linux/drivers/isdn/hisax/w6692.c

1085 lines
29 KiB
C
Raw Normal View History

/* $Id: w6692.c,v 1.18.2.4 2004/02/11 13:21:34 keil Exp $
*
* Winbond W6692 specific routines
*
* Author Petr Novak
* Copyright by Petr Novak <petr.novak@i.cz>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/init.h>
#include "hisax.h"
#include "w6692.h"
#include "isdnl1.h"
#include <linux/interrupt.h>
#include <linux/pci.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
/* table entry in the PCI devices list */
typedef struct {
int vendor_id;
int device_id;
char *vendor_name;
char *card_name;
} PCI_ENTRY;
static const PCI_ENTRY id_list[] =
{
{PCI_VENDOR_ID_WINBOND2, PCI_DEVICE_ID_WINBOND2_6692, "Winbond", "W6692"},
{PCI_VENDOR_ID_DYNALINK, PCI_DEVICE_ID_DYNALINK_IS64PH, "Dynalink/AsusCom", "IS64PH"},
{0, 0, "U.S.Robotics", "ISDN PCI Card TA"}
};
#define W6692_SV_USR 0x16ec
#define W6692_SD_USR 0x3409
#define W6692_WINBOND 0
#define W6692_DYNALINK 1
#define W6692_USR 2
static const char *w6692_revision = "$Revision: 1.18.2.4 $";
#define DBUSY_TIMER_VALUE 80
static char *W6692Ver[] =
{"W6692 V00", "W6692 V01", "W6692 V10",
"W6692 V11"};
static void
W6692Version(struct IsdnCardState *cs, char *s)
{
int val;
val = cs->readW6692(cs, W_D_RBCH);
printk(KERN_INFO "%s Winbond W6692 version (%x): %s\n", s, val, W6692Ver[(val >> 6) & 3]);
}
static void
ph_command(struct IsdnCardState *cs, unsigned int command)
{
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_command %x", command);
cs->writeisac(cs, W_CIX, command);
}
static void
W6692_new_ph(struct IsdnCardState *cs)
{
switch (cs->dc.w6692.ph_state) {
case (W_L1CMD_RST):
ph_command(cs, W_L1CMD_DRC);
l1_msg(cs, HW_RESET | INDICATION, NULL);
/* fallthru */
case (W_L1IND_CD):
l1_msg(cs, HW_DEACTIVATE | CONFIRM, NULL);
break;
case (W_L1IND_DRD):
l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
break;
case (W_L1IND_CE):
l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
break;
case (W_L1IND_LD):
l1_msg(cs, HW_RSYNC | INDICATION, NULL);
break;
case (W_L1IND_ARD):
l1_msg(cs, HW_INFO2 | INDICATION, NULL);
break;
case (W_L1IND_AI8):
l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
break;
case (W_L1IND_AI10):
l1_msg(cs, HW_INFO4_P10 | INDICATION, NULL);
break;
default:
break;
}
}
static void
W6692_bh(struct work_struct *work)
{
struct IsdnCardState *cs =
container_of(work, struct IsdnCardState, tqueue);
struct PStack *stptr;
if (test_and_clear_bit(D_CLEARBUSY, &cs->event)) {
if (cs->debug)
debugl1(cs, "D-Channel Busy cleared");
stptr = cs->stlist;
while (stptr != NULL) {
stptr->l1.l1l2(stptr, PH_PAUSE | CONFIRM, NULL);
stptr = stptr->next;
}
}
if (test_and_clear_bit(D_L1STATECHANGE, &cs->event))
W6692_new_ph(cs);
if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
DChannel_proc_rcv(cs);
if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
DChannel_proc_xmt(cs);
/*
if (test_and_clear_bit(D_RX_MON1, &cs->event))
arcofi_fsm(cs, ARCOFI_RX_END, NULL);
if (test_and_clear_bit(D_TX_MON1, &cs->event))
