linux/drivers/dma/mv_xor.c

1376 lines
35 KiB
C
Raw Normal View History

/*
* offload engine driver for the Marvell XOR engine
* Copyright (C) 2007, 2008, Marvell International Ltd.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/init.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/memory.h>
#include <plat/mv_xor.h>
#include "mv_xor.h"
static void mv_xor_issue_pending(struct dma_chan *chan);
#define to_mv_xor_chan(chan) \
container_of(chan, struct mv_xor_chan, common)
#define to_mv_xor_device(dev) \
container_of(dev, struct mv_xor_device, common)
#define to_mv_xor_slot(tx) \
container_of(tx, struct mv_xor_desc_slot, async_tx)
static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
{
struct mv_xor_desc *hw_desc = desc->hw_desc;
hw_desc->status = (1 << 31);
hw_desc->phy_next_desc = 0;
hw_desc->desc_command = (1 << 31);
}
static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
{
struct mv_xor_desc *hw_desc = desc->hw_desc;
return hw_desc->phy_dest_addr;
}
static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
int src_idx)
{
struct mv_xor_desc *hw_desc = desc->hw_desc;
return hw_desc->phy_src_addr[src_idx];
}
static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
u32 byte_count)
{
struct mv_xor_desc *hw_desc = desc->hw_desc;
hw_desc->byte_count = byte_count;
}
static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
u32 next_desc_addr)
{
struct mv_xor_desc *hw_desc = desc->hw_desc;
BUG_ON(hw_desc->phy_next_desc);
hw_desc->phy_next_desc = next_desc_addr;
}
static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
{
struct mv_xor_desc *hw_desc = desc->hw_desc;
hw_desc->phy_next_desc = 0;
}
static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
{
desc->value = val;
}
static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
dma_addr_t addr)
{
struct mv_xor_desc *hw_desc = desc->hw_desc;
hw_desc->phy_dest_addr = addr;
}
static int mv_chan_memset_slot_count(size_t len)
{
return 1;
}
#define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
int index, dma_addr_t addr)
{
struct mv_xor_desc *hw_desc = desc->hw_desc;
hw_desc->phy_src_addr[index] = addr;
if (desc->type == DMA_XOR)
hw_desc->desc_command |= (1 << index);
}
static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
{
return __raw_readl(XOR_CURR_DESC(chan));
}
static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
u32 next_desc_addr)
{
__raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
}
static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
{
__raw_writel(desc_addr, XOR_DEST_POINTER(chan));
}
static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
{
__raw_writel(block_size, XOR_BLOCK_SIZE(chan));
}
static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
{
__raw_writel(value, XOR_INIT_VALUE_LOW(chan));
__raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
}
static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
{
u32 val = __raw_readl(XOR_INTR_MASK(chan));
val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
__raw_writel(val, XOR_INTR_MASK(chan));
}
static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
{
u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
return intr_cause;
}
static int mv_is_err_intr(u32 intr_cause)
{
if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
return 1;
return 0;
}
static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
{
u32 val = ~(1 << (chan->idx * 16));
dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
__raw_writel(val, XOR_INTR_CAUSE(chan));
}
static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
{
u32 val = 0xFFFF0000 >> (chan->idx * 16);
__raw_writel(val, XOR_INTR_CAUSE(chan));
}
static int mv_can_chain(struct mv_xor_desc_slot *desc)
{
struct mv_xor_desc_slot *chain_old_tail = list_entry(
desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
if (chain_old_tail->type != desc->type)
return 0;
if (desc->type == DMA_MEMSET)
