linux/include/asm-generic/io.h

895 lines
17 KiB
C
Raw Normal View History

/* Generic I/O port emulation, based on MN10300 code
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#ifndef __ASM_GENERIC_IO_H
#define __ASM_GENERIC_IO_H
#include <asm/page.h> /* I/O is all done through memory accesses */
#include <linux/string.h> /* for memset() and memcpy() */
#include <linux/types.h>
#ifdef CONFIG_GENERIC_IOMAP
#include <asm-generic/iomap.h>
#endif
#include <asm-generic/pci_iomap.h>
#ifndef mmiowb
#define mmiowb() do {} while (0)
#endif
/*
* __raw_{read,write}{b,w,l,q}() access memory in native endianness.
*
* On some architectures memory mapped IO needs to be accessed differently.
* On the simple architectures, we just read/write the memory location
* directly.
*/
#ifndef __raw_readb
#define __raw_readb __raw_readb
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
return *(const volatile u8 __force *)addr;
}
#endif
#ifndef __raw_readw
#define __raw_readw __raw_readw
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
return *(const volatile u16 __force *)addr;
}
#endif
#ifndef __raw_readl
#define __raw_readl __raw_readl
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
return *(const volatile u32 __force *)addr;
}
#endif
#ifdef CONFIG_64BIT
#ifndef __raw_readq
#define __raw_readq __raw_readq
static inline u64 __raw_readq(const volatile void __iomem *addr)
{
return *(const volatile u64 __force *)addr;
}
#endif
#endif /* CONFIG_64BIT */
#ifndef __raw_writeb
#define __raw_writeb __raw_writeb
static inline void __raw_writeb(u8 value, volatile void __iomem *addr)
{
*(volatile u8 __force *)addr = value;
}
#endif
#ifndef __raw_writew
#define __raw_writew __raw_writew
static inline void __raw_writew(u16 value, volatile void __iomem *addr)
{
*(volatile u16 __force *)addr = value;
}
#endif
#ifndef __raw_writel
#define __raw_writel __raw_writel
static inline void __raw_writel(u32 value, volatile void __iomem *addr)
{
*(volatile u32 __force *)addr = value;
}
#endif
#ifdef CONFIG_64BIT
#ifndef __raw_writeq
#define __raw_writeq __raw_writeq
static inline void __raw_writeq(u64 value, volatile void __iomem *addr)
{
*(volatile u64 __force *)addr = value;
}
#endif
#endif /* CONFIG_64BIT */
/*
* {read,write}{b,w,l,q}() access little endian memory and return result in
* native endianness.
*/
#ifndef readb
#define readb readb
static inline u8 readb(const volatile void __iomem *addr)
{
return __raw_readb(addr);
}
#endif
#ifndef readw
#define readw readw
static inline u16 readw(const volatile void __iomem *addr)
{
return __le16_to_cpu(__raw_readw(addr));
}
#endif
#ifndef readl
#define readl readl
static inline u32 readl(const volatile void __iomem *addr)
{
return __le32_to_cpu(__raw_readl(addr));
}
#endif
#ifdef CONFIG_64BIT
#ifndef readq
#define readq readq
static inline u64 readq(const volatile void __iomem *addr)
{
return __le64_to_cpu(__raw_readq(addr));
}
#endif
#endif /* CONFIG_64BIT */
#ifndef writeb
#define writeb writeb
static inline void writeb(u8 value, volatile void __iomem *addr)
{
__raw_writeb(value, addr);
}
#endif
#ifndef writew
#define writew writew
static inline void writew(u16 value, volatile void __iomem *addr)
{
__raw_writew(cpu_to_le16(value), addr);
}
#endif
#ifndef writel
#define writel writel
static inline void writel(u32 value, volatile void __iomem *addr)
{
__raw_writel(__cpu_to_le32(value), addr);
}
#endif
#ifdef CONFIG_64BIT
#ifndef writeq
#define writeq writeq
static inline void writeq(u64 value, volatile void __iomem *addr)
{
__raw_writeq(__cpu_to_le64(value), addr);
}
#endif
#endif /* CONFIG_64BIT */
/*
* {read,write}{b,w,l,q}_relaxed() are like the regular version, but
* are not guaranteed to provide ordering against spinlocks or memory
* accesses.
