linux/arch/arm/mach-omap2/gpmc.c

1250 lines
31 KiB
C
Raw Normal View History

/*
* GPMC support functions
*
* Copyright (C) 2005-2006 Nokia Corporation
*
* Author: Juha Yrjola
*
* Copyright (C) 2009 Texas Instruments
* Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#undef DEBUG
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <asm/mach-types.h>
#include <plat/gpmc.h>
#include <plat/cpu.h>
ARM: OMAP: Split plat/hardware.h, use local soc.h for omap2+ As the plat and mach includes need to disappear for single zImage work, we need to remove plat/hardware.h. Do this by splitting plat/hardware.h into omap1 and omap2+ specific files. The old plat/hardware.h already has omap1 only defines, so it gets moved to mach/hardware.h for omap1. For omap2+, we use the local soc.h that for now just includes the related SoC headers to keep this patch more readable. Note that the local soc.h still includes plat/cpu.h that can be dealt with in later patches. Let's also include plat/serial.h from common.h for all the board-*.c files. This allows making the include files local later on without patching these files again. Note that only minimal changes are done in this patch for the drivers/watchdog/omap_wdt.c driver to keep things compiling. Further patches are needed to eventually remove cpu_is_omap usage in the drivers. Also only minimal changes are done to sound/soc/omap/* to remove the unneeded includes and to define OMAP44XX_MCPDM_L3_BASE locally so there's no need to include omap44xx.h. While at it, also sort some of the includes in the standard way. Cc: linux-watchdog@vger.kernel.org Cc: alsa-devel@alsa-project.org Cc: Peter Ujfalusi <peter.ujfalusi@ti.com> Cc: Jarkko Nikula <jarkko.nikula@bitmer.com> Cc: Liam Girdwood <lrg@ti.com> Acked-by: Wim Van Sebroeck <wim@iguana.be> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Tony Lindgren <tony@atomide.com>
2012-09-01 01:59:07 +08:00
#include <plat/gpmc.h>
#include <plat/sdrc.h>
ARM: OMAP: Split plat/hardware.h, use local soc.h for omap2+ As the plat and mach includes need to disappear for single zImage work, we need to remove plat/hardware.h. Do this by splitting plat/hardware.h into omap1 and omap2+ specific files. The old plat/hardware.h already has omap1 only defines, so it gets moved to mach/hardware.h for omap1. For omap2+, we use the local soc.h that for now just includes the related SoC headers to keep this patch more readable. Note that the local soc.h still includes plat/cpu.h that can be dealt with in later patches. Let's also include plat/serial.h from common.h for all the board-*.c files. This allows making the include files local later on without patching these files again. Note that only minimal changes are done in this patch for the drivers/watchdog/omap_wdt.c driver to keep things compiling. Further patches are needed to eventually remove cpu_is_omap usage in the drivers. Also only minimal changes are done to sound/soc/omap/* to remove the unneeded includes and to define OMAP44XX_MCPDM_L3_BASE locally so there's no need to include omap44xx.h. While at it, also sort some of the includes in the standard way. Cc: linux-watchdog@vger.kernel.org Cc: alsa-devel@alsa-project.org Cc: Peter Ujfalusi <peter.ujfalusi@ti.com> Cc: Jarkko Nikula <jarkko.nikula@bitmer.com> Cc: Liam Girdwood <lrg@ti.com> Acked-by: Wim Van Sebroeck <wim@iguana.be> Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Tony Lindgren <tony@atomide.com>