return 0;
return 1;
}
static void mv_set_mode(struct mv_xor_chan *chan,
enum dma_transaction_type type)
{
u32 op_mode;
u32 config = __raw_readl(XOR_CONFIG(chan));
switch (type) {
case DMA_XOR:
op_mode = XOR_OPERATION_MODE_XOR;
break;
case DMA_MEMCPY:
op_mode = XOR_OPERATION_MODE_MEMCPY;
break;
case DMA_MEMSET:
op_mode = XOR_OPERATION_MODE_MEMSET;
break;
default:
dev_printk(KERN_ERR, chan->device->common.dev,
"error: unsupported operation %d.\n",
type);
BUG();
return;
}
config &= ~0x7;
config |= op_mode;
__raw_writel(config, XOR_CONFIG(chan));
chan->current_type = type;
}
static void mv_chan_activate(struct mv_xor_chan *chan)
{
u32 activation;
dev_dbg(chan->device->common.dev, " activate chan.\n");
activation = __raw_readl(XOR_ACTIVATION(chan));
activation |= 0x1;
__raw_writel(activation, XOR_ACTIVATION(chan));
}
static char mv_chan_is_busy(struct mv_xor_chan *chan)
{
u32 state = __raw_readl(XOR_ACTIVATION(chan));
state = (state >> 4) & 0x3;
return (state == 1) ? 1 : 0;
}
static int mv_chan_xor_slot_count(size_t len, int src_cnt)
{
return 1;
}
/**
* mv_xor_free_slots - flags descriptor slots for reuse
* @slot: Slot to free
* Caller must hold &mv_chan->lock while calling this function
*/
static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
struct mv_xor_desc_slot *slot)
{
dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
__func__, __LINE__, slot);
slot->slots_per_op = 0;
}
/*
* mv_xor_start_new_chain - program the engine to operate on new chain headed by
* sw_desc
* Caller must hold &mv_chan->lock while calling this function
*/
static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
struct mv_xor_desc_slot *sw_desc)
{
dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
__func__, __LINE__, sw_desc);
if (sw_desc->type != mv_chan->current_type)
mv_set_mode(mv_chan, sw_desc->type);
if (sw_desc->type == DMA_MEMSET) {
/* for memset requests we need to program the engine, no
* descriptors used.
*/
struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
mv_chan_set_value(mv_chan, sw_desc->value);
} else {
/* set the hardware chain */
mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
}
mv_chan->pending += sw_desc->slot_cnt;
mv_xor_issue_pending(&mv_chan->common);
}
static dma_cookie_t
mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
{
BUG_ON(desc->async_tx.cookie < 0);
if (desc->async_tx.cookie > 0) {
cookie = desc->async_tx.cookie;
/* call the callback (must not sleep or submit new
* operations to this channel)
*/
if (desc->async_tx.callback)
desc->async_tx.callback(
desc->async_tx.callback_param);
/* unmap dma addresses
* (unmap_single vs unmap_page?)
*/
if (desc->group_head && desc->unmap_len) {
struct mv_xor_desc_slot *unmap = desc->group_head;
struct device *dev =
&mv_chan->device->pdev->dev;
u32 len = unmap->unmap_len;
enum dma_ctrl_flags flags = desc->async_tx.flags;
u32 src_cnt;
dma_addr_t addr;
dma_addr_t dest;
src_cnt = unmap->unmap_src_cnt;
dest = mv_desc_get_dest_addr(unmap);
if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
enum dma_data_direction dir;
if (src_cnt > 1) /* is xor ? */
dir = DMA_BIDIRECTIONAL;
else
dir = DMA_FROM_DEVICE;
dma_unmap_page(dev, dest, len, dir);
}
if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
while (src_cnt--) {
addr = mv_desc_get_src_addr(unmap,
src_cnt);
if (addr == dest)
continue;
dma_unmap_page(dev, addr, len,
DMA_TO_DEVICE);
}
}
desc->group_head = NULL;
}
}
/* run dependent operations */
dma_run_dependencies(&desc->async_tx);
return cookie;
}
static int
mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
{
struct mv_xor_desc_slot *iter, *_iter;
dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
completed_node) {
if (async_tx_test_ack(&iter->async_tx)) {
list_del(&iter->completed_node);
mv_xor_free_slots(mv_chan, iter);
}
}
return 0;
}
static int
mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
struct mv_xor_chan *mv_chan)
{
dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
__func__, __LINE__, desc, desc->async_tx.flags);
list_del(&desc->chain_node);
/* the client is allowed to attach dependent operations
* until 'ack' is set
*/
if (!async_tx_test_ack(&desc->async_tx)) {
/* move this slot to the completed_slots */
list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
return 0;
}
mv_xor_free_slots(mv_chan, desc);
return 0;
}
static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
{
struct mv_xor_desc_slot *iter, *_iter;
dma_cookie_t cookie = 0;
int busy = mv_chan_is_busy(mv_chan);
u32 current_desc = mv_chan_get_current_desc(mv_chan);
int seen_current = 0;
dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
mv_xor_clean_completed_slots(mv_chan);
/* free completed slots from the chain starting with
* the oldest descriptor
*/
list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
chain_node) {
prefetch(_iter);
prefetch(&_iter->async_tx);
/* do not advance past the current descriptor loaded into the
* hardware channel, subsequent descriptors are either in
* process or have not been submitted
*/
if (seen_current)
break;
/* stop the search if we reach the current descriptor and the
* channel is busy
*/
if (iter->async_tx.phys == current_desc) {
seen_current = 1;
if (busy)
break;
}
cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
if (mv_xor_clean_slot(iter, mv_chan))
break;
}
if ((busy == 0) && !list_empty(&mv_chan->chain)) {
struct mv_xor_desc_slot *chain_head;
chain_head = list_entry(mv_chan->chain.next,
struct mv_xor_desc_slot,
chain_node);
mv_xor_start_new_chain(mv_chan, chain_head);
}
if (cookie > 0)
mv_chan->completed_cookie = cookie;
}
static void
mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
{
spin_lock_bh(&mv_chan->lock);
__mv_xor_slot_cleanup(mv_chan);
spin_unlock_bh(&mv_chan->lock);
}
static void mv_xor_tasklet(unsigned long data)
{
struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
mv_xor_slot_cleanup(chan);
}
static struct mv_xor_desc_slot *
mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
int slots_per_op)
{
struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
LIST_HEAD(chain);
int slots_found, retry = 0;
/* start search from the last allocated descrtiptor
* if a contiguous allocation can not be found start searching
* from the beginning of the list
*/
retry:
slots_found = 0;
if (retry == 0)
iter = mv_chan->last_used;
else
iter = list_entry(&mv_chan->all_slots,
struct mv_xor_desc_slot,
slot_node);
list_for_each_entry_safe_continue(
iter, _iter, &mv_chan->all_slots, slot_node) {
prefetch(_iter);
prefetch(&_iter->async_tx);
if (iter->slots_per_op) {
/* give up after finding the first busy slot
* on the second pass through the list
*/
if (retry)
break;
slots_found = 0;
continue;
}
/* start the allocation if the slot is correctly aligned */
if (!slots_found++)
alloc_start = iter;
if (slots_found == num_slots) {
struct mv_xor_desc_slot *alloc_tail = NULL;
struct mv_xor_desc_slot *last_used = NULL;
iter = alloc_start;
while (num_slots) {
int i;
/* pre-ack all but the last descriptor */
async_tx_ack(&iter->async_tx);
list_add_tail(&iter->chain_node, &chain);
alloc_tail = iter;
iter->async_tx.cookie = 0;
iter->slot_cnt = num_slots;
iter->xor_check_result = NULL;
for (i = 0; i < slots_per_op; i++) {
iter->slots_per_op = slots_per_op - i;
last_used = iter;
iter = list_entry(iter->slot_node.next,
struct mv_xor_desc_slot,
slot_node);
}
num_slots -= slots_per_op;
}
alloc_tail->group_head = alloc_start;
alloc_tail->async_tx.cookie = -EBUSY;
list_splice(&chain, &alloc_tail->tx_list);
mv_chan->last_used = last_used;
mv_desc_clear_next_desc(alloc_start);
mv_desc_clear_next_desc(alloc_tail);
return alloc_tail;
}
}
if (!retry++)
goto retry;
/* try to free some slots if the allocation fails */
tasklet_schedule(&mv_chan->irq_tasklet);
return NULL;
}
static dma_cookie_t
mv_desc_assign_cookie(struct mv_xor_chan *mv_chan,