*/
#ifndef readb_relaxed
#define readb_relaxed readb
#endif
#ifndef readw_relaxed
#define readw_relaxed readw
#endif
#ifndef readl_relaxed
#define readl_relaxed readl
#endif
#ifndef readq_relaxed
#define readq_relaxed readq
#endif
#ifndef writeb_relaxed
#define writeb_relaxed writeb
#endif
#ifndef writew_relaxed
#define writew_relaxed writew
#endif
#ifndef writel_relaxed
#define writel_relaxed writel
#endif
#ifndef writeq_relaxed
#define writeq_relaxed writeq
#endif
/*
* {read,write}s{b,w,l,q}() repeatedly access the same memory address in
* native endianness in 8-, 16-, 32- or 64-bit chunks (@count times).
*/
#ifndef readsb
#define readsb readsb
static inline void readsb(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
if (count) {
u8 *buf = buffer;
do {
u8 x = __raw_readb(addr);
*buf++ = x;
} while (--count);
}
}
#endif
#ifndef readsw
#define readsw readsw
static inline void readsw(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
if (count) {
u16 *buf = buffer;
do {
u16 x = __raw_readw(addr);
*buf++ = x;
} while (--count);
}
}
#endif
#ifndef readsl
#define readsl readsl
static inline void readsl(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
if (count) {
u32 *buf = buffer;
do {
u32 x = __raw_readl(addr);
*buf++ = x;
} while (--count);
}
}
#endif
#ifdef CONFIG_64BIT
#ifndef readsq
#define readsq readsq
static inline void readsq(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
if (count) {
u64 *buf = buffer;
do {
u64 x = __raw_readq(addr);
*buf++ = x;
} while (--count);
}
}
#endif
#endif /* CONFIG_64BIT */
#ifndef writesb
#define writesb writesb
static inline void writesb(volatile void __iomem *addr, const void *buffer,
unsigned int count)
{
if (count) {
const u8 *buf = buffer;
do {
__raw_writeb(*buf++, addr);
} while (--count);
}
}
#endif
#ifndef writesw
#define writesw writesw
static inline void writesw(volatile void __iomem *addr, const void *buffer,
unsigned int count)
{
if (count) {
const u16 *buf = buffer;
do {
__raw_writew(*buf++, addr);
} while (--count);
}
}
#endif
#ifndef writesl
#define writesl writesl
static inline void writesl(volatile void __iomem *addr, const void *buffer,
unsigned int count)
{
if (count) {
const u32 *buf = buffer;
do {
__raw_writel(*buf++, addr);
} while (--count);
}
}
#endif
#ifdef CONFIG_64BIT
#ifndef writesq
#define writesq writesq
static inline void writesq(volatile void __iomem *addr, const void *buffer,
unsigned int count)
{
if (count) {
const u64 *buf = buffer;
do {
__raw_writeq(*buf++, addr);
} while (--count);
}
}
#endif
#endif /* CONFIG_64BIT */
#ifndef PCI_IOBASE
#define PCI_IOBASE ((void __iomem *)0)
#endif
#ifndef IO_SPACE_LIMIT
#define IO_SPACE_LIMIT 0xffff
#endif
/*
* {in,out}{b,w,l}() access little endian I/O. {in,out}{b,w,l}_p() can be
* implemented on hardware that needs an additional delay for I/O accesses to
* take effect.