arcofi_fsm(cs, ARCOFI_TX_END, NULL);
*/
}
static void
W6692_empty_fifo(struct IsdnCardState *cs, int count)
{
u_char *ptr;
if ((cs->debug & L1_DEB_ISAC) && !(cs->debug & L1_DEB_ISAC_FIFO))
debugl1(cs, "W6692_empty_fifo");
if ((cs->rcvidx + count) >= MAX_DFRAME_LEN_L1) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692_empty_fifo overrun %d",
cs->rcvidx + count);
cs->writeW6692(cs, W_D_CMDR, W_D_CMDR_RACK);
cs->rcvidx = 0;
return;
}
ptr = cs->rcvbuf + cs->rcvidx;
cs->rcvidx += count;
cs->readW6692fifo(cs, ptr, count);
cs->writeW6692(cs, W_D_CMDR, W_D_CMDR_RACK);
if (cs->debug & L1_DEB_ISAC_FIFO) {
char *t = cs->dlog;
t += sprintf(t, "W6692_empty_fifo cnt %d", count);
QuickHex(t, ptr, count);
debugl1(cs, "%s", cs->dlog);
}
}
static void
W6692_fill_fifo(struct IsdnCardState *cs)
{
int count, more;
u_char *ptr;
if ((cs->debug & L1_DEB_ISAC) && !(cs->debug & L1_DEB_ISAC_FIFO))
debugl1(cs, "W6692_fill_fifo");
if (!cs->tx_skb)
return;
count = cs->tx_skb->len;
if (count <= 0)
return;
more = 0;
if (count > W_D_FIFO_THRESH) {
more = !0;
count = W_D_FIFO_THRESH;
}
ptr = cs->tx_skb->data;
skb_pull(cs->tx_skb, count);
cs->tx_cnt += count;
cs->writeW6692fifo(cs, ptr, count);
cs->writeW6692(cs, W_D_CMDR, more ? W_D_CMDR_XMS : (W_D_CMDR_XMS | W_D_CMDR_XME));
if (test_and_set_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
debugl1(cs, "W6692_fill_fifo dbusytimer running");
del_timer(&cs->dbusytimer);
}
init_timer(&cs->dbusytimer);
cs->dbusytimer.expires = jiffies + ((DBUSY_TIMER_VALUE * HZ) / 1000);
add_timer(&cs->dbusytimer);
if (cs->debug & L1_DEB_ISAC_FIFO) {
char *t = cs->dlog;
t += sprintf(t, "W6692_fill_fifo cnt %d", count);
QuickHex(t, ptr, count);
debugl1(cs, "%s", cs->dlog);
}
}
static void
W6692B_empty_fifo(struct BCState *bcs, int count)
{
u_char *ptr;
struct IsdnCardState *cs = bcs->cs;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "W6692B_empty_fifo");
if (bcs->hw.w6692.rcvidx + count > HSCX_BUFMAX) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692B_empty_fifo: incoming packet too large");
cs->BC_Write_Reg(cs, bcs->channel, W_B_CMDR, W_B_CMDR_RACK | W_B_CMDR_RACT);
bcs->hw.w6692.rcvidx = 0;
return;
}
ptr = bcs->hw.w6692.rcvbuf + bcs->hw.w6692.rcvidx;
bcs->hw.w6692.rcvidx += count;
READW6692BFIFO(cs, bcs->channel, ptr, count);
cs->BC_Write_Reg(cs, bcs->channel, W_B_CMDR, W_B_CMDR_RACK | W_B_CMDR_RACT);
if (cs->debug & L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
t += sprintf(t, "W6692B_empty_fifo %c cnt %d",
bcs->channel + '1', count);
QuickHex(t, ptr, count);
debugl1(cs, "%s", bcs->blog);
}
}
static void
W6692B_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int more, count;
u_char *ptr;
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
more = (bcs->mode == L1_MODE_TRANS) ? 1 : 0;
if (bcs->tx_skb->len > W_B_FIFO_THRESH) {
more = 1;
count = W_B_FIFO_THRESH;
} else
count = bcs->tx_skb->len;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "W6692B_fill_fifo%s%d", (more ? " " : " last "), count);