struct mv_xor_desc_slot *desc)
{
dma_cookie_t cookie = mv_chan->common.cookie;
if (++cookie < 0)
cookie = 1;
mv_chan->common.cookie = desc->async_tx.cookie = cookie;
return cookie;
}
/************************ DMA engine API functions ****************************/
static dma_cookie_t
mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
struct mv_xor_desc_slot *grp_start, *old_chain_tail;
dma_cookie_t cookie;
int new_hw_chain = 1;
dev_dbg(mv_chan->device->common.dev,
"%s sw_desc %p: async_tx %p\n",
__func__, sw_desc, &sw_desc->async_tx);
grp_start = sw_desc->group_head;
spin_lock_bh(&mv_chan->lock);
cookie = mv_desc_assign_cookie(mv_chan, sw_desc);
if (list_empty(&mv_chan->chain))
list_splice_init(&sw_desc->tx_list, &mv_chan->chain);
else {
new_hw_chain = 0;
old_chain_tail = list_entry(mv_chan->chain.prev,
struct mv_xor_desc_slot,
chain_node);
list_splice_init(&grp_start->tx_list,
&old_chain_tail->chain_node);
if (!mv_can_chain(grp_start))
goto submit_done;
dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
old_chain_tail->async_tx.phys);
/* fix up the hardware chain */
mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
/* if the channel is not busy */
if (!mv_chan_is_busy(mv_chan)) {
u32 current_desc = mv_chan_get_current_desc(mv_chan);
/*
* and the curren desc is the end of the chain before
* the append, then we need to start the channel
*/
if (current_desc == old_chain_tail->async_tx.phys)
new_hw_chain = 1;
}
}
if (new_hw_chain)
mv_xor_start_new_chain(mv_chan, grp_start);
submit_done:
spin_unlock_bh(&mv_chan->lock);
return cookie;
}
/* returns the number of allocated descriptors */
static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
{
char *hw_desc;
int idx;
struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
struct mv_xor_desc_slot *slot = NULL;
struct mv_xor_platform_data *plat_data =
mv_chan->device->pdev->dev.platform_data;
int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
/* Allocate descriptor slots */
idx = mv_chan->slots_allocated;
while (idx < num_descs_in_pool) {
slot = kzalloc(sizeof(*slot), GFP_KERNEL);
if (!slot) {
printk(KERN_INFO "MV XOR Channel only initialized"
" %d descriptor slots", idx);
break;
}
hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
dma_async_tx_descriptor_init(&slot->async_tx, chan);
slot->async_tx.tx_submit = mv_xor_tx_submit;
INIT_LIST_HEAD(&slot->chain_node);
INIT_LIST_HEAD(&slot->slot_node);
INIT_LIST_HEAD(&slot->tx_list);
hw_desc = (char *) mv_chan->device->dma_desc_pool;
slot->async_tx.phys =
(dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
slot->idx = idx++;
spin_lock_bh(&mv_chan->lock);
mv_chan->slots_allocated = idx;
list_add_tail(&slot->slot_node, &mv_chan->all_slots);
spin_unlock_bh(&mv_chan->lock);
}
if (mv_chan->slots_allocated && !mv_chan->last_used)
mv_chan->last_used = list_entry(mv_chan->all_slots.next,
struct mv_xor_desc_slot,
slot_node);
dev_dbg(mv_chan->device->common.dev,
"allocated %d descriptor slots last_used: %p\n",
mv_chan->slots_allocated, mv_chan->last_used);
return mv_chan->slots_allocated ? : -ENOMEM;
}
static struct dma_async_tx_descriptor *
mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
struct mv_xor_desc_slot *sw_desc, *grp_start;
int slot_cnt;
dev_dbg(mv_chan->device->common.dev,
"%s dest: %x src %x len: %u flags: %ld\n",
__func__, dest, src, len, flags);
if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
return NULL;
BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
spin_lock_bh(&mv_chan->lock);
slot_cnt = mv_chan_memcpy_slot_count(len);
sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
if (sw_desc) {
sw_desc->type = DMA_MEMCPY;
sw_desc->async_tx.flags = flags;
grp_start = sw_desc->group_head;
mv_desc_init(grp_start, flags);
mv_desc_set_byte_count(grp_start, len);
mv_desc_set_dest_addr(sw_desc->group_head, dest);
mv_desc_set_src_addr(grp_start, 0, src);
sw_desc->unmap_src_cnt = 1;
