linux/fs/ubifs/sb.c

813 lines
23 KiB
C
Raw Normal View History

/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
*/
/*
* This file implements UBIFS superblock. The superblock is stored at the first
* LEB of the volume and is never changed by UBIFS. Only user-space tools may
* change it. The superblock node mostly contains geometry information.
*/
#include "ubifs.h"
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/math64.h>
/*
* Default journal size in logical eraseblocks as a percent of total
* flash size.
*/
#define DEFAULT_JNL_PERCENT 5
/* Default maximum journal size in bytes */
#define DEFAULT_MAX_JNL (32*1024*1024)
/* Default indexing tree fanout */
#define DEFAULT_FANOUT 8
/* Default number of data journal heads */
#define DEFAULT_JHEADS_CNT 1
/* Default positions of different LEBs in the main area */
#define DEFAULT_IDX_LEB 0
#define DEFAULT_DATA_LEB 1
#define DEFAULT_GC_LEB 2
/* Default number of LEB numbers in LPT's save table */
#define DEFAULT_LSAVE_CNT 256
/* Default reserved pool size as a percent of maximum free space */
#define DEFAULT_RP_PERCENT 5
/* The default maximum size of reserved pool in bytes */
#define DEFAULT_MAX_RP_SIZE (5*1024*1024)
/* Default time granularity in nanoseconds */
#define DEFAULT_TIME_GRAN 1000000000
/**
* create_default_filesystem - format empty UBI volume.
* @c: UBIFS file-system description object
*
* This function creates default empty file-system. Returns zero in case of
* success and a negative error code in case of failure.
*/
static int create_default_filesystem(struct ubifs_info *c)
{
struct ubifs_sb_node *sup;
struct ubifs_mst_node *mst;
struct ubifs_idx_node *idx;
struct ubifs_branch *br;
struct ubifs_ino_node *ino;
struct ubifs_cs_node *cs;
union ubifs_key key;
int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
int min_leb_cnt = UBIFS_MIN_LEB_CNT;
long long tmp64, main_bytes;
UBIFS: endian handling fixes and annotations Noticed by sparse: fs/ubifs/file.c:75:2: warning: restricted __le64 degrades to integer fs/ubifs/file.c:629:4: warning: restricted __le64 degrades to integer fs/ubifs/dir.c:431:3: warning: restricted __le64 degrades to integer This should be checked to ensure the ubifs_assert is working as intended, I've done the suggested annotation in this patch. fs/ubifs/sb.c:298:6: warning: incorrect type in assignment (different base types) fs/ubifs/sb.c:298:6: expected int [signed] [assigned] tmp fs/ubifs/sb.c:298:6: got restricted __le64 [usertype] <noident> fs/ubifs/sb.c:299:19: warning: incorrect type in assignment (different base types) fs/ubifs/sb.c:299:19: expected restricted __le64 [usertype] atime_sec fs/ubifs/sb.c:299:19: got int [signed] [assigned] tmp fs/ubifs/sb.c:300:19: warning: incorrect type in assignment (different base types) fs/ubifs/sb.c:300:19: expected restricted __le64 [usertype] ctime_sec fs/ubifs/sb.c:300:19: got int [signed] [assigned] tmp fs/ubifs/sb.c:301:19: warning: incorrect type in assignment (different base types) fs/ubifs/sb.c:301:19: expected restricted __le64 [usertype] mtime_sec fs/ubifs/sb.c:301:19: got int [signed] [assigned] tmp This looks like a bugfix as your tmp was a u32 so there was truncation in the atime, mtime, ctime value, probably not intentional, add a tmp_le64 and use it here. fs/ubifs/key.h:348:9: warning: cast to restricted __le32 fs/ubifs/key.h:348:9: warning: cast to restricted __le32 fs/ubifs/key.h:419:9: warning: cast to restricted __le32 Read from the annotated union member instead. fs/ubifs/recovery.c:175:13: warning: incorrect type in assignment (different base types) fs/ubifs/recovery.c:175:13: expected unsigned int [unsigned] [usertype] save_flags fs/ubifs/recovery.c:175:13: got restricted __le32 [usertype] flags fs/ubifs/recovery.c:186:13: warning: incorrect type in assignment (different base types) fs/ubifs/recovery.c:186:13: expected restricted __le32 [usertype] flags fs/ubifs/recovery.c:186:13: got unsigned int [unsigned] [usertype] save_flags Do byteshifting at compile time of the flag value. Annotate the saved_flags as le32. fs/ubifs/debug.c:368:10: warning: cast to restricted __le32 fs/ubifs/debug.c:368:10: warning: cast from restricted __le64 Should be checked if the truncation was intentional, I've changed the printk to print the full width. Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-10-25 01:52:57 +08:00
__le64 tmp_le64;
/* Some functions called from here depend on the @c->key_len filed */
c->key_len = UBIFS_SK_LEN;
/*
* First of all, we have to calculate default file-system geometry -
* log size, journal size, etc.