*/
#ifndef inb
#define inb inb
static inline u8 inb(unsigned long addr)
{
return readb(PCI_IOBASE + addr);
}
#endif
#ifndef inw
#define inw inw
static inline u16 inw(unsigned long addr)
{
return readw(PCI_IOBASE + addr);
}
#endif
#ifndef inl
#define inl inl
static inline u32 inl(unsigned long addr)
{
return readl(PCI_IOBASE + addr);
}
#endif
#ifndef outb
#define outb outb
static inline void outb(u8 value, unsigned long addr)
{
writeb(value, PCI_IOBASE + addr);
}
#endif
#ifndef outw
#define outw outw
static inline void outw(u16 value, unsigned long addr)
{
writew(value, PCI_IOBASE + addr);
}
#endif
#ifndef outl
#define outl outl
static inline void outl(u32 value, unsigned long addr)
{
writel(value, PCI_IOBASE + addr);
}
#endif
#ifndef inb_p
#define inb_p inb_p
static inline u8 inb_p(unsigned long addr)
{
return inb(addr);
}
#endif
#ifndef inw_p
#define inw_p inw_p
static inline u16 inw_p(unsigned long addr)
{
return inw(addr);
}
#endif
#ifndef inl_p
#define inl_p inl_p
static inline u32 inl_p(unsigned long addr)
{
return inl(addr);
}
#endif
#ifndef outb_p
#define outb_p outb_p
static inline void outb_p(u8 value, unsigned long addr)
{
outb(value, addr);
}
#endif
#ifndef outw_p
#define outw_p outw_p
static inline void outw_p(u16 value, unsigned long addr)
{
outw(value, addr);
}
#endif
#ifndef outl_p
#define outl_p outl_p
static inline void outl_p(u32 value, unsigned long addr)
{
outl(value, addr);
}
#endif
/*
* {in,out}s{b,w,l}{,_p}() are variants of the above that repeatedly access a
* single I/O port multiple times.
*/
#ifndef insb
#define insb insb
static inline void insb(unsigned long addr, void *buffer, unsigned int count)
{
readsb(PCI_IOBASE + addr, buffer, count);
}
#endif
#ifndef insw
#define insw insw
static inline void insw(unsigned long addr, void *buffer, unsigned int count)
{
readsw(PCI_IOBASE + addr, buffer, count);
}
#endif
#ifndef insl
#define insl insl
static inline void insl(unsigned long addr, void *buffer, unsigned int count)
{
readsl(PCI_IOBASE + addr, buffer, count);
}
#endif
#ifndef outsb
#define outsb outsb
static inline void outsb(unsigned long addr, const void *buffer,
unsigned int count)
{
writesb(PCI_IOBASE + addr, buffer, count);
}
#endif
#ifndef outsw
#define outsw outsw
static inline void outsw(unsigned long addr, const void *buffer,
unsigned int count)
{
writesw(PCI_IOBASE + addr, buffer, count);
}
#endif
#ifndef outsl
#define outsl outsl
static inline void outsl(unsigned long addr, const void *buffer,
unsigned int count)
{
writesl(PCI_IOBASE + addr, buffer, count);
}
#endif
#ifndef insb_p
#define insb_p insb_p
static inline void insb_p(unsigned long addr, void *buffer, unsigned int count)
{
insb(addr, buffer, count);
}
#endif
#ifndef insw_p
#define insw_p insw_p
static inline void insw_p(unsigned long addr, void *buffer, unsigned int count)
{
insw(addr, buffer, count);
}
#endif
#ifndef insl_p
#define insl_p insl_p
static inline void insl_p(unsigned long addr, void *buffer, unsigned int count)
{
insl(addr, buffer, count);
}
#endif
#ifndef outsb_p
#define outsb_p outsb_p
static inline void outsb_p(unsigned long addr, const void *buffer,
unsigned int count)
{
outsb(addr, buffer, count);
}
#endif
#ifndef outsw_p
#define outsw_p outsw_p
static inline void outsw_p(unsigned long addr, const void *buffer,
unsigned int count)
{
outsw(addr, buffer, count);
}
#endif
