linux/drivers/media/dvb-frontends/mt312.c

848 lines
18 KiB
C
Raw Normal View History

/*
Driver for Zarlink VP310/MT312/ZL10313 Satellite Channel Decoder
Copyright (C) 2003 Andreas Oberritter <obi@linuxtv.org>
Copyright (C) 2008 Matthias Schwarzott <zzam@gentoo.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
References:
http://products.zarlink.com/product_profiles/MT312.htm
http://products.zarlink.com/product_profiles/SL1935.htm
*/
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include "dvb_frontend.h"
#include "mt312_priv.h"
#include "mt312.h"
[media] dvb-frontends: Don't use dynamic static allocation Dynamic static allocation is evil, as Kernel stack is too low, and compilation complains about it on some archs: drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/itd1000.c:69:1: warning: 'itd1000_write_regs.constprop.0' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/mt312.c:126:1: warning: 'mt312_write' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/nxt200x.c:111:1: warning: 'nxt200x_writebytes' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stb6100.c:216:1: warning: 'stb6100_write_reg_range.constprop.3' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stv6110.c:98:1: warning: 'stv6110_write_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stv6110x.c:85:1: warning: 'stv6110x_write_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda18271c2dd.c:147:1: warning: 'WriteRegs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/zl10039.c:119:1: warning: 'zl10039_write' uses dynamic stack allocation [enabled by default] Instead, let's enforce a limit for the buffer. Considering that I2C transfers are generally limited, and that devices used on USB has a max data length of 64 bytes for the control URBs. So, it seem safe to use 64 bytes as the hard limit for all those devices. On most cases, the limit is a way lower than that, but this limit is small enough to not affect the Kernel stack, and it is a no brain limit, as using smaller ones would require to either carefully each driver or to take a look on each datasheet. Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-02 16:05:18 +08:00
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
struct mt312_state {
struct i2c_adapter *i2c;
/* configuration settings */
const struct mt312_config *config;
struct dvb_frontend frontend;
u8 id;
unsigned long xtal;
u8 freq_mult;
};
static int debug;
#define dprintk(args...) \
do { \
if (debug) \
printk(KERN_DEBUG "mt312: " args); \
} while (0)
#define MT312_PLL_CLK 10000000UL /* 10 MHz */
#define MT312_PLL_CLK_10_111 10111000UL /* 10.111 MHz */
static int mt312_read(struct mt312_state *state, const enum mt312_reg_addr reg,
u8 *buf, const size_t count)
{
int ret;
struct i2c_msg msg[2];
u8 regbuf[1] = { reg };
msg[0].addr = state->config->demod_address;
msg[0].flags = 0;
msg[0].buf = regbuf;
msg[0].len = 1;
msg[1].addr = state->config->demod_address;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2) {
printk(KERN_DEBUG "%s: ret == %d\n", __func__, ret);
return -EREMOTEIO;
}
if (debug) {
int i;
dprintk("R(%d):", reg & 0x7f);
for (i = 0; i < count; i++)
printk(KERN_CONT " %02x", buf[i]);
printk("\n");
}
return 0;
}
static int mt312_write(struct mt312_state *state, const enum mt312_reg_addr reg,
const u8 *src, const size_t count)
{
int ret;