2012-09-01 01:59:07 +08:00
#include "soc.h"
#include "common.h"
/* GPMC register offsets */
#define GPMC_REVISION 0x00
#define GPMC_SYSCONFIG 0x10
#define GPMC_SYSSTATUS 0x14
#define GPMC_IRQSTATUS 0x18
#define GPMC_IRQENABLE 0x1c
#define GPMC_TIMEOUT_CONTROL 0x40
#define GPMC_ERR_ADDRESS 0x44
#define GPMC_ERR_TYPE 0x48
#define GPMC_CONFIG 0x50
#define GPMC_STATUS 0x54
#define GPMC_PREFETCH_CONFIG1 0x1e0
#define GPMC_PREFETCH_CONFIG2 0x1e4
#define GPMC_PREFETCH_CONTROL 0x1ec
#define GPMC_PREFETCH_STATUS 0x1f0
#define GPMC_ECC_CONFIG 0x1f4
#define GPMC_ECC_CONTROL 0x1f8
#define GPMC_ECC_SIZE_CONFIG 0x1fc
#define GPMC_ECC1_RESULT 0x200
#define GPMC_ECC_BCH_RESULT_0 0x240 /* not available on OMAP2 */
/* GPMC ECC control settings */
#define GPMC_ECC_CTRL_ECCCLEAR 0x100
#define GPMC_ECC_CTRL_ECCDISABLE 0x000
#define GPMC_ECC_CTRL_ECCREG1 0x001
#define GPMC_ECC_CTRL_ECCREG2 0x002
#define GPMC_ECC_CTRL_ECCREG3 0x003
#define GPMC_ECC_CTRL_ECCREG4 0x004
#define GPMC_ECC_CTRL_ECCREG5 0x005
#define GPMC_ECC_CTRL_ECCREG6 0x006
#define GPMC_ECC_CTRL_ECCREG7 0x007
#define GPMC_ECC_CTRL_ECCREG8 0x008
#define GPMC_ECC_CTRL_ECCREG9 0x009
#define GPMC_CS0_OFFSET 0x60
#define GPMC_CS_SIZE 0x30
#define GPMC_MEM_START 0x00000000
#define GPMC_MEM_END 0x3FFFFFFF
#define BOOT_ROM_SPACE 0x100000 /* 1MB */
#define GPMC_CHUNK_SHIFT 24 /* 16 MB */
#define GPMC_SECTION_SHIFT 28 /* 128 MB */
#define CS_NUM_SHIFT 24
#define ENABLE_PREFETCH (0x1 << 7)
#define DMA_MPU_MODE 2
/* XXX: Only NAND irq has been considered,currently these are the only ones used
*/
#define GPMC_NR_IRQ 2
struct gpmc_client_irq {
unsigned irq;
u32 bitmask;
};
/* Structure to save gpmc cs context */
struct gpmc_cs_config {
u32 config1;
u32 config2;
u32 config3;
u32 config4;
u32 config5;
u32 config6;
u32 config7;
int is_valid;
};
/*
* Structure to save/restore gpmc context
* to support core off on OMAP3
*/
struct omap3_gpmc_regs {
u32 sysconfig;
u32 irqenable;
u32 timeout_ctrl;
u32 config;
u32 prefetch_config1;
u32 prefetch_config2;
u32 prefetch_control;
struct gpmc_cs_config cs_context[GPMC_CS_NUM];
};
static struct gpmc_client_irq gpmc_client_irq[GPMC_NR_IRQ];
static struct irq_chip gpmc_irq_chip;
static unsigned gpmc_irq_start;
static struct resource gpmc_mem_root;
static struct resource gpmc_cs_mem[GPMC_CS_NUM];
static DEFINE_SPINLOCK(gpmc_mem_lock);
static unsigned int gpmc_cs_map; /* flag for cs which are initialized */
static int gpmc_ecc_used = -EINVAL; /* cs using ecc engine */
static void __iomem *gpmc_base;
static struct clk *gpmc_l3_clk;
static irqreturn_t gpmc_handle_irq(int irq, void *dev);
static void gpmc_write_reg(int idx, u32 val)
{
__raw_writel(val, gpmc_base + idx);
}
static u32 gpmc_read_reg(int idx)
{
return __raw_readl(gpmc_base + idx);
}
static void gpmc_cs_write_byte(int cs, int idx, u8 val)
{
void __iomem *reg_addr;
reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