*/
if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
/* We can first multiply then divide and have no overflow */
jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
else
jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
jnl_lebs = UBIFS_MIN_JNL_LEBS;
if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
/*
* The log should be large enough to fit reference nodes for all bud
* LEBs. Because buds do not have to start from the beginning of LEBs
* (half of the LEB may contain committed data), the log should
* generally be larger, make it twice as large.
*/
tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
log_lebs = tmp / c->leb_size;
/* Plus one LEB reserved for commit */
log_lebs += 1;
if (c->leb_cnt - min_leb_cnt > 8) {
/* And some extra space to allow writes while committing */
log_lebs += 1;
min_leb_cnt += 1;
}
max_buds = jnl_lebs - log_lebs;
if (max_buds < UBIFS_MIN_BUD_LEBS)
max_buds = UBIFS_MIN_BUD_LEBS;
/*
* Orphan nodes are stored in a separate area. One node can store a lot
* of orphan inode numbers, but when new orphan comes we just add a new
* orphan node. At some point the nodes are consolidated into one
* orphan node.
*/
orph_lebs = UBIFS_MIN_ORPH_LEBS;
#ifdef CONFIG_UBIFS_FS_DEBUG
if (c->leb_cnt - min_leb_cnt > 1)
/*
* For debugging purposes it is better to have at least 2
* orphan LEBs, because the orphan subsystem would need to do
* consolidations and would be stressed more.
*/
orph_lebs += 1;
#endif
main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
main_lebs -= orph_lebs;
lpt_first = UBIFS_LOG_LNUM + log_lebs;
c->lsave_cnt = DEFAULT_LSAVE_CNT;
c->max_leb_cnt = c->leb_cnt;
err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
&big_lpt);
if (err)
return err;
dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
lpt_first + lpt_lebs - 1);
main_first = c->leb_cnt - main_lebs;
/* Create default superblock */
tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
sup = kzalloc(tmp, GFP_KERNEL);
if (!sup)
return -ENOMEM;
tmp64 = (long long)max_buds * c->leb_size;
if (big_lpt)
sup_flags |= UBIFS_FLG_BIGLPT;
sup->ch.node_type = UBIFS_SB_NODE;
sup->key_hash = UBIFS_KEY_HASH_R5;
sup->flags = cpu_to_le32(sup_flags);
sup->min_io_size = cpu_to_le32(c->min_io_size);
sup->leb_size = cpu_to_le32(c->leb_size);
sup->leb_cnt = cpu_to_le32(c->leb_cnt);
sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt);
sup->max_bud_bytes = cpu_to_le64(tmp64);
sup->log_lebs = cpu_to_le32(log_lebs);
sup->lpt_lebs = cpu_to_le32(lpt_lebs);
sup->orph_lebs = cpu_to_le32(orph_lebs);
sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT);
sup->fanout = cpu_to_le32(DEFAULT_FANOUT);
sup->lsave_cnt = cpu_to_le32(c->lsave_cnt);
sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION);
sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN);
if (c->mount_opts.override_compr)
sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
else
sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
generate_random_uuid(sup->uuid);
main_bytes = (long long)main_lebs * c->leb_size;
tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
if (tmp64 > DEFAULT_MAX_RP_SIZE)
tmp64 = DEFAULT_MAX_RP_SIZE;
sup->rp_size = cpu_to_le64(tmp64);
sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0, UBI_LONGTERM);
kfree(sup);
if (err)
return err;
dbg_gen("default superblock created at LEB 0:0");
/* Create default master node */
mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
if (!mst)
return -ENOMEM;
mst->ch.node_type = UBIFS_MST_NODE;
mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM);
mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
mst->cmt_no = 0;
mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
mst->root_offs = 0;
tmp = ubifs_idx_node_sz(c, 1);
mst->root_len = cpu_to_le32(tmp);
mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB);
mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size));
mst->index_size = cpu_to_le64(ALIGN(tmp, 8));
mst->lpt_lnum = cpu_to_le32(c->lpt_lnum);
mst->lpt_offs = cpu_to_le32(c->lpt_offs);
mst->nhead_lnum = cpu_to_le32(c->nhead_lnum);
mst->nhead_offs = cpu_to_le32(c->nhead_offs);
mst->ltab_lnum = cpu_to_le32(c->ltab_lnum);
mst->ltab_offs = cpu_to_le32(c->ltab_offs);