[media] dvb-frontends: Don't use dynamic static allocation Dynamic static allocation is evil, as Kernel stack is too low, and compilation complains about it on some archs: drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/itd1000.c:69:1: warning: 'itd1000_write_regs.constprop.0' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/mt312.c:126:1: warning: 'mt312_write' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/nxt200x.c:111:1: warning: 'nxt200x_writebytes' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stb6100.c:216:1: warning: 'stb6100_write_reg_range.constprop.3' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stv6110.c:98:1: warning: 'stv6110_write_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stv6110x.c:85:1: warning: 'stv6110x_write_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda18271c2dd.c:147:1: warning: 'WriteRegs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/zl10039.c:119:1: warning: 'zl10039_write' uses dynamic stack allocation [enabled by default] Instead, let's enforce a limit for the buffer. Considering that I2C transfers are generally limited, and that devices used on USB has a max data length of 64 bytes for the control URBs. So, it seem safe to use 64 bytes as the hard limit for all those devices. On most cases, the limit is a way lower than that, but this limit is small enough to not affect the Kernel stack, and it is a no brain limit, as using smaller ones would require to either carefully each driver or to take a look on each datasheet. Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-02 16:05:18 +08:00
u8 buf[MAX_XFER_SIZE];
struct i2c_msg msg;
[media] dvb-frontends: Don't use dynamic static allocation Dynamic static allocation is evil, as Kernel stack is too low, and compilation complains about it on some archs: drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/itd1000.c:69:1: warning: 'itd1000_write_regs.constprop.0' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/mt312.c:126:1: warning: 'mt312_write' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/nxt200x.c:111:1: warning: 'nxt200x_writebytes' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stb6100.c:216:1: warning: 'stb6100_write_reg_range.constprop.3' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stv6110.c:98:1: warning: 'stv6110_write_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stv6110x.c:85:1: warning: 'stv6110x_write_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda18271c2dd.c:147:1: warning: 'WriteRegs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/zl10039.c:119:1: warning: 'zl10039_write' uses dynamic stack allocation [enabled by default] Instead, let's enforce a limit for the buffer. Considering that I2C transfers are generally limited, and that devices used on USB has a max data length of 64 bytes for the control URBs. So, it seem safe to use 64 bytes as the hard limit for all those devices. On most cases, the limit is a way lower than that, but this limit is small enough to not affect the Kernel stack, and it is a no brain limit, as using smaller ones would require to either carefully each driver or to take a look on each datasheet. Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-02 16:05:18 +08:00
if (1 + count > sizeof(buf)) {
printk(KERN_WARNING
"mt312: write: len=%zd is too big!\n", count);
return -EINVAL;
}
if (debug) {
int i;
dprintk("W(%d):", reg & 0x7f);
for (i = 0; i < count; i++)
printk(KERN_CONT " %02x", src[i]);
printk("\n");
}
buf[0] = reg;
memcpy(&buf[1], src, count);
msg.addr = state->config->demod_address;
msg.flags = 0;
msg.buf = buf;
msg.len = count + 1;
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1) {
dprintk("%s: ret == %d\n", __func__, ret);
