_candidate)
batadv_orig_ifinfo_free_ref(orig_node->last_bonding_candidate);
/* After finding candidates, handle the three cases:
* 1) there is a next candidate, use that
* 2) there is no next candidate, use the first of the list
* 3) there is no candidate at all, return the default router
*/
if (next_candidate) {
batadv_neigh_node_free_ref(router);
/* remove references to first candidate, we don't need it. */
if (first_candidate) {
batadv_neigh_node_free_ref(first_candidate_router);
batadv_orig_ifinfo_free_ref(first_candidate);
}
router = next_candidate_router;
orig_node->last_bonding_candidate = next_candidate;
} else if (first_candidate) {
batadv_neigh_node_free_ref(router);
/* refcounting has already been done in the loop above. */
router = first_candidate_router;
orig_node->last_bonding_candidate = first_candidate;
} else {
orig_node->last_bonding_candidate = NULL;
}
return router;
}
static int batadv_route_unicast_packet(struct sk_buff *skb,
struct batadv_hard_iface *recv_if)
{
struct batadv_priv *bat_priv = netdev_priv(recv_if->soft_iface);
struct batadv_orig_node *orig_node = NULL;
struct batadv_unicast_packet *unicast_packet;
struct ethhdr *ethhdr = eth_hdr(skb);
int res, hdr_len, ret = NET_RX_DROP;
unicast_packet = (struct batadv_unicast_packet *)skb->data;
/* TTL exceeded */
if (unicast_packet->ttl < 2) {
pr_debug("Warning - can't forward unicast packet from %pM to %pM: ttl exceeded\n",
ethhdr->h_source, unicast_packet->dest);
goto out;
}
/* get routing information */
orig_node = batadv_orig_hash_find(bat_priv, unicast_packet->dest);
if (!orig_node)
goto out;
/* create a copy of the skb, if needed, to modify it. */
if (skb_cow(skb, ETH_HLEN) < 0)
goto out;
/* decrement ttl */
unicast_packet = (struct batadv_unicast_packet *)skb->data;
unicast_packet->ttl--;
switch (unicast_packet->packet_type) {
case BATADV_UNICAST_4ADDR:
hdr_len = sizeof(struct batadv_unicast_4addr_packet);
break;
case BATADV_UNICAST:
hdr_len = sizeof(struct batadv_unicast_packet);
break;
default:
/* other packet types not supported - yet */
hdr_len = -1;
break;
}
if (hdr_len > 0)
batadv_skb_set_priority(skb, hdr_len);
res = batadv_send_skb_to_orig(skb, orig_node, recv_if);
/* translate transmit result into receive result */
if (res == NET_XMIT_SUCCESS) {
/* skb was transmitted and consumed */
batadv_inc_counter(bat_priv, BATADV_CNT_FORWARD);
batadv_add_counter(bat_priv, BATADV_CNT_FORWARD_BYTES,
skb->len + ETH_HLEN);
ret = NET_RX_SUCCESS;
} else if (res == NET_XMIT_POLICED) {
/* skb was buffered and consumed */
ret = NET_RX_SUCCESS;
}
out:
if (orig_node)
batadv_orig_node_free_ref(orig_node);
return ret;
}
/**
* batadv_reroute_unicast_packet - update the unicast header for re-routing
* @bat_priv: the bat priv with all the soft interface information
* @unicast_packet: the unicast header to be updated
* @dst_addr: the payload destination
* @vid: VLAN identifier
*
* Search the translation table for dst_addr and update the unicast header with
* the new corresponding information (originator address where the destination
* client currently is and its known TTVN)
*
* Returns true if the packet header has been updated, false otherwise
*/
static bool
batadv_reroute_unicast_packet(struct batadv_priv *bat_priv,
struct batadv_unicast_packet *unicast_packet,
uint8_t *dst_addr, unsigned short vid)
{
struct batadv_orig_node *orig_node = NULL;
struct batadv_hard_iface *primary_if = NULL;
bool ret = false;
uint8_t *orig_addr, orig_ttvn;
if (batadv_is_my_client(bat_priv, dst_addr, vid)) {
primary_if = batadv_primary_if_get_selected(bat_priv);
if (!primary_if)
goto out;
orig_addr = primary_if->net_dev->dev_addr;
orig_ttvn = (uint8_t)atomic_read(&bat_priv->tt.vn);
} else {
orig_node = batadv_transtable_search(bat_priv, NULL, dst_addr,
vid);
if (!orig_node)
goto out;
if (batadv_compare_eth(orig_node->orig, unicast_packet->dest))
goto out;