ptr = bcs->tx_skb->data;
skb_pull(bcs->tx_skb, count);
bcs->tx_cnt -= count;
bcs->hw.w6692.count += count;
WRITEW6692BFIFO(cs, bcs->channel, ptr, count);
cs->BC_Write_Reg(cs, bcs->channel, W_B_CMDR, W_B_CMDR_RACT | W_B_CMDR_XMS | (more ? 0 : W_B_CMDR_XME));
if (cs->debug & L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
t += sprintf(t, "W6692B_fill_fifo %c cnt %d",
bcs->channel + '1', count);
QuickHex(t, ptr, count);
debugl1(cs, "%s", bcs->blog);
}
}
static void
W6692B_interrupt(struct IsdnCardState *cs, u_char bchan)
{
u_char val;
u_char r;
struct BCState *bcs;
struct sk_buff *skb;
int count;
bcs = (cs->bcs->channel == bchan) ? cs->bcs : (cs->bcs + 1);
val = cs->BC_Read_Reg(cs, bchan, W_B_EXIR);
debugl1(cs, "W6692B chan %d B_EXIR 0x%02X", bchan, val);
if (!test_bit(BC_FLG_INIT, &bcs->Flag)) {
debugl1(cs, "W6692B not INIT yet");
return;
}
if (val & W_B_EXI_RME) { /* RME */
r = cs->BC_Read_Reg(cs, bchan, W_B_STAR);
if (r & (W_B_STAR_RDOV | W_B_STAR_CRCE | W_B_STAR_RMB)) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692 B STAR %x", r);
if ((r & W_B_STAR_RDOV) && bcs->mode)
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692 B RDOV mode=%d",
bcs->mode);
if (r & W_B_STAR_CRCE)
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692 B CRC error");
cs->BC_Write_Reg(cs, bchan, W_B_CMDR, W_B_CMDR_RACK | W_B_CMDR_RRST | W_B_CMDR_RACT);
} else {
count = cs->BC_Read_Reg(cs, bchan, W_B_RBCL) & (W_B_FIFO_THRESH - 1);
if (count == 0)
count = W_B_FIFO_THRESH;
W6692B_empty_fifo(bcs, count);
if ((count = bcs->hw.w6692.rcvidx) > 0) {
if (cs->debug & L1_DEB_HSCX_FIFO)
debugl1(cs, "W6692 Bchan Frame %d", count);
if (!(skb = dev_alloc_skb(count)))
printk(KERN_WARNING "W6692: Bchan receive out of memory\n");
else {
memcpy(skb_put(skb, count), bcs->hw.w6692.rcvbuf, count);
skb_queue_tail(&bcs->rqueue, skb);
}
}
}
bcs->hw.w6692.rcvidx = 0;
schedule_event(bcs, B_RCVBUFREADY);
}
if (val & W_B_EXI_RMR) { /* RMR */
W6692B_empty_fifo(bcs, W_B_FIFO_THRESH);
r = cs->BC_Read_Reg(cs, bchan, W_B_STAR);
if (r & W_B_STAR_RDOV) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692 B RDOV(RMR) mode=%d", bcs->mode);
cs->BC_Write_Reg(cs, bchan, W_B_CMDR, W_B_CMDR_RACK | W_B_CMDR_RRST | W_B_CMDR_RACT);
if (bcs->mode != L1_MODE_TRANS)
bcs->hw.w6692.rcvidx = 0;
}
if (bcs->mode == L1_MODE_TRANS) {
/* receive audio data */
if (!(skb = dev_alloc_skb(W_B_FIFO_THRESH)))
printk(KERN_WARNING "HiSax: receive out of memory\n");
else {
memcpy(skb_put(skb, W_B_FIFO_THRESH), bcs->hw.w6692.rcvbuf, W_B_FIFO_THRESH);
skb_queue_tail(&bcs->rqueue, skb);
}
bcs->hw.w6692.rcvidx = 0;
schedule_event(bcs, B_RCVBUFREADY);
}
}
if (val & W_B_EXI_XDUN) { /* XDUN */
cs->BC_Write_Reg(cs, bchan, W_B_CMDR, W_B_CMDR_XRST | W_B_CMDR_RACT);
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692 B EXIR %x Lost TX", val);
if (bcs->mode == 1)
W6692B_fill_fifo(bcs);
else {
/* Here we lost an TX interrupt, so
* restart transmitting the whole frame.