mst->lsave_lnum = cpu_to_le32(c->lsave_lnum);
mst->lsave_offs = cpu_to_le32(c->lsave_offs);
mst->lscan_lnum = cpu_to_le32(main_first);
mst->empty_lebs = cpu_to_le32(main_lebs - 2);
mst->idx_lebs = cpu_to_le32(1);
mst->leb_cnt = cpu_to_le32(c->leb_cnt);
/* Calculate lprops statistics */
tmp64 = main_bytes;
tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
mst->total_free = cpu_to_le64(tmp64);
tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
UBIFS_INO_NODE_SZ;
tmp64 += ino_waste;
tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
mst->total_dirty = cpu_to_le64(tmp64);
/* The indexing LEB does not contribute to dark space */
tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
mst->total_dark = cpu_to_le64(tmp64);
mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0,
UBI_UNKNOWN);
if (err) {
kfree(mst);
return err;
}
err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1, 0,
UBI_UNKNOWN);
kfree(mst);
if (err)
return err;
dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
/* Create the root indexing node */
tmp = ubifs_idx_node_sz(c, 1);
idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
if (!idx)
return -ENOMEM;
c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
c->key_hash = key_r5_hash;
idx->ch.node_type = UBIFS_IDX_NODE;
idx->child_cnt = cpu_to_le16(1);
ino_key_init(c, &key, UBIFS_ROOT_INO);
br = ubifs_idx_branch(c, idx, 0);
key_write_idx(c, &key, &br->key);
br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
br->len = cpu_to_le32(UBIFS_INO_NODE_SZ);
err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0,
UBI_UNKNOWN);
kfree(idx);
if (err)
return err;
dbg_gen("default root indexing node created LEB %d:0",
main_first + DEFAULT_IDX_LEB);
/* Create default root inode */
tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
ino = kzalloc(tmp, GFP_KERNEL);
if (!ino)
return -ENOMEM;
ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
ino->ch.node_type = UBIFS_INO_NODE;
ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
ino->nlink = cpu_to_le32(2);
UBIFS: endian handling fixes and annotations Noticed by sparse: fs/ubifs/file.c:75:2: warning: restricted __le64 degrades to integer fs/ubifs/file.c:629:4: warning: restricted __le64 degrades to integer fs/ubifs/dir.c:431:3: warning: restricted __le64 degrades to integer This should be checked to ensure the ubifs_assert is working as intended, I've done the suggested annotation in this patch. fs/ubifs/sb.c:298:6: warning: incorrect type in assignment (different base types) fs/ubifs/sb.c:298:6: expected int [signed] [assigned] tmp fs/ubifs/sb.c:298:6: got restricted __le64 [usertype] <noident> fs/ubifs/sb.c:299:19: warning: incorrect type in assignment (different base types) fs/ubifs/sb.c:299:19: expected restricted __le64 [usertype] atime_sec fs/ubifs/sb.c:299:19: got int [signed] [assigned] tmp fs/ubifs/sb.c:300:19: warning: incorrect type in assignment (different base types) fs/ubifs/sb.c:300:19: expected restricted __le64 [usertype] ctime_sec fs/ubifs/sb.c:300:19: got int [signed] [assigned] tmp fs/ubifs/sb.c:301:19: warning: incorrect type in assignment (different base types) fs/ubifs/sb.c:301:19: expected restricted __le64 [usertype] mtime_sec fs/ubifs/sb.c:301:19: got int [signed] [assigned] tmp This looks like a bugfix as your tmp was a u32 so there was truncation in the atime, mtime, ctime value, probably not intentional, add a tmp_le64 and use it here. fs/ubifs/key.h:348:9: warning: cast to restricted __le32 fs/ubifs/key.h:348:9: warning: cast to restricted __le32 fs/ubifs/key.h:419:9: warning: cast to restricted __le32 Read from the annotated union member instead. fs/ubifs/recovery.c:175:13: warning: incorrect type in assignment (different base types) fs/ubifs/recovery.c:175:13: expected unsigned int [unsigned] [usertype] save_flags fs/ubifs/recovery.c:175:13: got restricted __le32 [usertype] flags fs/ubifs/recovery.c:186:13: warning: incorrect type in assignment (different base types) fs/ubifs/recovery.c:186:13: expected restricted __le32 [usertype] flags fs/ubifs/recovery.c:186:13: got unsigned int [unsigned] [usertype] save_flags Do byteshifting at compile time of the flag value. Annotate the saved_flags as le32. fs/ubifs/debug.c:368:10: warning: cast to restricted __le32 fs/ubifs/debug.c:368:10: warning: cast from restricted __le64 Should be checked if the truncation was intentional, I've changed the printk to print the full width. Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-10-25 01:52:57 +08:00
tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
ino->atime_sec = tmp_le64;
ino->ctime_sec = tmp_le64;
ino->mtime_sec = tmp_le64;
ino->atime_nsec = 0;
ino->ctime_nsec = 0;
ino->mtime_nsec = 0;
ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
/* Set compression enabled by default */
ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
main_first + DEFAULT_DATA_LEB, 0,
UBI_UNKNOWN);
kfree(ino);
if (err)
return err;
dbg_gen("root inode created at LEB %d:0",
main_first + DEFAULT_DATA_LEB);
/*
* The first node in the log has to be the commit start node. This is
* always the case during normal file-system operation. Write a fake
* commit start node to the log.
*/
tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
cs = kzalloc(tmp, GFP_KERNEL);
if (!cs)
return -ENOMEM;
cs->ch.node_type = UBIFS_CS_NODE;
err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM,
0, UBI_UNKNOWN);
kfree(cs);
ubifs_msg("default file-system created");
return 0;
}
/**
* validate_sb - validate superblock node.
* @c: UBIFS file-system description object
* @sup: superblock node
*
* This function validates superblock node @sup. Since most of data was read
* from the superblock and stored in @c, the function validates fields in @c
* instead. Returns zero in case of success and %-EINVAL in case of validation
* failure.
*/
static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
{
long long max_bytes;
int err = 1, min_leb_cnt;
if (!c->key_hash) {
err = 2;
goto failed;
}
if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
err = 3;
goto failed;
}
if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
ubifs_err("min. I/O unit mismatch: %d in superblock, %d real",
le32_to_cpu(sup->min_io_size), c->min_io_size);
goto failed;
}
if (le32_to_cpu(sup->leb_size) != c->leb_size) {
ubifs_err("LEB size mismatch: %d in superblock, %d real",
le32_to_cpu(sup->leb_size), c->leb_size);
goto failed;
}
if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
err = 4;
goto failed;
}
/*
* Calculate minimum allowed amount of main area LEBs. This is very
* similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
* have just read from the superblock.
*/
min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, "
"%d minimum required", c->leb_cnt, c->vi.size,
min_leb_cnt);
goto failed;
}
if (c->max_leb_cnt < c->leb_cnt) {
ubifs_err("max. LEB count %d less than LEB count %d",
c->max_leb_cnt, c->leb_cnt);
goto failed;
}
if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
ubifs_err("too few main LEBs count %d, must be at least %d",
c->main_lebs, UBIFS_MIN_MAIN_LEBS);
goto failed;
}
max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
if (c->max_bud_bytes < max_bytes) {
ubifs_err("too small journal (%lld bytes), must be at least "
"%lld bytes", c->max_bud_bytes, max_bytes);
goto failed;
}
max_bytes = (long long)c->leb_size * c->main_lebs;
if (c->max_bud_bytes > max_bytes) {
ubifs_err("too large journal size (%lld bytes), only %lld bytes"
"available in the main area",
c->max_bud_bytes, max_bytes);
goto failed;
}
if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
err = 9;
goto failed;
}
if (c->fanout < UBIFS_MIN_FANOUT ||
ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
err = 10;
goto failed;
}
if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
err = 11;
goto failed;
}
if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
c->orph_lebs + c->main_lebs != c->leb_cnt) {
err = 12;
goto failed;
}
if (c->default_compr < 0 || c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
err = 13;
goto failed;
}
if (c->rp_size < 0 || max_bytes < c->rp_size) {
err = 14;
goto failed;
}
if (le32_to_cpu(sup->time_gran) > 1000000000 ||
le32_to_cpu(sup->time_gran) < 1) {
err = 15;
goto failed;
}
return 0;
failed:
ubifs_err("bad superblock, error %d", err);
dbg_dump_node(c, sup);
return -EINVAL;
}
/**
* ubifs_read_sb_node - read superblock node.