sw_desc->unmap_len = len;
}
spin_unlock_bh(&mv_chan->lock);
dev_dbg(mv_chan->device->common.dev,
"%s sw_desc %p async_tx %p\n",
__func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static struct dma_async_tx_descriptor *
mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
size_t len, unsigned long flags)
{
struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
struct mv_xor_desc_slot *sw_desc, *grp_start;
int slot_cnt;
dev_dbg(mv_chan->device->common.dev,
"%s dest: %x len: %u flags: %ld\n",
__func__, dest, len, flags);
if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
return NULL;
BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
spin_lock_bh(&mv_chan->lock);
slot_cnt = mv_chan_memset_slot_count(len);
sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
if (sw_desc) {
sw_desc->type = DMA_MEMSET;
sw_desc->async_tx.flags = flags;
grp_start = sw_desc->group_head;
mv_desc_init(grp_start, flags);
mv_desc_set_byte_count(grp_start, len);
mv_desc_set_dest_addr(sw_desc->group_head, dest);
mv_desc_set_block_fill_val(grp_start, value);
sw_desc->unmap_src_cnt = 1;
sw_desc->unmap_len = len;
}
spin_unlock_bh(&mv_chan->lock);
dev_dbg(mv_chan->device->common.dev,
"%s sw_desc %p async_tx %p \n",
__func__, sw_desc, &sw_desc->async_tx);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static struct dma_async_tx_descriptor *
mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags)
{
struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
struct mv_xor_desc_slot *sw_desc, *grp_start;
int slot_cnt;
if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
return NULL;
BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
dev_dbg(mv_chan->device->common.dev,
"%s src_cnt: %d len: dest %x %u flags: %ld\n",
__func__, src_cnt, len, dest, flags);
spin_lock_bh(&mv_chan->lock);
slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
if (sw_desc) {
sw_desc->type = DMA_XOR;
sw_desc->async_tx.flags = flags;
grp_start = sw_desc->group_head;
mv_desc_init(grp_start, flags);
/* the byte count field is the same as in memcpy desc*/
mv_desc_set_byte_count(grp_start, len);
mv_desc_set_dest_addr(sw_desc->group_head, dest);
sw_desc->unmap_src_cnt = src_cnt;
sw_desc->unmap_len = len;
while (src_cnt--)
mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
}
spin_unlock_bh(&mv_chan->lock);
dev_dbg(mv_chan->device->common.dev,
"%s sw_desc %p async_tx %p \n",
__func__, sw_desc, &sw_desc->async_tx);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static void mv_xor_free_chan_resources(struct dma_chan *chan)
{
struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
struct mv_xor_desc_slot *iter, *_iter;
int in_use_descs = 0;
mv_xor_slot_cleanup(mv_chan);
spin_lock_bh(&mv_chan->lock);
list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
chain_node) {
in_use_descs++;
list_del(&iter->chain_node);
}
list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
completed_node) {
in_use_descs++;
list_del(&iter->completed_node);
}
list_for_each_entry_safe_reverse(
iter, _iter, &mv_chan->all_slots, slot_node) {
list_del(&iter->slot_node);
kfree(iter);
mv_chan->slots_allocated--;
}
mv_chan->last_used = NULL;
dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
__func__, mv_chan->slots_allocated);
spin_unlock_bh(&mv_chan->lock);
if (in_use_descs)
dev_err(mv_chan->device->common.dev,
"freeing %d in use descriptors!\n", in_use_descs);
}
/**
* mv_xor_status - poll the status of an XOR transaction
* @chan: XOR channel handle
* @cookie: XOR transaction identifier
* @txstate: XOR transactions state holder (or NULL)
*/
static enum dma_status mv_xor_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
enum dma_status ret;
last_used = chan->cookie;
last_complete = mv_chan->completed_cookie;
mv_chan->is_complete_cookie = cookie;
dma_set_tx_state(txstate, last_complete, last_used, 0);
ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret == DMA_SUCCESS) {