orig_addr = orig_node->orig;
orig_ttvn = (uint8_t)atomic_read(&orig_node->last_ttvn);
}
/* update the packet header */
memcpy(unicast_packet->dest, orig_addr, ETH_ALEN);
unicast_packet->ttvn = orig_ttvn;
ret = true;
out:
if (primary_if)
batadv_hardif_free_ref(primary_if);
if (orig_node)
batadv_orig_node_free_ref(orig_node);
return ret;
}
static int batadv_check_unicast_ttvn(struct batadv_priv *bat_priv,
struct sk_buff *skb, int hdr_len) {
struct batadv_unicast_packet *unicast_packet;
struct batadv_hard_iface *primary_if;
struct batadv_orig_node *orig_node;
uint8_t curr_ttvn, old_ttvn;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
struct ethhdr *ethhdr;
unsigned short vid;
int is_old_ttvn;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
/* check if there is enough data before accessing it */
if (pskb_may_pull(skb, hdr_len + ETH_HLEN) < 0)
return 0;
/* create a copy of the skb (in case of for re-routing) to modify it. */
if (skb_cow(skb, sizeof(*unicast_packet)) < 0)
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
return 0;
unicast_packet = (struct batadv_unicast_packet *)skb->data;
vid = batadv_get_vid(skb, hdr_len);
ethhdr = (struct ethhdr *)(skb->data + hdr_len);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
/* check if the destination client was served by this node and it is now
* roaming. In this case, it means that the node has got a ROAM_ADV
* message and that it knows the new destination in the mesh to re-route
* the packet to
*/
if (batadv_tt_local_client_is_roaming(bat_priv, ethhdr->h_dest, vid)) {
if (batadv_reroute_unicast_packet(bat_priv, unicast_packet,
ethhdr->h_dest, vid))
net_ratelimited_function(batadv_dbg, BATADV_DBG_TT,
bat_priv,
"Rerouting unicast packet to %pM (dst=%pM): Local Roaming\n",
unicast_packet->dest,
ethhdr->h_dest);
/* at this point the mesh destination should have been
* substituted with the originator address found in the global
* table. If not, let the packet go untouched anyway because
* there is nothing the node can do
*/
return 1;
}
/* retrieve the TTVN known by this node for the packet destination. This
* value is used later to check if the node which sent (or re-routed
* last time) the packet had an updated information or not
*/
curr_ttvn = (uint8_t)atomic_read(&bat_priv->tt.vn);
if (!batadv_is_my_mac(bat_priv, unicast_packet->dest)) {
orig_node = batadv_orig_hash_find(bat_priv,
unicast_packet->dest);
/* if it is not possible to find the orig_node representing the
* destination, the packet can immediately be dropped as it will
* not be possible to deliver it
*/
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
if (!orig_node)
return 0;
curr_ttvn = (uint8_t)atomic_read(&orig_node->last_ttvn);
batadv_orig_node_free_ref(orig_node);
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
}
/* check if the TTVN contained in the packet is fresher than what the
* node knows
*/
is_old_ttvn = batadv_seq_before(unicast_packet->ttvn, curr_ttvn);
if (!is_old_ttvn)
return 1;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
old_ttvn = unicast_packet->ttvn;
/* the packet was forged based on outdated network information. Its
* destination can possibly be updated and forwarded towards the new
* target host
*/
if (batadv_reroute_unicast_packet(bat_priv, unicast_packet,
ethhdr->h_dest, vid)) {
net_ratelimited_function(batadv_dbg, BATADV_DBG_TT, bat_priv,
"Rerouting unicast packet to %pM (dst=%pM): TTVN mismatch old_ttvn=%u new_ttvn=%u\n",
unicast_packet->dest, ethhdr->h_dest,
old_ttvn, curr_ttvn);
return 1;
}