* @c: UBIFS file-system description object
*
* This function returns a pointer to the superblock node or a negative error
* code. Note, the user of this function is responsible of kfree()'ing the
* returned superblock buffer.
*/
struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
{
struct ubifs_sb_node *sup;
int err;
sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
if (!sup)
return ERR_PTR(-ENOMEM);
err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
UBIFS_SB_LNUM, 0);
if (err) {
kfree(sup);
return ERR_PTR(err);
}
return sup;
}
/**
* ubifs_write_sb_node - write superblock node.
* @c: UBIFS file-system description object
* @sup: superblock node read with 'ubifs_read_sb_node()'
*
* This function returns %0 on success and a negative error code on failure.
*/
int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
{
int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len, UBI_LONGTERM);
}
/**
* ubifs_read_superblock - read superblock.
* @c: UBIFS file-system description object
*
* This function finds, reads and checks the superblock. If an empty UBI volume
* is being mounted, this function creates default superblock. Returns zero in
* case of success, and a negative error code in case of failure.
*/
int ubifs_read_superblock(struct ubifs_info *c)
{
int err, sup_flags;
struct ubifs_sb_node *sup;
if (c->empty) {
err = create_default_filesystem(c);
if (err)
return err;
}
sup = ubifs_read_sb_node(c);
if (IS_ERR(sup))
return PTR_ERR(sup);
c->fmt_version = le32_to_cpu(sup->fmt_version);
c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
/*
* The software supports all previous versions but not future versions,
* due to the unavailability of time-travelling equipment.
*/
if (c->fmt_version > UBIFS_FORMAT_VERSION) {
ubifs_assert(!c->ro_media || c->ro_mount);
if (!c->ro_mount ||
c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
ubifs_err("on-flash format version is w%d/r%d, but "
"software only supports up to version "
"w%d/r%d", c->fmt_version,
c->ro_compat_version, UBIFS_FORMAT_VERSION,
UBIFS_RO_COMPAT_VERSION);
if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
ubifs_msg("only R/O mounting is possible");
err = -EROFS;
} else
err = -EINVAL;
goto out;
}
/*
* The FS is mounted R/O, and the media format is
* R/O-compatible with the UBIFS implementation, so we can
* mount.
*/
c->rw_incompat = 1;
}
if (c->fmt_version < 3) {
ubifs_err("on-flash format version %d is not supported",
c->fmt_version);
err = -EINVAL;
goto out;
}
switch (sup->key_hash) {
case UBIFS_KEY_HASH_R5:
c->key_hash = key_r5_hash;
c->key_hash_type = UBIFS_KEY_HASH_R5;
break;
case UBIFS_KEY_HASH_TEST:
c->key_hash = key_test_hash;
c->key_hash_type = UBIFS_KEY_HASH_TEST;
break;
};
c->key_fmt = sup->key_fmt;
switch (c->key_fmt) {
case UBIFS_SIMPLE_KEY_FMT:
c->key_len = UBIFS_SK_LEN;
break;
default:
ubifs_err("unsupported key format");
err = -EINVAL;
goto out;
}
c->leb_cnt = le32_to_cpu(sup->leb_cnt);
c->max_leb_cnt = le32_to_cpu(sup->max_leb_cnt);
c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
c->log_lebs = le32_to_cpu(sup->log_lebs);
c->lpt_lebs = le32_to_cpu(sup->lpt_lebs);
c->orph_lebs = le32_to_cpu(sup->orph_lebs);
c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
c->fanout = le32_to_cpu(sup->fanout);
c->lsave_cnt = le32_to_cpu(sup->lsave_cnt);
c->rp_size = le64_to_cpu(sup->rp_size);
c->rp_uid = le32_to_cpu(sup->rp_uid);
c->rp_gid = le32_to_cpu(sup->rp_gid);
sup_flags = le32_to_cpu(sup->flags);
if (!c->mount_opts.override_compr)
c->default_compr = le16_to_cpu(sup->default_compr);
c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
memcpy(&c->uuid, &sup->uuid, 16);
c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
/* Automatically increase file system size to the maximum size */
c->old_leb_cnt = c->leb_cnt;
if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
if (c->ro_mount)
dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
c->old_leb_cnt, c->leb_cnt);
else {
dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
c->old_leb_cnt, c->leb_cnt);
sup->leb_cnt = cpu_to_le32(c->leb_cnt);
err = ubifs_write_sb_node(c, sup);
if (err)
goto out;
c->old_leb_cnt = c->leb_cnt;
}
}
c->log_bytes = (long long)c->log_lebs * c->leb_size;
c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
c->orph_first = c->lpt_last + 1;
c->orph_last = c->orph_first + c->orph_lebs - 1;
c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
c->main_first = c->leb_cnt - c->main_lebs;
err = validate_sb(c, sup);
out:
kfree(sup);
return err;
}
/**
* fixup_leb - fixup/unmap an LEB containing free space.