*/
if (bcs->tx_skb) {
skb_push(bcs->tx_skb, bcs->hw.w6692.count);
bcs->tx_cnt += bcs->hw.w6692.count;
bcs->hw.w6692.count = 0;
}
}
return;
}
if (val & W_B_EXI_XFR) { /* XFR */
r = cs->BC_Read_Reg(cs, bchan, W_B_STAR);
if (r & W_B_STAR_XDOW) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692 B STAR %x XDOW", r);
cs->BC_Write_Reg(cs, bchan, W_B_CMDR, W_B_CMDR_XRST | W_B_CMDR_RACT);
if (bcs->tx_skb && (bcs->mode != 1)) {
skb_push(bcs->tx_skb, bcs->hw.w6692.count);
bcs->tx_cnt += bcs->hw.w6692.count;
bcs->hw.w6692.count = 0;
}
}
if (bcs->tx_skb) {
if (bcs->tx_skb->len) {
W6692B_fill_fifo(bcs);
return;
} else {
if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->hw.w6692.count;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
dev_kfree_skb_irq(bcs->tx_skb);
bcs->hw.w6692.count = 0;
bcs->tx_skb = NULL;
}
}
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
bcs->hw.w6692.count = 0;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
W6692B_fill_fifo(bcs);
} else {
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
schedule_event(bcs, B_XMTBUFREADY);
}
}
}
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
W6692_interrupt(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_char val, exval, v1;
struct sk_buff *skb;
u_int count;
u_long flags;
int icnt = 5;
spin_lock_irqsave(&cs->lock, flags);
val = cs->readW6692(cs, W_ISTA);
if (!val) {
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_NONE;
}
StartW6692:
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "W6692 ISTA %x", val);
if (val & W_INT_D_RME) { /* RME */
exval = cs->readW6692(cs, W_D_RSTA);
if (exval & (W_D_RSTA_RDOV | W_D_RSTA_CRCE | W_D_RSTA_RMB)) {
if (exval & W_D_RSTA_RDOV)
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692 RDOV");
if (exval & W_D_RSTA_CRCE)
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692 D-channel CRC error");
if (exval & W_D_RSTA_RMB)
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692 D-channel ABORT");
cs->writeW6692(cs, W_D_CMDR, W_D_CMDR_RACK | W_D_CMDR_RRST);
} else {
count = cs->readW6692(cs, W_D_RBCL) & (W_D_FIFO_THRESH - 1);
if (count == 0)
count = W_D_FIFO_THRESH;
W6692_empty_fifo(cs, count);
if ((count = cs->rcvidx) > 0) {
cs->rcvidx = 0;
if (!(skb = alloc_skb(count, GFP_ATOMIC)))
printk(KERN_WARNING "HiSax: D receive out of memory\n");
else {
memcpy(skb_put(skb, count), cs->rcvbuf, count);
skb_queue_tail(&cs->rq, skb);
}
}
}
cs->rcvidx = 0;
schedule_event(cs, D_RCVBUFREADY);
}
if (val & W_INT_D_RMR) { /* RMR */
W6692_empty_fifo(cs, W_D_FIFO_THRESH);
}
if (val & W_INT_D_XFR) { /* XFR */
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
if (cs->tx_skb) {
if (cs->tx_skb->len) {
W6692_fill_fifo(cs);
goto afterXFR;
} else {
dev_kfree_skb_irq(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
}
}
if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
cs->tx_cnt = 0;
W6692_fill_fifo(cs);
} else
schedule_event(cs, D_XMTBUFREADY);
}
afterXFR:
if (val & (W_INT_XINT0 | W_INT_XINT1)) { /* XINT0/1 - never */
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "W6692 spurious XINT!");
}
if (val & W_INT_D_EXI) { /* EXI */
exval = cs->readW6692(cs, W_D_EXIR);
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692 D_EXIR %02x", exval);