batman-adv: improve unicast packet (re)routing In case of a client X roaming from a generic node A to another node B, it is possible that a third node C gets A's OGM but not B's. At this point in time, if C wants to send data to X it will send a unicast packet destined to A. The packet header will contain A's last ttvn (C got A's OGM and so it knows it). The packet will travel towards A without being intercepted because the ttvn contained in its header is the newest for A. Once A will receive the packet, A's state will not report to be in a "roaming phase" (because, after a roaming, once A sends out its OGM, all the changes are committed and the node is considered not to be in the roaming state anymore) and it will match the ttvn carried by the packet. Therefore there is no reason for A to try to alter the packet's route, thus dropping the packet because the destination client is not there anymore. However, C is well aware that it's routing information towards the client X is outdated as it received an OGM from A saying that the client roamed away. Thanks to this detail, this patch introduces a small change in behaviour: as long as C is in the state of not knowing the new location of client X it will forward the traffic to its last known location using ttvn-1 of the destination. By using an older ttvn node A will be forced to re-route the packet. Intermediate nodes are also allowed to update the packet's destination as long as they have the information about the client's new location. Signed-off-by: Antonio Quartulli <ordex@autistici.org>
2012-03-17 01:03:28 +08:00
/* the packet has not been re-routed: either the destination is
* currently served by this node or there is no destination at all and
* it is possible to drop the packet
*/
if (!batadv_is_my_client(bat_priv, ethhdr->h_dest, vid))
return 0;
batman-adv: improve unicast packet (re)routing In case of a client X roaming from a generic node A to another node B, it is possible that a third node C gets A's OGM but not B's. At this point in time, if C wants to send data to X it will send a unicast packet destined to A. The packet header will contain A's last ttvn (C got A's OGM and so it knows it). The packet will travel towards A without being intercepted because the ttvn contained in its header is the newest for A. Once A will receive the packet, A's state will not report to be in a "roaming phase" (because, after a roaming, once A sends out its OGM, all the changes are committed and the node is considered not to be in the roaming state anymore) and it will match the ttvn carried by the packet. Therefore there is no reason for A to try to alter the packet's route, thus dropping the packet because the destination client is not there anymore. However, C is well aware that it's routing information towards the client X is outdated as it received an OGM from A saying that the client roamed away. Thanks to this detail, this patch introduces a small change in behaviour: as long as C is in the state of not knowing the new location of client X it will forward the traffic to its last known location using ttvn-1 of the destination. By using an older ttvn node A will be forced to re-route the packet. Intermediate nodes are also allowed to update the packet's destination as long as they have the information about the client's new location. Signed-off-by: Antonio Quartulli <ordex@autistici.org>
2012-03-17 01:03:28 +08:00
/* update the header in order to let the packet be delivered to this
* node's soft interface
*/
primary_if = batadv_primary_if_get_selected(bat_priv);
if (!primary_if)
return 0;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
memcpy(unicast_packet->dest, primary_if->net_dev->dev_addr, ETH_ALEN);
batadv_hardif_free_ref(primary_if);
unicast_packet->ttvn = curr_ttvn;
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
return 1;
}
/**
* batadv_recv_unhandled_unicast_packet - receive and process packets which
* are in the unicast number space but not yet known to the implementation
* @skb: unicast tvlv packet to process
* @recv_if: pointer to interface this packet was received on
*
* Returns NET_RX_SUCCESS if the packet has been consumed or NET_RX_DROP
* otherwise.