mv_xor_clean_completed_slots(mv_chan);
return ret;
}
mv_xor_slot_cleanup(mv_chan);
last_used = chan->cookie;
last_complete = mv_chan->completed_cookie;
dma_set_tx_state(txstate, last_complete, last_used, 0);
return dma_async_is_complete(cookie, last_complete, last_used);
}
static void mv_dump_xor_regs(struct mv_xor_chan *chan)
{
u32 val;
val = __raw_readl(XOR_CONFIG(chan));
dev_printk(KERN_ERR, chan->device->common.dev,
"config 0x%08x.\n", val);
val = __raw_readl(XOR_ACTIVATION(chan));
dev_printk(KERN_ERR, chan->device->common.dev,
"activation 0x%08x.\n", val);
val = __raw_readl(XOR_INTR_CAUSE(chan));
dev_printk(KERN_ERR, chan->device->common.dev,
"intr cause 0x%08x.\n", val);
val = __raw_readl(XOR_INTR_MASK(chan));
dev_printk(KERN_ERR, chan->device->common.dev,
"intr mask 0x%08x.\n", val);
val = __raw_readl(XOR_ERROR_CAUSE(chan));
dev_printk(KERN_ERR, chan->device->common.dev,
"error cause 0x%08x.\n", val);
val = __raw_readl(XOR_ERROR_ADDR(chan));
dev_printk(KERN_ERR, chan->device->common.dev,
"error addr 0x%08x.\n", val);
}
static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
u32 intr_cause)
{
if (intr_cause & (1 << 4)) {
dev_dbg(chan->device->common.dev,
"ignore this error\n");
return;
}
dev_printk(KERN_ERR, chan->device->common.dev,
"error on chan %d. intr cause 0x%08x.\n",
chan->idx, intr_cause);
mv_dump_xor_regs(chan);
BUG();
}
static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
{
struct mv_xor_chan *chan = data;
u32 intr_cause = mv_chan_get_intr_cause(chan);
dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
if (mv_is_err_intr(intr_cause))
mv_xor_err_interrupt_handler(chan, intr_cause);
tasklet_schedule(&chan->irq_tasklet);
mv_xor_device_clear_eoc_cause(chan);
return IRQ_HANDLED;
}
static void mv_xor_issue_pending(struct dma_chan *chan)
{
struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
if (mv_chan->pending >= MV_XOR_THRESHOLD) {
mv_chan->pending = 0;
mv_chan_activate(mv_chan);
}
}
/*
* Perform a transaction to verify the HW works.
*/
#define MV_XOR_TEST_SIZE 2000
static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
{
int i;
void *src, *dest;
dma_addr_t src_dma, dest_dma;
struct dma_chan *dma_chan;
dma_cookie_t cookie;
struct dma_async_tx_descriptor *tx;
int err = 0;
struct mv_xor_chan *mv_chan;
src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
if (!src)
return -ENOMEM;
dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
if (!dest) {
kfree(src);
return -ENOMEM;
}
/* Fill in src buffer */
for (i = 0; i < MV_XOR_TEST_SIZE; i++)
((u8 *) src)[i] = (u8)i;
/* Start copy, using first DMA channel */
dma_chan = container_of(device->common.channels.next,
struct dma_chan,
device_node);
if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
err = -ENODEV;
goto out;
}
dest_dma = dma_map_single(dma_chan->device->dev, dest,
MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
src_dma = dma_map_single(dma_chan->device->dev, src,
MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
MV_XOR_TEST_SIZE, 0);
cookie = mv_xor_tx_submit(tx);
mv_xor_issue_pending(dma_chan);
async_tx_ack(tx);
msleep(1);
if (mv_xor_status(dma_chan, cookie, NULL) !=
DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test copy timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
mv_chan = to_mv_xor_chan(dma_chan);
dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test copy failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
free_resources:
mv_xor_free_chan_resources(dma_chan);
out:
kfree(src);
kfree(dest);
return err;
}
#define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
static int __devinit
mv_xor_xor_self_test(struct mv_xor_device *device)
{
int i, src_idx;
struct page *dest;
struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
dma_addr_t dest_dma;
struct dma_async_tx_descriptor *tx;
struct dma_chan *dma_chan;
dma_cookie_t cookie;
u8 cmp_byte = 0;
u32 cmp_word;