return -EREMOTEIO;
}
return 0;
}
static inline int mt312_readreg(struct mt312_state *state,
const enum mt312_reg_addr reg, u8 *val)
{
return mt312_read(state, reg, val, 1);
}
static inline int mt312_writereg(struct mt312_state *state,
const enum mt312_reg_addr reg, const u8 val)
{
return mt312_write(state, reg, &val, 1);
}
static inline u32 mt312_div(u32 a, u32 b)
{
return (a + (b / 2)) / b;
}
static int mt312_reset(struct mt312_state *state, const u8 full)
{
return mt312_writereg(state, RESET, full ? 0x80 : 0x40);
}
static int mt312_get_inversion(struct mt312_state *state,
fe_spectral_inversion_t *i)
{
int ret;
u8 vit_mode;
ret = mt312_readreg(state, VIT_MODE, &vit_mode);
if (ret < 0)
return ret;
if (vit_mode & 0x80) /* auto inversion was used */
*i = (vit_mode & 0x40) ? INVERSION_ON : INVERSION_OFF;
return 0;
}
static int mt312_get_symbol_rate(struct mt312_state *state, u32 *sr)
{
int ret;
u8 sym_rate_h;
u8 dec_ratio;
u16 sym_rat_op;
u16 monitor;
u8 buf[2];
ret = mt312_readreg(state, SYM_RATE_H, &sym_rate_h);
if (ret < 0)
return ret;
if (sym_rate_h & 0x80) {
/* symbol rate search was used */
ret = mt312_writereg(state, MON_CTRL, 0x03);
if (ret < 0)
return ret;
ret = mt312_read(state, MONITOR_H, buf, sizeof(buf));
if (ret < 0)
return ret;
monitor = (buf[0] << 8) | buf[1];
dprintk("sr(auto) = %u\n",
mt312_div(monitor * 15625, 4));
} else {
ret = mt312_writereg(state, MON_CTRL, 0x05);
if (ret < 0)
return ret;
ret = mt312_read(state, MONITOR_H, buf, sizeof(buf));
if (ret < 0)
return ret;
dec_ratio = ((buf[0] >> 5) & 0x07) * 32;
ret = mt312_read(state, SYM_RAT_OP_H, buf, sizeof(buf));
if (ret < 0)
return ret;
sym_rat_op = (buf[0] << 8) | buf[1];
dprintk("sym_rat_op=%d dec_ratio=%d\n",
sym_rat_op, dec_ratio);
dprintk("*sr(manual) = %lu\n",
(((state->xtal * 8192) / (sym_rat_op + 8192)) *
2) - dec_ratio);
}
return 0;
}
static int mt312_get_code_rate(struct mt312_state *state, fe_code_rate_t *cr)
{
const fe_code_rate_t fec_tab[8] =
{ FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_6_7, FEC_7_8,
FEC_AUTO, FEC_AUTO };
int ret;
u8 fec_status;
ret = mt312_readreg(state, FEC_STATUS, &fec_status);
if (ret < 0)
return ret;
*cr = fec_tab[(fec_status >> 4) & 0x07];
return 0;
}
static int mt312_initfe(struct dvb_frontend *fe)
{
struct mt312_state *state = fe->demodulator_priv;
int ret;
u8 buf[2];
/* wake up */
ret = mt312_writereg(state, CONFIG,
(state->freq_mult == 6 ? 0x88 : 0x8c));
if (ret < 0)
return ret;
/* wait at least 150 usec */
udelay(150);
/* full reset */
ret = mt312_reset(state, 1);
if (ret < 0)
return ret;
/* Per datasheet, write correct values. 09/28/03 ACCJr.
* If we don't do this, we won't get FE_HAS_VITERBI in the VP310. */
{
u8 buf_def[8] = { 0x14, 0x12, 0x03, 0x02,
0x01, 0x00, 0x00, 0x00 };
ret = mt312_write(state, VIT_SETUP, buf_def, sizeof(buf_def));
if (ret < 0)
return ret;
}
switch (state->id) {
case ID_ZL10313:
/* enable ADC */
ret = mt312_writereg(state, GPP_CTRL, 0x80);
if (ret < 0)
return ret;
/* configure ZL10313 for optimal ADC performance */
buf[0] = 0x80;
buf[1] = 0xB0;
ret = mt312_write(state, HW_CTRL, buf, 2);
if (ret < 0)
return ret;
/* enable MPEG output and ADCs */
ret = mt312_writereg(state, HW_CTRL, 0x00);
if (ret < 0)
return ret;
ret = mt312_writereg(state, MPEG_CTRL, 0x00);
if (ret < 0)
return ret;
break;
}
/* SYS_CLK */
buf[0] = mt312_div(state->xtal * state->freq_mult * 2, 1000000);
/* DISEQC_RATIO */
buf[1] = mt312_div(state->xtal, 22000 * 4);
ret = mt312_write(state, SYS_CLK, buf, sizeof(buf));
if (ret < 0)
return ret;