__raw_writeb(val, reg_addr);
}
static u8 gpmc_cs_read_byte(int cs, int idx)
{
void __iomem *reg_addr;
reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
return __raw_readb(reg_addr);
}
void gpmc_cs_write_reg(int cs, int idx, u32 val)
{
void __iomem *reg_addr;
reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
__raw_writel(val, reg_addr);
}
u32 gpmc_cs_read_reg(int cs, int idx)
{
void __iomem *reg_addr;
reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
return __raw_readl(reg_addr);
}
/* TODO: Add support for gpmc_fck to clock framework and use it */
unsigned long gpmc_get_fclk_period(void)
{
unsigned long rate = clk_get_rate(gpmc_l3_clk);
if (rate == 0) {
printk(KERN_WARNING "gpmc_l3_clk not enabled\n");
return 0;
}
rate /= 1000;
rate = 1000000000 / rate; /* In picoseconds */
return rate;
}
unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
{
unsigned long tick_ps;
/* Calculate in picosecs to yield more exact results */
tick_ps = gpmc_get_fclk_period();
return (time_ns * 1000 + tick_ps - 1) / tick_ps;
}
unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
{
unsigned long tick_ps;
/* Calculate in picosecs to yield more exact results */
tick_ps = gpmc_get_fclk_period();
return (time_ps + tick_ps - 1) / tick_ps;
}
unsigned int gpmc_ticks_to_ns(unsigned int ticks)
{
return ticks * gpmc_get_fclk_period() / 1000;
}
unsigned int gpmc_round_ns_to_ticks(unsigned int time_ns)
{
unsigned long ticks = gpmc_ns_to_ticks(time_ns);
return ticks * gpmc_get_fclk_period() / 1000;
}
#ifdef DEBUG
static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit,
int time, const char *name)
#else
static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit,
int time)
#endif
{
u32 l;
int ticks, mask, nr_bits;
if (time == 0)
ticks = 0;
else
ticks = gpmc_ns_to_ticks(time);
nr_bits = end_bit - st_bit + 1;
if (ticks >= 1 << nr_bits) {
#ifdef DEBUG
printk(KERN_INFO "GPMC CS%d: %-10s* %3d ns, %3d ticks >= %d\n",
cs, name, time, ticks, 1 << nr_bits);
#endif
return -1;
}
mask = (1 << nr_bits) - 1;
l = gpmc_cs_read_reg(cs, reg);
#ifdef DEBUG
printk(KERN_INFO
"GPMC CS%d: %-10s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
cs, name, ticks, gpmc_get_fclk_period() * ticks / 1000,
(l >> st_bit) & mask, time);
#endif
l &= ~(mask << st_bit);
l |= ticks << st_bit;
gpmc_cs_write_reg(cs, reg, l);
return 0;
}
#ifdef DEBUG
#define GPMC_SET_ONE(reg, st, end, field) \
if (set_gpmc_timing_reg(cs, (reg), (st), (end), \
t->field, #field) < 0) \
return -1
#else
#define GPMC_SET_ONE(reg, st, end, field) \
if (set_gpmc_timing_reg(cs, (reg), (st), (end), t->field) < 0) \
return -1
#endif
int gpmc_cs_calc_divider(int cs, unsigned int sync_clk)
{
int div;
u32 l;
l = sync_clk + (gpmc_get_fclk_period() - 1);
div = l / gpmc_get_fclk_period();
if (div > 4)
return -1;
if (div <= 0)
div = 1;
return div;
}
int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t)
{
int div;
u32 l;
div = gpmc_cs_calc_divider(cs, t->sync_clk);
if (div < 0)