#ifndef outsl_p
#define outsl_p outsl_p
static inline void outsl_p(unsigned long addr, const void *buffer,
unsigned int count)
{
outsl(addr, buffer, count);
}
#endif
#ifndef CONFIG_GENERIC_IOMAP
#ifndef ioread8
#define ioread8 ioread8
static inline u8 ioread8(const volatile void __iomem *addr)
{
return readb(addr);
}
#endif
#ifndef ioread16
#define ioread16 ioread16
static inline u16 ioread16(const volatile void __iomem *addr)
{
return readw(addr);
}
#endif
#ifndef ioread32
#define ioread32 ioread32
static inline u32 ioread32(const volatile void __iomem *addr)
{
return readl(addr);
}
#endif
#ifndef iowrite8
#define iowrite8 iowrite8
static inline void iowrite8(u8 value, volatile void __iomem *addr)
{
writeb(value, addr);
}
#endif
#ifndef iowrite16
#define iowrite16 iowrite16
static inline void iowrite16(u16 value, volatile void __iomem *addr)
{
writew(value, addr);
}
#endif
#ifndef iowrite32
#define iowrite32 iowrite32
static inline void iowrite32(u32 value, volatile void __iomem *addr)
{
writel(value, addr);
}
#endif
#ifndef ioread16be
#define ioread16be ioread16be
static inline u16 ioread16be(const volatile void __iomem *addr)
{
return __be16_to_cpu(__raw_readw(addr));
}
#endif
#ifndef ioread32be
#define ioread32be ioread32be
static inline u32 ioread32be(const volatile void __iomem *addr)
{
return __be32_to_cpu(__raw_readl(addr));
}
#endif
#ifndef iowrite16be
#define iowrite16be iowrite16be
static inline void iowrite16be(u16 value, void volatile __iomem *addr)
{
__raw_writew(__cpu_to_be16(value), addr);
}
#endif
#ifndef iowrite32be
#define iowrite32be iowrite32be
static inline void iowrite32be(u32 value, volatile void __iomem *addr)
{
__raw_writel(__cpu_to_be32(value), addr);
}
#endif
#ifndef ioread8_rep
#define ioread8_rep ioread8_rep
static inline void ioread8_rep(const volatile void __iomem *addr, void *buffer,
unsigned int count)
{
readsb(addr, buffer, count);
}
#endif
#ifndef ioread16_rep
#define ioread16_rep ioread16_rep
static inline void ioread16_rep(const volatile void __iomem *addr,
void *buffer, unsigned int count)
{
readsw(addr, buffer, count);
}
#endif
#ifndef ioread32_rep
#define ioread32_rep ioread32_rep
static inline void ioread32_rep(const volatile void __iomem *addr,
void *buffer, unsigned int count)
{
readsl(addr, buffer, count);
}
#endif
#ifndef iowrite8_rep
#define iowrite8_rep iowrite8_rep
static inline void iowrite8_rep(volatile void __iomem *addr,
const void *buffer,
unsigned int count)
{
writesb(addr, buffer, count);
}
#endif
#ifndef iowrite16_rep
#define iowrite16_rep iowrite16_rep
static inline void iowrite16_rep(volatile void __iomem *addr,
const void *buffer,
unsigned int count)
{
writesw(addr, buffer, count);
}
#endif
#ifndef iowrite32_rep
#define iowrite32_rep iowrite32_rep
static inline void iowrite32_rep(volatile void __iomem *addr,
const void *buffer,
unsigned int count)
{
writesl(addr, buffer, count);
}
#endif
#endif /* CONFIG_GENERIC_IOMAP */
#ifdef __KERNEL__
#include <linux/vmalloc.h>
#define __io_virt(x) ((void __force *)(x))
#ifndef CONFIG_GENERIC_IOMAP
struct pci_dev;
extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max);
#ifndef pci_iounmap
#define pci_iounmap pci_iounmap
static inline void pci_iounmap(struct pci_dev *dev, void __iomem *p)
{
}
#endif
#endif /* CONFIG_GENERIC_IOMAP */
/*
* Change virtual addresses to physical addresses and vv.