ret = mt312_writereg(state, SNR_THS_HIGH, 0x32);
if (ret < 0)
return ret;
/* different MOCLK polarity */
switch (state->id) {
case ID_ZL10313:
buf[0] = 0x33;
break;
default:
buf[0] = 0x53;
break;
}
ret = mt312_writereg(state, OP_CTRL, buf[0]);
if (ret < 0)
return ret;
/* TS_SW_LIM */
buf[0] = 0x8c;
buf[1] = 0x98;
ret = mt312_write(state, TS_SW_LIM_L, buf, sizeof(buf));
if (ret < 0)
return ret;
ret = mt312_writereg(state, CS_SW_LIM, 0x69);
if (ret < 0)
return ret;
return 0;
}
static int mt312_send_master_cmd(struct dvb_frontend *fe,
struct dvb_diseqc_master_cmd *c)
{
struct mt312_state *state = fe->demodulator_priv;
int ret;
u8 diseqc_mode;
if ((c->msg_len == 0) || (c->msg_len > sizeof(c->msg)))
return -EINVAL;
ret = mt312_readreg(state, DISEQC_MODE, &diseqc_mode);
if (ret < 0)
return ret;
ret = mt312_write(state, (0x80 | DISEQC_INSTR), c->msg, c->msg_len);
if (ret < 0)
return ret;
ret = mt312_writereg(state, DISEQC_MODE,
(diseqc_mode & 0x40) | ((c->msg_len - 1) << 3)
| 0x04);
if (ret < 0)
return ret;
/* is there a better way to wait for message to be transmitted */
msleep(100);
/* set DISEQC_MODE[2:0] to zero if a return message is expected */
if (c->msg[0] & 0x02) {
ret = mt312_writereg(state, DISEQC_MODE, (diseqc_mode & 0x40));
if (ret < 0)
return ret;
}
return 0;
}
static int mt312_send_burst(struct dvb_frontend *fe, const fe_sec_mini_cmd_t c)
{
struct mt312_state *state = fe->demodulator_priv;
const u8 mini_tab[2] = { 0x02, 0x03 };
int ret;
u8 diseqc_mode;
if (c > SEC_MINI_B)
return -EINVAL;
ret = mt312_readreg(state, DISEQC_MODE, &diseqc_mode);
if (ret < 0)
return ret;
ret = mt312_writereg(state, DISEQC_MODE,
(diseqc_mode & 0x40) | mini_tab[c]);
if (ret < 0)
return ret;
return 0;
}
static int mt312_set_tone(struct dvb_frontend *fe, const fe_sec_tone_mode_t t)
{
struct mt312_state *state = fe->demodulator_priv;
const u8 tone_tab[2] = { 0x01, 0x00 };
int ret;
u8 diseqc_mode;
if (t > SEC_TONE_OFF)
return -EINVAL;
ret = mt312_readreg(state, DISEQC_MODE, &diseqc_mode);
if (ret < 0)
return ret;
ret = mt312_writereg(state, DISEQC_MODE,
(diseqc_mode & 0x40) | tone_tab[t]);
if (ret < 0)
return ret;
return 0;
}
static int mt312_set_voltage(struct dvb_frontend *fe, const fe_sec_voltage_t v)
{
struct mt312_state *state = fe->demodulator_priv;
const u8 volt_tab[3] = { 0x00, 0x40, 0x00 };
u8 val;
if (v > SEC_VOLTAGE_OFF)
return -EINVAL;
val = volt_tab[v];
if (state->config->voltage_inverted)
val ^= 0x40;
return mt312_writereg(state, DISEQC_MODE, val);
}
static int mt312_read_status(struct dvb_frontend *fe, fe_status_t *s)
{
struct mt312_state *state = fe->demodulator_priv;
int ret;
u8 status[3];
*s = 0;
ret = mt312_read(state, QPSK_STAT_H, status, sizeof(status));
if (ret < 0)
return ret;
dprintk("QPSK_STAT_H: 0x%02x, QPSK_STAT_L: 0x%02x,"
" FEC_STATUS: 0x%02x\n", status[0], status[1], status[2]);
if (status[0] & 0xc0)
*s |= FE_HAS_SIGNAL; /* signal noise ratio */
if (status[0] & 0x04)
*s |= FE_HAS_CARRIER; /* qpsk carrier lock */
if (status[2] & 0x02)
*s |= FE_HAS_VITERBI; /* viterbi lock */
if (status[2] & 0x04)
*s |= FE_HAS_SYNC; /* byte align lock */
if (status[0] & 0x01)
*s |= FE_HAS_LOCK; /* qpsk lock */
return 0;
}
static int mt312_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct mt312_state *state = fe->demodulator_priv;
int ret;
u8 buf[3];
ret = mt312_read(state, RS_BERCNT_H, buf, 3);
if (ret < 0)
return ret;
*ber = ((buf[0] << 16) | (buf[1] << 8) | buf[2]) * 64;
return 0;
}
static int mt312_read_signal_strength(struct dvb_frontend *fe,
u16 *signal_strength)