ARM: OMAP: clean up some smatch warnings, fix some printk(KERN_ERR ... Resolve the following warnings from smatch: arch/arm/mach-omap2/gpmc.c:282 gpmc_cs_set_timings() info: why not propagate 'div' from gpmc_cs_calc_divider() instead of -1? arch/arm/mach-omap2/serial.c:328 omap_serial_init_port() error: 'pdev' dereferencing possible ERR_PTR() arch/arm/mach-omap2/timer.c:213 omap2_gp_clockevent_init() Error invalid range 4096 to -1 arch/arm/mach-omap2/gpio.c:63 omap2_gpio_dev_init() warn: possible memory leak of 'pdata' arch/arm/mach-omap2/omap_hwmod.c:1478 _assert_hardreset() warn: assigning -22 to unsigned variable 'ret' arch/arm/mach-omap2/omap_hwmod.c:1487 _assert_hardreset() warn: 4294963201 is more than 255 (max '(ret)' can be) so this is always the same. arch/arm/mach-omap2/omap_hwmod.c:1545 _read_hardreset() warn: assigning -22 to unsigned variable 'ret' arch/arm/mach-omap2/omap_hwmod.c:1554 _read_hardreset() warn: 4294963201 is more than 255 (max '(ret)' can be) so this is always the same. arch/arm/mach-omap2/dpll3xxx.c:629 omap3_clkoutx2_recalc() error: we previously assumed 'pclk' could be null (see line 627) arch/arm/mach-omap2/board-n8x0.c:422 n8x0_mmc_late_init() Error invalid range 14 to 13 arch/arm/mach-omap1/leds-h2p2-debug.c:71 h2p2_dbg_leds_event() error: potentially derefencing uninitialized 'fpga'. arch/arm/plat-omap/mux.c:79 omap_cfg_reg() Error invalid range 4096 to -1 Thanks to Tony Lindgren <tony@atomide.com> for pointing out that BUG() can be disabled. The changes in the first version that removed the subsequent return() after BUG() states have been dropped. Signed-off-by: Paul Walmsley <paul@pwsan.com> Cc: Tony Lindgren <tony@atomide.com>
2012-08-03 23:21:10 +08:00
return div;
GPMC_SET_ONE(GPMC_CS_CONFIG2, 0, 3, cs_on);
GPMC_SET_ONE(GPMC_CS_CONFIG2, 8, 12, cs_rd_off);
GPMC_SET_ONE(GPMC_CS_CONFIG2, 16, 20, cs_wr_off);
GPMC_SET_ONE(GPMC_CS_CONFIG3, 0, 3, adv_on);
GPMC_SET_ONE(GPMC_CS_CONFIG3, 8, 12, adv_rd_off);
GPMC_SET_ONE(GPMC_CS_CONFIG3, 16, 20, adv_wr_off);
GPMC_SET_ONE(GPMC_CS_CONFIG4, 0, 3, oe_on);
GPMC_SET_ONE(GPMC_CS_CONFIG4, 8, 12, oe_off);
GPMC_SET_ONE(GPMC_CS_CONFIG4, 16, 19, we_on);
GPMC_SET_ONE(GPMC_CS_CONFIG4, 24, 28, we_off);
GPMC_SET_ONE(GPMC_CS_CONFIG5, 0, 4, rd_cycle);
GPMC_SET_ONE(GPMC_CS_CONFIG5, 8, 12, wr_cycle);
GPMC_SET_ONE(GPMC_CS_CONFIG5, 16, 20, access);
GPMC_SET_ONE(GPMC_CS_CONFIG5, 24, 27, page_burst_access);
if (cpu_is_omap34xx()) {
GPMC_SET_ONE(GPMC_CS_CONFIG6, 16, 19, wr_data_mux_bus);
GPMC_SET_ONE(GPMC_CS_CONFIG6, 24, 28, wr_access);
}
/* caller is expected to have initialized CONFIG1 to cover
* at least sync vs async
*/
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
if (l & (GPMC_CONFIG1_READTYPE_SYNC | GPMC_CONFIG1_WRITETYPE_SYNC)) {
#ifdef DEBUG
printk(KERN_INFO "GPMC CS%d CLK period is %lu ns (div %d)\n",
cs, (div * gpmc_get_fclk_period()) / 1000, div);
#endif
l &= ~0x03;
l |= (div - 1);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
}
return 0;
}
static void gpmc_cs_enable_mem(int cs, u32 base, u32 size)
{
u32 l;
u32 mask;
mask = (1 << GPMC_SECTION_SHIFT) - size;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
l &= ~0x3f;
l = (base >> GPMC_CHUNK_SHIFT) & 0x3f;
l &= ~(0x0f << 8);
l |= ((mask >> GPMC_CHUNK_SHIFT) & 0x0f) << 8;
l |= GPMC_CONFIG7_CSVALID;
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
}
static void gpmc_cs_disable_mem(int cs)