*/
int batadv_recv_unhandled_unicast_packet(struct sk_buff *skb,
struct batadv_hard_iface *recv_if)
{
struct batadv_unicast_packet *unicast_packet;
struct batadv_priv *bat_priv = netdev_priv(recv_if->soft_iface);
int check, hdr_size = sizeof(*unicast_packet);
check = batadv_check_unicast_packet(bat_priv, skb, hdr_size);
if (check < 0)
return NET_RX_DROP;
/* we don't know about this type, drop it. */
unicast_packet = (struct batadv_unicast_packet *)skb->data;
if (batadv_is_my_mac(bat_priv, unicast_packet->dest))
return NET_RX_DROP;
return batadv_route_unicast_packet(skb, recv_if);
}
int batadv_recv_unicast_packet(struct sk_buff *skb,
struct batadv_hard_iface *recv_if)
{
struct batadv_priv *bat_priv = netdev_priv(recv_if->soft_iface);
struct batadv_unicast_packet *unicast_packet;
struct batadv_unicast_4addr_packet *unicast_4addr_packet;
uint8_t *orig_addr;
struct batadv_orig_node *orig_node = NULL;
int check, hdr_size = sizeof(*unicast_packet);
bool is4addr;
unicast_packet = (struct batadv_unicast_packet *)skb->data;
unicast_4addr_packet = (struct batadv_unicast_4addr_packet *)skb->data;
is4addr = unicast_packet->packet_type == BATADV_UNICAST_4ADDR;
/* the caller function should have already pulled 2 bytes */
if (is4addr)
hdr_size = sizeof(*unicast_4addr_packet);
/* function returns -EREMOTE for promiscuous packets */
check = batadv_check_unicast_packet(bat_priv, skb, hdr_size);
/* Even though the packet is not for us, we might save it to use for
* decoding a later received coded packet
*/
if (check == -EREMOTE)
batadv_nc_skb_store_sniffed_unicast(bat_priv, skb);
if (check < 0)
return NET_RX_DROP;
if (!batadv_check_unicast_ttvn(bat_priv, skb, hdr_size))
batman-adv: improved client announcement mechanism The client announcement mechanism informs every mesh node in the network of any connected non-mesh client, in order to find the path towards that client from any given point in the mesh. The old implementation was based on the simple idea of appending a data buffer to each OGM containing all the client MAC addresses the node is serving. All other nodes can populate their global translation tables (table which links client MAC addresses to node addresses) using this MAC address buffer and linking it to the node's address contained in the OGM. A node that wants to contact a client has to lookup the node the client is connected to and its address in the global translation table. It is easy to understand that this implementation suffers from several issues: - big overhead (each and every OGM contains the entire list of connected clients) - high latencies for client route updates due to long OGM trip time and OGM losses The new implementation addresses these issues by appending client changes (new client joined or a client left) to the OGM instead of filling it with all the client addresses each time. In this way nodes can modify their global tables by means of "updates", thus reducing the overhead within the OGMs. To keep the entire network in sync each node maintains a translation table version number (ttvn) and a translation table checksum. These values are spread with the OGM to allow all the network participants to determine whether or not they need to update their translation table information. When a translation table lookup is performed in order to send a packet to a client attached to another node, the destination's ttvn is added to the payload packet. Forwarding nodes can compare the packet's ttvn with their destination's ttvn (this node could have a fresher information than the source) and re-route the packet if necessary. This greatly reduces the packet loss of clients roaming from one AP to the next. Signed-off-by: Antonio Quartulli <ordex@autistici.org> Signed-off-by: Marek Lindner <lindner_marek@yahoo.de> Signed-off-by: Sven Eckelmann <sven@narfation.org>
2011-04-27 20:27:44 +08:00
return NET_RX_DROP;
/* packet for me */
if (batadv_is_my_mac(bat_priv, unicast_packet->dest)) {
if (is4addr) {
batadv_dat_inc_counter(bat_priv,
unicast_4addr_packet->subtype);
orig_addr = unicast_4addr_packet->src;
orig_node = batadv_orig_hash_find(bat_priv, orig_addr);
}
if (batadv_dat_snoop_incoming_arp_request(bat_priv, skb,
hdr_size))
goto rx_success;
if (batadv_dat_snoop_incoming_arp_reply(bat_priv, skb,
hdr_size))
goto rx_success;
batadv_interface_rx(recv_if->soft_iface, skb, recv_if, hdr_size,
orig_node);
rx_success:
if (orig_node)
batadv_orig_node_free_ref(orig_node);
return NET_RX_SUCCESS;
}
return batadv_route_unicast_packet(skb, recv_if);
}
/**
* batadv_recv_unicast_tvlv - receive and process unicast tvlv packets
* @skb: unicast tvlv packet to process
* @recv_if: pointer to interface this packet was received on
* @dst_addr: the payload destination
*
* Returns NET_RX_SUCCESS if the packet has been consumed or NET_RX_DROP
* otherwise.