if (exval & (W_D_EXI_XDUN | W_D_EXI_XCOL)) { /* Transmit underrun/collision */
debugl1(cs, "W6692 D-chan underrun/collision");
printk(KERN_WARNING "HiSax: W6692 XDUN/XCOL\n");
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
if (cs->tx_skb) { /* Restart frame */
skb_push(cs->tx_skb, cs->tx_cnt);
cs->tx_cnt = 0;
W6692_fill_fifo(cs);
} else {
printk(KERN_WARNING "HiSax: W6692 XDUN/XCOL no skb\n");
debugl1(cs, "W6692 XDUN/XCOL no skb");
cs->writeW6692(cs, W_D_CMDR, W_D_CMDR_XRST);
}
}
if (exval & W_D_EXI_RDOV) { /* RDOV */
debugl1(cs, "W6692 D-channel RDOV");
printk(KERN_WARNING "HiSax: W6692 D-RDOV\n");
cs->writeW6692(cs, W_D_CMDR, W_D_CMDR_RRST);
}
if (exval & W_D_EXI_TIN2) { /* TIN2 - never */
debugl1(cs, "W6692 spurious TIN2 interrupt");
}
if (exval & W_D_EXI_MOC) { /* MOC - not supported */
debugl1(cs, "W6692 spurious MOC interrupt");
v1 = cs->readW6692(cs, W_MOSR);
debugl1(cs, "W6692 MOSR %02x", v1);
}
if (exval & W_D_EXI_ISC) { /* ISC - Level1 change */
v1 = cs->readW6692(cs, W_CIR);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "W6692 ISC CIR=0x%02X", v1);
if (v1 & W_CIR_ICC) {
cs->dc.w6692.ph_state = v1 & W_CIR_COD_MASK;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_state_change %x", cs->dc.w6692.ph_state);
schedule_event(cs, D_L1STATECHANGE);
}
if (v1 & W_CIR_SCC) {
v1 = cs->readW6692(cs, W_SQR);
debugl1(cs, "W6692 SCC SQR=0x%02X", v1);
}
}
if (exval & W_D_EXI_WEXP) {
debugl1(cs, "W6692 spurious WEXP interrupt!");
}
if (exval & W_D_EXI_TEXP) {
debugl1(cs, "W6692 spurious TEXP interrupt!");
}
}
if (val & W_INT_B1_EXI) {
debugl1(cs, "W6692 B channel 1 interrupt");
W6692B_interrupt(cs, 0);
}
if (val & W_INT_B2_EXI) {
debugl1(cs, "W6692 B channel 2 interrupt");
W6692B_interrupt(cs, 1);
}
val = cs->readW6692(cs, W_ISTA);
if (val && icnt) {
icnt--;
goto StartW6692;
}
if (!icnt) {
printk(KERN_WARNING "W6692 IRQ LOOP\n");
cs->writeW6692(cs, W_IMASK, 0xff);
}
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static void
W6692_l1hw(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
struct sk_buff *skb = arg;
u_long flags;
int val;
switch (pr) {
case (PH_DATA | REQUEST):
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
} else {
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
W6692_fill_fifo(cs);
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
skb_queue_tail(&cs->sq, skb);
spin_unlock_irqrestore(&cs->lock, flags);
break;
}
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
W6692_fill_fifo(cs);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
debugl1(cs, "-> PH_REQUEST_PULL");
#endif
if (!cs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (HW_RESET | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
if ((cs->dc.w6692.ph_state == W_L1IND_DRD)) {
ph_command(cs, W_L1CMD_ECK);
spin_unlock_irqrestore(&cs->lock, flags);
} else {
ph_command(cs, W_L1CMD_RST);
cs->dc.w6692.ph_state = W_L1CMD_RST;
spin_unlock_irqrestore(&cs->lock, flags);
W6692_new_ph(cs);
}
break;
case (HW_ENABLE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
ph_command(cs, W_L1CMD_ECK);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_INFO3 | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
ph_command(cs, W_L1CMD_AR8);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_TESTLOOP | REQUEST):