{
struct mt312_state *state = fe->demodulator_priv;
int ret;
u8 buf[3];
u16 agc;
s16 err_db;
ret = mt312_read(state, AGC_H, buf, sizeof(buf));
if (ret < 0)
return ret;
agc = (buf[0] << 6) | (buf[1] >> 2);
err_db = (s16) (((buf[1] & 0x03) << 14) | buf[2] << 6) >> 6;
*signal_strength = agc;
dprintk("agc=%08x err_db=%hd\n", agc, err_db);
return 0;
}
static int mt312_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct mt312_state *state = fe->demodulator_priv;
int ret;
u8 buf[2];
ret = mt312_read(state, M_SNR_H, buf, sizeof(buf));
if (ret < 0)
return ret;
*snr = 0xFFFF - ((((buf[0] & 0x7f) << 8) | buf[1]) << 1);
return 0;
}
static int mt312_read_ucblocks(struct dvb_frontend *fe, u32 *ubc)
{
struct mt312_state *state = fe->demodulator_priv;
int ret;
u8 buf[2];
ret = mt312_read(state, RS_UBC_H, buf, sizeof(buf));
if (ret < 0)
return ret;
*ubc = (buf[0] << 8) | buf[1];
return 0;
}
static int mt312_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct mt312_state *state = fe->demodulator_priv;
int ret;
u8 buf[5], config_val;
u16 sr;
const u8 fec_tab[10] =
{ 0x00, 0x01, 0x02, 0x04, 0x3f, 0x08, 0x10, 0x20, 0x3f, 0x3f };
const u8 inv_tab[3] = { 0x00, 0x40, 0x80 };
dprintk("%s: Freq %d\n", __func__, p->frequency);
if ((p->frequency < fe->ops.info.frequency_min)
|| (p->frequency > fe->ops.info.frequency_max))
return -EINVAL;
if (((int)p->inversion < INVERSION_OFF)
|| (p->inversion > INVERSION_ON))
return -EINVAL;
if ((p->symbol_rate < fe->ops.info.symbol_rate_min)
|| (p->symbol_rate > fe->ops.info.symbol_rate_max))
return -EINVAL;
if (((int)p->fec_inner < FEC_NONE)
|| (p->fec_inner > FEC_AUTO))
return -EINVAL;
if ((p->fec_inner == FEC_4_5)
|| (p->fec_inner == FEC_8_9))
return -EINVAL;
switch (state->id) {
case ID_VP310:
/* For now we will do this only for the VP310.
* It should be better for the mt312 as well,
* but tuning will be slower. ACCJr 09/29/03
*/
ret = mt312_readreg(state, CONFIG, &config_val);
if (ret < 0)
return ret;
if (p->symbol_rate >= 30000000) {
/* Note that 30MS/s should use 90MHz */
if (state->freq_mult == 6) {
/* We are running 60MHz */
state->freq_mult = 9;
ret = mt312_initfe(fe);
if (ret < 0)
return ret;
}
} else {
if (state->freq_mult == 9) {
/* We are running 90MHz */
state->freq_mult = 6;
ret = mt312_initfe(fe);
if (ret < 0)
return ret;
}
}
break;
case ID_MT312:
case ID_ZL10313:
break;
default:
return -EINVAL;
}
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
/* sr = (u16)(sr * 256.0 / 1000000.0) */
sr = mt312_div(p->symbol_rate * 4, 15625);
/* SYM_RATE */
buf[0] = (sr >> 8) & 0x3f;
buf[1] = (sr >> 0) & 0xff;
/* VIT_MODE */
buf[2] = inv_tab[p->inversion] | fec_tab[p->fec_inner];
/* QPSK_CTRL */
buf[3] = 0x40; /* swap I and Q before QPSK demodulation */
if (p->symbol_rate < 10000000)
buf[3] |= 0x04; /* use afc mode */
/* GO */
buf[4] = 0x01;
ret = mt312_write(state, SYM_RATE_H, buf, sizeof(buf));
if (ret < 0)
return ret;
mt312_reset(state, 0);
return 0;
}
static int mt312_get_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct mt312_state *state = fe->demodulator_priv;
int ret;
ret = mt312_get_inversion(state, &p->inversion);
if (ret < 0)
return ret;
ret = mt312_get_symbol_rate(state, &p->symbol_rate);
if (ret < 0)
return ret;
ret = mt312_get_code_rate(state, &p->fec_inner);
if (ret < 0)
return ret;
return 0;
}
static int mt312_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct mt312_state *state = fe->demodulator_priv;
u8 val = 0x00;
int ret;
switch (state->id) {
case ID_ZL10313:
ret = mt312_readreg(state, GPP_CTRL, &val);