* These are pretty trivial
*/
#ifndef virt_to_phys
#define virt_to_phys virt_to_phys
static inline unsigned long virt_to_phys(volatile void *address)
{
return __pa((unsigned long)address);
}
#endif
#ifndef phys_to_virt
#define phys_to_virt phys_to_virt
static inline void *phys_to_virt(unsigned long address)
{
return __va(address);
}
#endif
/*
* Change "struct page" to physical address.
*
* This implementation is for the no-MMU case only... if you have an MMU
* you'll need to provide your own definitions.
*/
#ifndef CONFIG_MMU
#ifndef ioremap
#define ioremap ioremap
static inline void __iomem *ioremap(phys_addr_t offset, size_t size)
{
return (void __iomem *)(unsigned long)offset;
}
#endif
#ifndef __ioremap
#define __ioremap __ioremap
static inline void __iomem *__ioremap(phys_addr_t offset, size_t size,
unsigned long flags)
{
return ioremap(offset, size);
}
#endif
#ifndef ioremap_nocache
#define ioremap_nocache ioremap_nocache
static inline void __iomem *ioremap_nocache(phys_addr_t offset, size_t size)
{
return ioremap(offset, size);
}
#endif
x86/mm: Add ioremap_uc() helper to map memory uncacheable (not UC-) ioremap_nocache() currently uses UC- by default. Our goal is to eventually make UC the default. Linux maps UC- to PCD=1, PWT=0 page attributes on non-PAT systems. Linux maps UC to PCD=1, PWT=1 page attributes on non-PAT systems. On non-PAT and PAT systems a WC MTRR has different effects on pages with either of these attributes. In order to help with a smooth transition its best to enable use of UC (PCD,1, PWT=1) on a region as that ensures a WC MTRR will have no effect on a region, this however requires us to have an way to declare a region as UC and we currently do not have a way to do this. WC MTRR on non-PAT system with PCD=1, PWT=0 (UC-) yields WC. WC MTRR on non-PAT system with PCD=1, PWT=1 (UC) yields UC. WC MTRR on PAT system with PCD=1, PWT=0 (UC-) yields WC. WC MTRR on PAT system with PCD=1, PWT=1 (UC) yields UC. A flip of the default ioremap_nocache() behaviour from UC- to UC can therefore regress a memory region from effective memory type WC to UC if MTRRs are used. Use of MTRRs should be phased out and in the best case only arch_phys_wc_add() use will remain, even if this happens arch_phys_wc_add() will have an effect on non-PAT systems and changes to default ioremap_nocache() behaviour could regress drivers. Now, ideally we'd use ioremap_nocache() on the regions in which we'd need uncachable memory types and avoid any MTRRs on those regions. There are however some restrictions on MTRRs use, such as the requirement of having the base and size of variable sized MTRRs to be powers of two, which could mean having to use a WC MTRR over a large area which includes a region in which write-combining effects are undesirable. Add ioremap_uc() to help with the both phasing out of MTRR use and also provide a way to blacklist small WC undesirable regions in devices with mixed regions which are size-implicated to use large WC MTRRs. Use of ioremap_uc() helps phase out MTRR use by avoiding regressions with an eventual flip of default behaviour or ioremap_nocache() from UC- to UC. Drivers working with WC MTRRs can use the below table to review and consider the use of ioremap*() and similar helpers to ensure appropriate behaviour long term even if default ioremap_nocache() behaviour changes from UC- to UC. Although ioremap_uc() is being added we leave set_memory_uc() to use UC- as only initial memory type setup is required to be able to accommodate existing device drivers and phase out MTRR use. It should also be clarified that set_memory_uc() cannot be used with IO memory, even though its use will not return any errors, it really has no effect. ---------------------------------------------------------------------- MTRR Non-PAT PAT Linux ioremap value Effective memory type ---------------------------------------------------------------------- Non-PAT | PAT PAT |PCD ||PWT ||| WC 000 WB _PAGE_CACHE_MODE_WB WC | WC WC 001 WC _PAGE_CACHE_MODE_WC WC* | WC WC 010 UC- _PAGE_CACHE_MODE_UC_MINUS WC* | WC WC 011 UC _PAGE_CACHE_MODE_UC UC | UC ---------------------------------------------------------------------- Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: H. Peter Anvin <hpa@zytor.