int err = 0;
struct mv_xor_chan *mv_chan;
for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
if (!xor_srcs[src_idx]) {
while (src_idx--)
__free_page(xor_srcs[src_idx]);
return -ENOMEM;
}
}
dest = alloc_page(GFP_KERNEL);
if (!dest) {
while (src_idx--)
__free_page(xor_srcs[src_idx]);
return -ENOMEM;
}
/* Fill in src buffers */
for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
u8 *ptr = page_address(xor_srcs[src_idx]);
for (i = 0; i < PAGE_SIZE; i++)
ptr[i] = (1 << src_idx);
}
for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
cmp_byte ^= (u8) (1 << src_idx);
cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
(cmp_byte << 8) | cmp_byte;
memset(page_address(dest), 0, PAGE_SIZE);
dma_chan = container_of(device->common.channels.next,
struct dma_chan,
device_node);
if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
err = -ENODEV;
goto out;
}
/* test xor */
dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
DMA_FROM_DEVICE);
for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
0, PAGE_SIZE, DMA_TO_DEVICE);
tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
cookie = mv_xor_tx_submit(tx);
mv_xor_issue_pending(dma_chan);
async_tx_ack(tx);
msleep(8);
if (mv_xor_status(dma_chan, cookie, NULL) !=
DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test xor timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
mv_chan = to_mv_xor_chan(dma_chan);
dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
PAGE_SIZE, DMA_FROM_DEVICE);
for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
u32 *ptr = page_address(dest);
if (ptr[i] != cmp_word) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test xor failed compare, disabling."
" index %d, data %x, expected %x\n", i,
ptr[i], cmp_word);
err = -ENODEV;
goto free_resources;
}
}
free_resources:
mv_xor_free_chan_resources(dma_chan);
out:
src_idx = MV_XOR_NUM_SRC_TEST;
while (src_idx--)
__free_page(xor_srcs[src_idx]);
__free_page(dest);
return err;
}
static int __devexit mv_xor_remove(struct platform_device *dev)
{
struct mv_xor_device *device = platform_get_drvdata(dev);
struct dma_chan *chan, *_chan;
struct mv_xor_chan *mv_chan;
struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
dma_async_device_unregister(&device->common);
dma_free_coherent(&dev->dev, plat_data->pool_size,
device->dma_desc_pool_virt, device->dma_desc_pool);
list_for_each_entry_safe(chan, _chan, &device->common.channels,
device_node) {
mv_chan = to_mv_xor_chan(chan);
list_del(&chan->device_node);
}
return 0;
}
static int __devinit mv_xor_probe(struct platform_device *pdev)
{
int ret = 0;
int irq;
struct mv_xor_device *adev;
struct mv_xor_chan *mv_chan;
struct dma_device *dma_dev;
struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
if (!adev)
return -ENOMEM;
dma_dev = &adev->common;
/* allocate coherent memory for hardware descriptors
* note: writecombine gives slightly better performance, but
* requires that we explicitly flush the writes
*/
adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
plat_data->pool_size,
&adev->dma_desc_pool,
GFP_KERNEL);
if (!adev->dma_desc_pool_virt)
return -ENOMEM;
adev->id = plat_data->hw_id;
/* discover transaction capabilites from the platform data */
dma_dev->cap_mask = plat_data->cap_mask;
adev->pdev = pdev;
platform_set_drvdata(pdev, adev);
adev->shared = platform_get_drvdata(plat_data->shared);
INIT_LIST_HEAD(&dma_dev->channels);
/* set base routines */
dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
dma_dev->device_tx_status = mv_xor_status;
dma_dev->device_issue_pending = mv_xor_issue_pending;
dma_dev->dev = &pdev->dev;
/* set prep routines based on capability */
if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
dma_dev->max_xor = 8;
dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
}
mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
if (!mv_chan) {
ret = -ENOMEM;
goto err_free_dma;
}
mv_chan->device = adev;