if (ret < 0)
goto error;
/* preserve this bit to not accidentally shutdown ADC */
val &= 0x80;
break;
}
if (enable)
val |= 0x40;
else
val &= ~0x40;
ret = mt312_writereg(state, GPP_CTRL, val);
error:
return ret;
}
static int mt312_sleep(struct dvb_frontend *fe)
{
struct mt312_state *state = fe->demodulator_priv;
int ret;
u8 config;
/* reset all registers to defaults */
ret = mt312_reset(state, 1);
if (ret < 0)
return ret;
if (state->id == ID_ZL10313) {
/* reset ADC */
ret = mt312_writereg(state, GPP_CTRL, 0x00);
if (ret < 0)
return ret;
/* full shutdown of ADCs, mpeg bus tristated */
ret = mt312_writereg(state, HW_CTRL, 0x0d);
if (ret < 0)
return ret;
}
ret = mt312_readreg(state, CONFIG, &config);
if (ret < 0)
return ret;
/* enter standby */
ret = mt312_writereg(state, CONFIG, config & 0x7f);
if (ret < 0)
return ret;
return 0;
}
static int mt312_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *fesettings)
{
fesettings->min_delay_ms = 50;
fesettings->step_size = 0;
fesettings->max_drift = 0;
return 0;
}
static void mt312_release(struct dvb_frontend *fe)
{
struct mt312_state *state = fe->demodulator_priv;
kfree(state);
}
#define MT312_SYS_CLK 90000000UL /* 90 MHz */
static struct dvb_frontend_ops mt312_ops = {
.delsys = { SYS_DVBS },
.info = {
.name = "Zarlink ???? DVB-S",
.frequency_min = 950000,
.frequency_max = 2150000,
/* FIXME: adjust freq to real used xtal */
.frequency_stepsize = (MT312_PLL_CLK / 1000) / 128,
.symbol_rate_min = MT312_SYS_CLK / 128, /* FIXME as above */
.symbol_rate_max = MT312_SYS_CLK / 2,
.caps =
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_MUTE_TS |
FE_CAN_RECOVER
},
.release = mt312_release,
.init = mt312_initfe,
.sleep = mt312_sleep,
.i2c_gate_ctrl = mt312_i2c_gate_ctrl,
.set_frontend = mt312_set_frontend,
.get_frontend = mt312_get_frontend,
.get_tune_settings = mt312_get_tune_settings,
.read_status = mt312_read_status,
.read_ber = mt312_read_ber,
.read_signal_strength = mt312_read_signal_strength,
.read_snr = mt312_read_snr,
.read_ucblocks = mt312_read_ucblocks,
.diseqc_send_master_cmd = mt312_send_master_cmd,
.diseqc_send_burst = mt312_send_burst,
.set_tone = mt312_set_tone,
.set_voltage = mt312_set_voltage,
};
struct dvb_frontend *mt312_attach(const struct mt312_config *config,
struct i2c_adapter *i2c)
{
struct mt312_state *state = NULL;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct mt312_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
/* check if the demod is there */
if (mt312_readreg(state, ID, &state->id) < 0)
goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &mt312_ops,
sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
switch (state->id) {
case ID_VP310:
strcpy(state->frontend.ops.info.name, "Zarlink VP310 DVB-S");
state->xtal = MT312_PLL_CLK;
state->freq_mult = 9;
break;
case ID_MT312:
strcpy(state->frontend.ops.info.name, "Zarlink MT312 DVB-S");
state->xtal = MT312_PLL_CLK;
state->freq_mult = 6;
break;
case ID_ZL10313:
strcpy(state->frontend.ops.info.name, "Zarlink ZL10313 DVB-S");
state->xtal = MT312_PLL_CLK_10_111;
state->freq_mult = 9;
break;
default:
printk(KERN_WARNING "Only Zarlink VP310/MT312/ZL10313"
" are supported chips.\n");
goto error;
}
return &state->frontend;
error:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(mt312_attach);
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("Zarlink VP310/MT312/ZL10313 DVB-S Demodulator driver");
MODULE_AUTHOR("Andreas Oberritter <obi@linuxtv.org>");
MODULE_AUTHOR("Matthias Schwarzott <zzam@gentoo.org>");
MODULE_LICENSE("GPL");