val = 0;
if (1 & (long) arg)
val |= 0x0c;
if (2 & (long) arg)
val |= 0x3;
/* !!! not implemented yet */
break;
case (HW_DEACTIVATE | RESPONSE):
skb_queue_purge(&cs->rq);
skb_queue_purge(&cs->sq);
if (cs->tx_skb) {
dev_kfree_skb_any(cs->tx_skb);
cs->tx_skb = NULL;
}
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
break;
default:
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "W6692_l1hw unknown %04x", pr);
break;
}
}
static void
setstack_W6692(struct PStack *st, struct IsdnCardState *cs)
{
st->l1.l1hw = W6692_l1hw;
}
static void
DC_Close_W6692(struct IsdnCardState *cs)
{
}
static void
dbusy_timer_handler(struct IsdnCardState *cs)
{
struct PStack *stptr;
int rbch, star;
u_long flags;
spin_lock_irqsave(&cs->lock, flags);
if (test_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
rbch = cs->readW6692(cs, W_D_RBCH);
star = cs->readW6692(cs, W_D_STAR);
if (cs->debug)
debugl1(cs, "D-Channel Busy D_RBCH %02x D_STAR %02x",
rbch, star);
if (star & W_D_STAR_XBZ) { /* D-Channel Busy */
test_and_set_bit(FLG_L1_DBUSY, &cs->HW_Flags);
stptr = cs->stlist;
while (stptr != NULL) {
stptr->l1.l1l2(stptr, PH_PAUSE | INDICATION, NULL);
stptr = stptr->next;
}
} else {
/* discard frame; reset transceiver */
test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags);
if (cs->tx_skb) {
dev_kfree_skb_any(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
} else {
printk(KERN_WARNING "HiSax: W6692 D-Channel Busy no skb\n");
debugl1(cs, "D-Channel Busy no skb");
}
cs->writeW6692(cs, W_D_CMDR, W_D_CMDR_XRST); /* Transmitter reset */
spin_unlock_irqrestore(&cs->lock, flags);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
cs->irq_func(cs->irq, cs);
return;
}
}
spin_unlock_irqrestore(&cs->lock, flags);
}
static void
W6692Bmode(struct BCState *bcs, int mode, int bchan)
{
struct IsdnCardState *cs = bcs->cs;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "w6692 %c mode %d ichan %d",
'1' + bchan, mode, bchan);
bcs->mode = mode;
bcs->channel = bchan;
bcs->hw.w6692.bchan = bchan;
switch (mode) {
case (L1_MODE_NULL):
cs->BC_Write_Reg(cs, bchan, W_B_MODE, 0);
break;
case (L1_MODE_TRANS):
cs->BC_Write_Reg(cs, bchan, W_B_MODE, W_B_MODE_MMS);
break;
case (L1_MODE_HDLC):
cs->BC_Write_Reg(cs, bchan, W_B_MODE, W_B_MODE_ITF);
cs->BC_Write_Reg(cs, bchan, W_B_ADM1, 0xff);
cs->BC_Write_Reg(cs, bchan, W_B_ADM2, 0xff);
break;
}
if (mode)
cs->BC_Write_Reg(cs, bchan, W_B_CMDR, W_B_CMDR_RRST |
W_B_CMDR_RACT | W_B_CMDR_XRST);
cs->BC_Write_Reg(cs, bchan, W_B_EXIM, 0x00);
}
static void
W6692_l2l1(struct PStack *st, int pr, void *arg)
{
struct sk_buff *skb = arg;
struct BCState *bcs = st->l1.bcs;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->hw.w6692.count = 0;
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | INDICATION):
if (bcs->tx_skb) {
printk(KERN_WARNING "W6692_l2l1: this shouldn't happen\n");
break;
}
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->tx_skb = skb;
bcs->hw.w6692.count = 0;
bcs->cs->BC_Send_Data(bcs);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | REQUEST):
if (!bcs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
W6692Bmode(bcs, st->l1.mode, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