* @c: UBIFS file-system description object
* @lnum: the LEB number to fix up
* @len: number of used bytes in LEB (starting at offset 0)
*
* This function reads the contents of the given LEB number @lnum, then fixes
* it up, so that empty min. I/O units in the end of LEB are actually erased on
* flash (rather than being just all-0xff real data). If the LEB is completely
* empty, it is simply unmapped.
*/
static int fixup_leb(struct ubifs_info *c, int lnum, int len)
{
int err;
ubifs_assert(len >= 0);
ubifs_assert(len % c->min_io_size == 0);
ubifs_assert(len < c->leb_size);
if (len == 0) {
dbg_mnt("unmap empty LEB %d", lnum);
return ubifs_leb_unmap(c, lnum);
}
dbg_mnt("fixup LEB %d, data len %d", lnum, len);
err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
if (err)
return err;
return ubifs_leb_change(c, lnum, c->sbuf, len, UBI_UNKNOWN);
}
/**
* fixup_free_space - find & remap all LEBs containing free space.
* @c: UBIFS file-system description object
*
* This function walks through all LEBs in the filesystem and fiexes up those
* containing free/empty space.
*/
static int fixup_free_space(struct ubifs_info *c)
{
int lnum, err = 0;
struct ubifs_lprops *lprops;
ubifs_get_lprops(c);
/* Fixup LEBs in the master area */
for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
if (err)
goto out;
}
/* Unmap unused log LEBs */
lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
while (lnum != c->ltail_lnum) {
err = fixup_leb(c, lnum, 0);
if (err)
goto out;
lnum = ubifs_next_log_lnum(c, lnum);
}
/* Fixup the current log head */
err = fixup_leb(c, c->lhead_lnum, c->lhead_offs);
if (err)
goto out;
/* Fixup LEBs in the LPT area */
for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
int free = c->ltab[lnum - c->lpt_first].free;
if (free > 0) {
err = fixup_leb(c, lnum, c->leb_size - free);
if (err)
goto out;
}
}
/* Unmap LEBs in the orphans area */
for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
err = fixup_leb(c, lnum, 0);
if (err)
goto out;
}
/* Fixup LEBs in the main area */
for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
lprops = ubifs_lpt_lookup(c, lnum);
if (IS_ERR(lprops)) {
err = PTR_ERR(lprops);
goto out;
}
if (lprops->free > 0) {
err = fixup_leb(c, lnum, c->leb_size - lprops->free);
if (err)
goto out;
}
}
out:
ubifs_release_lprops(c);
return err;
}
/**
* ubifs_fixup_free_space - find & fix all LEBs with free space.
* @c: UBIFS file-system description object
*
* This function fixes up LEBs containing free space on first mount, if the
* appropriate flag was set when the FS was created. Each LEB with one or more
* empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
* the free space is actually erased. E.g., this is necessary for some NAND
* chips, since the free space may have been programmed like real "0xff" data
* (generating a non-0xff ECC), causing future writes to the not-really-erased
* NAND pages to behave badly. After the space is fixed up, the superblock flag
* is cleared, so that this is skipped for all future mounts.
*/
int ubifs_fixup_free_space(struct ubifs_info *c)
{
int err;
struct ubifs_sb_node *sup;
ubifs_assert(c->space_fixup);
ubifs_assert(!c->ro_mount);
ubifs_msg("start fixing up free space");
err = fixup_free_space(c);
if (err)
return err;
sup = ubifs_read_sb_node(c);
if (IS_ERR(sup))
return PTR_ERR(sup);
/* Free-space fixup is no longer required */
c->space_fixup = 0;
sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
err = ubifs_write_sb_node(c, sup);
kfree(sup);
if (err)
return err;
ubifs_msg("free space fixup complete");
return err;
}