mv_chan->idx = plat_data->hw_id;
mv_chan->mmr_base = adev->shared->xor_base;
if (!mv_chan->mmr_base) {
ret = -ENOMEM;
goto err_free_dma;
}
tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
mv_chan);
/* clear errors before enabling interrupts */
mv_xor_device_clear_err_status(mv_chan);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto err_free_dma;
}
ret = devm_request_irq(&pdev->dev, irq,
mv_xor_interrupt_handler,
0, dev_name(&pdev->dev), mv_chan);
if (ret)
goto err_free_dma;
mv_chan_unmask_interrupts(mv_chan);
mv_set_mode(mv_chan, DMA_MEMCPY);
spin_lock_init(&mv_chan->lock);
INIT_LIST_HEAD(&mv_chan->chain);
INIT_LIST_HEAD(&mv_chan->completed_slots);
INIT_LIST_HEAD(&mv_chan->all_slots);
mv_chan->common.device = dma_dev;
list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
ret = mv_xor_memcpy_self_test(adev);
dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
if (ret)
goto err_free_dma;
}
if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
ret = mv_xor_xor_self_test(adev);
dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
if (ret)
goto err_free_dma;
}
dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
"( %s%s%s%s)\n",
dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
dma_async_device_register(dma_dev);
goto out;
err_free_dma:
dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
adev->dma_desc_pool_virt, adev->dma_desc_pool);
out:
return ret;
}
static void
mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
struct mbus_dram_target_info *dram)
{
void __iomem *base = msp->xor_base;
u32 win_enable = 0;
int i;
for (i = 0; i < 8; i++) {
writel(0, base + WINDOW_BASE(i));
writel(0, base + WINDOW_SIZE(i));
if (i < 4)
writel(0, base + WINDOW_REMAP_HIGH(i));
}
for (i = 0; i < dram->num_cs; i++) {
struct mbus_dram_window *cs = dram->cs + i;
writel((cs->base & 0xffff0000) |
(cs->mbus_attr << 8) |
dram->mbus_dram_target_id, base + WINDOW_BASE(i));
writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
win_enable |= (1 << i);
win_enable |= 3 << (16 + (2 * i));
}
writel(win_enable, base + WINDOW_BAR_ENABLE(0));
writel(win_enable, base + WINDOW_BAR_ENABLE(1));
}
static struct platform_driver mv_xor_driver = {
.probe = mv_xor_probe,
.remove = __devexit_p(mv_xor_remove),
.driver = {
.owner = THIS_MODULE,
.name = MV_XOR_NAME,
},
};
static int mv_xor_shared_probe(struct platform_device *pdev)
{
struct mv_xor_platform_shared_data *msd = pdev->dev.platform_data;
struct mv_xor_shared_private *msp;
struct resource *res;
dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
if (!msp)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
msp->xor_base = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!msp->xor_base)
return -EBUSY;
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!res)
return -ENODEV;
msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!msp->xor_high_base)
return -EBUSY;
platform_set_drvdata(pdev, msp);
/*
* (Re-)program MBUS remapping windows if we are asked to.
*/
if (msd != NULL && msd->dram != NULL)
mv_xor_conf_mbus_windows(msp, msd->dram);
return 0;
}
static int mv_xor_shared_remove(struct platform_device *pdev)
{
return 0;
}
static struct platform_driver mv_xor_shared_driver = {
.probe = mv_xor_shared_probe,
.remove = mv_xor_shared_remove,
.driver = {
.owner = THIS_MODULE,
.name = MV_XOR_SHARED_NAME,
},
};
static int __init mv_xor_init(void)
{
int rc;
rc = platform_driver_register(&mv_xor_shared_driver);
if (!rc) {
rc = platform_driver_register(&mv_xor_driver);
if (rc)
platform_driver_unregister(&mv_xor_shared_driver);
}
return rc;
}
module_init(mv_xor_init);
/* it's currently unsafe to unload this module */
#if 0
static void __exit mv_xor_exit(void)
{
platform_driver_unregister(&mv_xor_driver);
platform_driver_unregister(&mv_xor_shared_driver);
return;
}
module_exit(mv_xor_exit);
#endif
MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
MODULE_LICENSE("GPL");