W6692Bmode(bcs, 0, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
static void
close_w6692state(struct BCState *bcs)
{
W6692Bmode(bcs, 0, bcs->channel);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
kfree(bcs->hw.w6692.rcvbuf);
bcs->hw.w6692.rcvbuf = NULL;
kfree(bcs->blog);
bcs->blog = NULL;
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
static int
open_w6692state(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
if (!(bcs->hw.w6692.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax: No memory for w6692.rcvbuf\n");
test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
return (1);
}
if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax: No memory for bcs->blog\n");
test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
kfree(bcs->hw.w6692.rcvbuf);
bcs->hw.w6692.rcvbuf = NULL;
return (2);
}
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->hw.w6692.rcvidx = 0;
bcs->tx_cnt = 0;
return (0);
}
static int
setstack_w6692(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (open_w6692state(st->l1.hardware, bcs))
return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = W6692_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
static void resetW6692(struct IsdnCardState *cs)
{
cs->writeW6692(cs, W_D_CTL, W_D_CTL_SRST);
mdelay(10);
cs->writeW6692(cs, W_D_CTL, 0x00);
mdelay(10);
cs->writeW6692(cs, W_IMASK, 0xff);
cs->writeW6692(cs, W_D_SAM, 0xff);
cs->writeW6692(cs, W_D_TAM, 0xff);
cs->writeW6692(cs, W_D_EXIM, 0x00);
cs->writeW6692(cs, W_D_MODE, W_D_MODE_RACT);
cs->writeW6692(cs, W_IMASK, 0x18);
if (cs->subtyp == W6692_USR) {
/* seems that USR implemented some power control features
* Pin 79 is connected to the oscilator circuit so we
* have to handle it here
*/
cs->writeW6692(cs, W_PCTL, 0x80);
cs->writeW6692(cs, W_XDATA, 0x00);
}
}
static void initW6692(struct IsdnCardState *cs, int part)
{
if (part & 1) {
cs->setstack_d = setstack_W6692;
cs->DC_Close = DC_Close_W6692;
cs->dbusytimer.function = (void *) dbusy_timer_handler;
cs->dbusytimer.data = (long) cs;
init_timer(&cs->dbusytimer);
resetW6692(cs);
ph_command(cs, W_L1CMD_RST);
cs->dc.w6692.ph_state = W_L1CMD_RST;
W6692_new_ph(cs);
ph_command(cs, W_L1CMD_ECK);
cs->bcs[0].BC_SetStack = setstack_w6692;
cs->bcs[1].BC_SetStack = setstack_w6692;
cs->bcs[0].BC_Close = close_w6692state;
cs->bcs[1].BC_Close = close_w6692state;
W6692Bmode(cs->bcs, 0, 0);
W6692Bmode(cs->bcs + 1, 0, 0);
}
if (part & 2) {
/* Reenable all IRQ */
cs->writeW6692(cs, W_IMASK, 0x18);
cs->writeW6692(cs, W_D_EXIM, 0x00);
cs->BC_Write_Reg(cs, 0, W_B_EXIM, 0x00);
cs->BC_Write_Reg(cs, 1, W_B_EXIM, 0x00);
/* Reset D-chan receiver and transmitter */
cs->writeW6692(cs, W_D_CMDR, W_D_CMDR_RRST | W_D_CMDR_XRST);
}
}
/* Interface functions */
static u_char
ReadW6692(struct IsdnCardState *cs, u_char offset)
{
return (inb(cs->hw.w6692.iobase + offset));
}
static void
WriteW6692(struct IsdnCardState *cs, u_char offset, u_char value)
{
outb(value, cs->hw.w6692.iobase + offset);
}
static void
ReadISACfifo(struct IsdnCardState *cs, u_char *data, int size)
{
insb(cs->hw.w6692.iobase + W_D_RFIFO, data, size);
}
static void
WriteISACfifo(struct IsdnCardState *cs, u_char *data, int size)
{
outsb(cs->hw.w6692.iobase + W_D_XFIFO, data, size);
}
static u_char