*/
int batadv_recv_unicast_tvlv(struct sk_buff *skb,
struct batadv_hard_iface *recv_if)
{
struct batadv_priv *bat_priv = netdev_priv(recv_if->soft_iface);
struct batadv_unicast_tvlv_packet *unicast_tvlv_packet;
unsigned char *tvlv_buff;
uint16_t tvlv_buff_len;
int hdr_size = sizeof(*unicast_tvlv_packet);
int ret = NET_RX_DROP;
if (batadv_check_unicast_packet(bat_priv, skb, hdr_size) < 0)
return NET_RX_DROP;
/* the header is likely to be modified while forwarding */
if (skb_cow(skb, hdr_size) < 0)
return NET_RX_DROP;
/* packet needs to be linearized to access the tvlv content */
if (skb_linearize(skb) < 0)
return NET_RX_DROP;
unicast_tvlv_packet = (struct batadv_unicast_tvlv_packet *)skb->data;
tvlv_buff = (unsigned char *)(skb->data + hdr_size);
tvlv_buff_len = ntohs(unicast_tvlv_packet->tvlv_len);
if (tvlv_buff_len > skb->len - hdr_size)
return NET_RX_DROP;
ret = batadv_tvlv_containers_process(bat_priv, false, NULL,
unicast_tvlv_packet->src,
unicast_tvlv_packet->dst,
tvlv_buff, tvlv_buff_len);
if (ret != NET_RX_SUCCESS)
ret = batadv_route_unicast_packet(skb, recv_if);
return ret;
}
/**
* batadv_recv_frag_packet - process received fragment
* @skb: the received fragment
* @recv_if: interface that the skb is received on
*
* This function does one of the three following things: 1) Forward fragment, if
* the assembled packet will exceed our MTU; 2) Buffer fragment, if we till
* lack further fragments; 3) Merge fragments, if we have all needed parts.
*
* Return NET_RX_DROP if the skb is not consumed, NET_RX_SUCCESS otherwise.