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Antonino Daplas <adaplas@gmail.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Dave Airlie <airlied@redhat.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Travis <travis@sgi.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Suresh Siddha <sbsiddha@gmail.com> Cc: Thierry Reding <treding@nvidia.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tomi Valkeinen <tomi.valkeinen@ti.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Ville Syrjälä <syrjala@sci.fi> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-fbdev@vger.kernel.org Link: http://lkml.kernel.org/r/1430343851-967-2-git-send-email-mcgrof@do-not-panic.com Link: http://lkml.kernel.org/r/1431332153-18566-9-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-11 16:15:53 +08:00
#ifndef ioremap_uc
#define ioremap_uc ioremap_uc
static inline void __iomem *ioremap_uc(phys_addr_t offset, size_t size)
{
return ioremap_nocache(offset, size);
}
#endif
#ifndef ioremap_wc
#define ioremap_wc ioremap_wc
static inline void __iomem *ioremap_wc(phys_addr_t offset, size_t size)
{
return ioremap_nocache(offset, size);
}
#endif
#ifndef ioremap_wt
#define ioremap_wt ioremap_wt
static inline void __iomem *ioremap_wt(phys_addr_t offset, size_t size)
{
return ioremap_nocache(offset, size);
}
#endif
#ifndef iounmap
#define iounmap iounmap
static inline void iounmap(void __iomem *addr)
{
}
#endif
#endif /* CONFIG_MMU */
#ifdef CONFIG_HAS_IOPORT_MAP
#ifndef CONFIG_GENERIC_IOMAP
#ifndef ioport_map
#define ioport_map ioport_map
static inline void __iomem *ioport_map(unsigned long port, unsigned int nr)
{
return PCI_IOBASE + (port & IO_SPACE_LIMIT);
}
#endif
#ifndef ioport_unmap
#define ioport_unmap ioport_unmap
static inline void ioport_unmap(void __iomem *p)
{
}
#endif
#else /* CONFIG_GENERIC_IOMAP */
extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
extern void ioport_unmap(void __iomem *p);
#endif /* CONFIG_GENERIC_IOMAP */
#endif /* CONFIG_HAS_IOPORT_MAP */
#ifndef xlate_dev_kmem_ptr
#define xlate_dev_kmem_ptr xlate_dev_kmem_ptr
static inline void *xlate_dev_kmem_ptr(void *addr)
{
return addr;
}
#endif
#ifndef xlate_dev_mem_ptr
#define xlate_dev_mem_ptr xlate_dev_mem_ptr
static inline void *xlate_dev_mem_ptr(phys_addr_t addr)
{
return __va(addr);
}
#endif
#ifndef unxlate_dev_mem_ptr
#define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
static inline void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
{
}
#endif
#ifdef CONFIG_VIRT_TO_BUS
#ifndef virt_to_bus
static inline unsigned long virt_to_bus(void *address)
{
return (unsigned long)address;
}
static inline void *bus_to_virt(unsigned long address)
{
return (void *)address;
}
#endif
#endif
#ifndef memset_io
#define memset_io memset_io
static inline void memset_io(volatile void __iomem *addr, int value,
size_t size)
{
memset(__io_virt(addr), value, size);
}
#endif
#ifndef memcpy_fromio
#define memcpy_fromio memcpy_fromio
static inline void memcpy_fromio(void *buffer,
const volatile void __iomem *addr,
size_t size)
{
memcpy(buffer, __io_virt(addr), size);
}
#endif
#ifndef memcpy_toio
#define memcpy_toio memcpy_toio
static inline void memcpy_toio(volatile void __iomem *addr, const void *buffer,
size_t size)
{
memcpy(__io_virt(addr), buffer, size);
}
#endif
#endif /* __KERNEL__ */
#endif /* __ASM_GENERIC_IO_H */