ReadW6692B(struct IsdnCardState *cs, int bchan, u_char offset)
{
return (inb(cs->hw.w6692.iobase + (bchan ? 0x40 : 0) + offset));
}
static void
WriteW6692B(struct IsdnCardState *cs, int bchan, u_char offset, u_char value)
{
outb(value, cs->hw.w6692.iobase + (bchan ? 0x40 : 0) + offset);
}
static int
w6692_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
switch (mt) {
case CARD_RESET:
resetW6692(cs);
return (0);
case CARD_RELEASE:
cs->writeW6692(cs, W_IMASK, 0xff);
release_region(cs->hw.w6692.iobase, 256);
if (cs->subtyp == W6692_USR) {
cs->writeW6692(cs, W_XDATA, 0x04);
}
return (0);
case CARD_INIT:
initW6692(cs, 3);
return (0);
case CARD_TEST:
return (0);
}
return (0);
}
static int id_idx;
static struct pci_dev *dev_w6692 = NULL;
int setup_w6692(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
char tmp[64];
u_char found = 0;
u_char pci_irq = 0;
u_int pci_ioaddr = 0;
strcpy(tmp, w6692_revision);
printk(KERN_INFO "HiSax: W6692 driver Rev. %s\n", HiSax_getrev(tmp));
if (cs->typ != ISDN_CTYPE_W6692)
return (0);
while (id_list[id_idx].vendor_id) {
dev_w6692 = hisax_find_pci_device(id_list[id_idx].vendor_id,
id_list[id_idx].device_id,
dev_w6692);
if (dev_w6692) {
if (pci_enable_device(dev_w6692))
continue;
cs->subtyp = id_idx;
break;
}
id_idx++;
}
if (dev_w6692) {
found = 1;
pci_irq = dev_w6692->irq;
/* I think address 0 is allways the configuration area */
/* and address 1 is the real IO space KKe 03.09.99 */
pci_ioaddr = pci_resource_start(dev_w6692, 1);
/* USR ISDN PCI card TA need some special handling */
if (cs->subtyp == W6692_WINBOND) {
if ((W6692_SV_USR == dev_w6692->subsystem_vendor) &&
(W6692_SD_USR == dev_w6692->subsystem_device)) {
cs->subtyp = W6692_USR;
}
}
}
if (!found) {
printk(KERN_WARNING "W6692: No PCI card found\n");
return (0);
}
cs->irq = pci_irq;
if (!cs->irq) {
printk(KERN_WARNING "W6692: No IRQ for PCI card found\n");
return (0);
}
if (!pci_ioaddr) {
printk(KERN_WARNING "W6692: NO I/O Base Address found\n");
return (0);
}
cs->hw.w6692.iobase = pci_ioaddr;
printk(KERN_INFO "Found: %s %s, I/O base: 0x%x, irq: %d\n",
id_list[cs->subtyp].vendor_name, id_list[cs->subtyp].card_name,
pci_ioaddr, pci_irq);
if (!request_region(cs->hw.w6692.iobase, 256, id_list[cs->subtyp].card_name)) {
printk(KERN_WARNING
"HiSax: %s I/O ports %x-%x already in use\n",
id_list[cs->subtyp].card_name,
cs->hw.w6692.iobase,
cs->hw.w6692.iobase + 255);
return (0);
}
printk(KERN_INFO
"HiSax: %s config irq:%d I/O:%x\n",
id_list[cs->subtyp].card_name, cs->irq,
cs->hw.w6692.iobase);
INIT_WORK(&cs->tqueue, W6692_bh);
cs->readW6692 = &ReadW6692;
cs->writeW6692 = &WriteW6692;
cs->readisacfifo = &ReadISACfifo;
cs->writeisacfifo = &WriteISACfifo;
cs->BC_Read_Reg = &ReadW6692B;
cs->BC_Write_Reg = &WriteW6692B;
cs->BC_Send_Data = &W6692B_fill_fifo;
cs->cardmsg = &w6692_card_msg;
cs->irq_func = &W6692_interrupt;
cs->irq_flags |= IRQF_SHARED;
W6692Version(cs, "W6692:");
printk(KERN_INFO "W6692 ISTA=0x%X\n", ReadW6692(cs, W_ISTA));
printk(KERN_INFO "W6692 IMASK=0x%X\n", ReadW6692(cs, W_IMASK));
printk(KERN_INFO "W6692 D_EXIR=0x%X\n", ReadW6692(cs, W_D_EXIR));
printk(KERN_INFO "W6692 D_EXIM=0x%X\n", ReadW6692(cs, W_D_EXIM));
printk(KERN_INFO "W6692 D_RSTA=0x%X\n", ReadW6692(cs, W_D_RSTA));
return (1);
}