*/
int batadv_recv_frag_packet(struct sk_buff *skb,
struct batadv_hard_iface *recv_if)
{
struct batadv_priv *bat_priv = netdev_priv(recv_if->soft_iface);
struct batadv_orig_node *orig_node_src = NULL;
struct batadv_frag_packet *frag_packet;
int ret = NET_RX_DROP;
if (batadv_check_unicast_packet(bat_priv, skb,
sizeof(*frag_packet)) < 0)
goto out;
frag_packet = (struct batadv_frag_packet *)skb->data;
orig_node_src = batadv_orig_hash_find(bat_priv, frag_packet->orig);
if (!orig_node_src)
goto out;
/* Route the fragment if it is not for us and too big to be merged. */
if (!batadv_is_my_mac(bat_priv, frag_packet->dest) &&
batadv_frag_skb_fwd(skb, recv_if, orig_node_src)) {
ret = NET_RX_SUCCESS;
goto out;
}
batadv_inc_counter(bat_priv, BATADV_CNT_FRAG_RX);
batadv_add_counter(bat_priv, BATADV_CNT_FRAG_RX_BYTES, skb->len);
/* Add fragment to buffer and merge if possible. */
if (!batadv_frag_skb_buffer(&skb, orig_node_src))
goto out;
/* Deliver merged packet to the appropriate handler, if it was
* merged
*/
if (skb)
batadv_batman_skb_recv(skb, recv_if->net_dev,
&recv_if->batman_adv_ptype, NULL);
ret = NET_RX_SUCCESS;
out:
if (orig_node_src)
batadv_orig_node_free_ref(orig_node_src);
return ret;
}
int batadv_recv_bcast_packet(struct sk_buff *skb,
struct batadv_hard_iface *recv_if)
{
struct batadv_priv *bat_priv = netdev_priv(recv_if->soft_iface);
struct batadv_orig_node *orig_node = NULL;
struct batadv_bcast_packet *bcast_packet;
struct ethhdr *ethhdr;
int hdr_size = sizeof(*bcast_packet);
int ret = NET_RX_DROP;
int32_t seq_diff;
uint32_t seqno;
/* drop packet if it has not necessary minimum size */
if (unlikely(!pskb_may_pull(skb, hdr_size)))
goto out;
ethhdr = eth_hdr(skb);
/* packet with broadcast indication but unicast recipient */
if (!is_broadcast_ether_addr(ethhdr->h_dest))
goto out;
/* packet with broadcast sender address */
if (is_broadcast_ether_addr(ethhdr->h_source))
goto out;
/* ignore broadcasts sent by myself */
if (batadv_is_my_mac(bat_priv, ethhdr->h_source))
goto out;
bcast_packet = (struct batadv_bcast_packet *)skb->data;
/* ignore broadcasts originated by myself */
if (batadv_is_my_mac(bat_priv, bcast_packet->orig))
goto out;
if (bcast_packet->ttl < 2)
goto out;
orig_node = batadv_orig_hash_find(bat_priv, bcast_packet->orig);
if (!orig_node)
goto out;
spin_lock_bh(&orig_node->bcast_seqno_lock);
seqno = ntohl(bcast_packet->seqno);
/* check whether the packet is a duplicate */
if (batadv_test_bit(orig_node->bcast_bits, orig_node->last_bcast_seqno,
seqno))
goto spin_unlock;
seq_diff = seqno - orig_node->last_bcast_seqno;
/* check whether the packet is old and the host just restarted. */
if (batadv_window_protected(bat_priv, seq_diff,
&orig_node->bcast_seqno_reset))
goto spin_unlock;
/* mark broadcast in flood history, update window position
* if required.
*/
if (batadv_bit_get_packet(bat_priv, orig_node->bcast_bits, seq_diff, 1))
orig_node->last_bcast_seqno = seqno;
spin_unlock_bh(&orig_node->bcast_seqno_lock);
/* check whether this has been sent by another originator before */
if (batadv_bla_check_bcast_duplist(bat_priv, skb))
goto out;
batadv_skb_set_priority(skb, sizeof(struct batadv_bcast_packet));
/* rebroadcast packet */
batadv_add_bcast_packet_to_list(bat_priv, skb, 1);
/* don't hand the broadcast up if it is from an originator
* from the same backbone.
*/
if (batadv_bla_is_backbone_gw(skb, orig_node, hdr_size))
goto out;
if (batadv_dat_snoop_incoming_arp_request(bat_priv, skb, hdr_size))
goto rx_success;
if (batadv_dat_snoop_incoming_arp_reply(bat_priv, skb, hdr_size))
goto rx_success;
/* broadcast for me */
batadv_interface_rx(recv_if->soft_iface, skb, recv_if, hdr_size,
orig_node);
rx_success:
ret = NET_RX_SUCCESS;
goto out;
spin_unlock:
spin_unlock_bh(&orig_node->bcast_seqno_lock);
out:
if (orig_node)
batadv_orig_node_free_ref(orig_node);
return ret;
}