{
u32 l;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
l &= ~GPMC_CONFIG7_CSVALID;
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
}
static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
{
u32 l;
u32 mask;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
*base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
mask = (l >> 8) & 0x0f;
*size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
}
static int gpmc_cs_mem_enabled(int cs)
{
u32 l;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
return l & GPMC_CONFIG7_CSVALID;
}
int gpmc_cs_set_reserved(int cs, int reserved)
{
if (cs > GPMC_CS_NUM)
return -ENODEV;
gpmc_cs_map &= ~(1 << cs);
gpmc_cs_map |= (reserved ? 1 : 0) << cs;
return 0;
}
int gpmc_cs_reserved(int cs)
{
if (cs > GPMC_CS_NUM)
return -ENODEV;
return gpmc_cs_map & (1 << cs);
}
static unsigned long gpmc_mem_align(unsigned long size)
{
int order;
size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
order = GPMC_CHUNK_SHIFT - 1;
do {
size >>= 1;
order++;
} while (size);
size = 1 << order;
return size;
}
static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
{
struct resource *res = &gpmc_cs_mem[cs];
int r;
size = gpmc_mem_align(size);
spin_lock(&gpmc_mem_lock);
res->start = base;
res->end = base + size - 1;
r = request_resource(&gpmc_mem_root, res);
spin_unlock(&gpmc_mem_lock);
return r;
}
int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
{
struct resource *res = &gpmc_cs_mem[cs];
int r = -1;
if (cs > GPMC_CS_NUM)
return -ENODEV;
size = gpmc_mem_align(size);
if (size > (1 << GPMC_SECTION_SHIFT))
return -ENOMEM;
spin_lock(&gpmc_mem_lock);
if (gpmc_cs_reserved(cs)) {
r = -EBUSY;
goto out;
}
if (gpmc_cs_mem_enabled(cs))
r = adjust_resource(res, res->start & ~(size - 1), size);
if (r < 0)
r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
size, NULL, NULL);
if (r < 0)
goto out;
gpmc_cs_enable_mem(cs, res->start, resource_size(res));
*base = res->start;
gpmc_cs_set_reserved(cs, 1);
out:
spin_unlock(&gpmc_mem_lock);
return r;
}
EXPORT_SYMBOL(gpmc_cs_request);
void gpmc_cs_free(int cs)
{
spin_lock(&gpmc_mem_lock);
if (cs >= GPMC_CS_NUM || cs < 0 || !gpmc_cs_reserved(cs)) {
printk(KERN_ERR "Trying to free non-reserved GPMC CS%d\n", cs);
BUG();
spin_unlock(&gpmc_mem_lock);
return;
}
gpmc_cs_disable_mem(cs);
release_resource(&gpmc_cs_mem[cs]);
gpmc_cs_set_reserved(cs, 0);
spin_unlock(&gpmc_mem_lock);
}
EXPORT_SYMBOL(gpmc_cs_free);
/**
* gpmc_read_status - read access request to get the different gpmc status
* @cmd: command type
* @return status
*/
int gpmc_read_status(int cmd)
{
int status = -EINVAL;
u32 regval = 0;
switch (cmd) {
case GPMC_GET_IRQ_STATUS:
status = gpmc_read_reg(GPMC_IRQSTATUS);
break;
case GPMC_PREFETCH_FIFO_CNT:
regval = gpmc_read_reg(GPMC_PREFETCH_STATUS);
status = GPMC_PREFETCH_STATUS_FIFO_CNT(regval);
break;
case GPMC_PREFETCH_COUNT:
regval = gpmc_read_reg(GPMC_PREFETCH_STATUS);
status = GPMC_PREFETCH_STATUS_COUNT(regval);
break;
case GPMC_STATUS_BUFFER:
regval = gpmc_read_reg(GPMC_STATUS);
/* 1 : buffer is available to write */
status = regval & GPMC_STATUS_BUFF_EMPTY;
break;
default:
printk(KERN_ERR "gpmc_read_status: Not supported\n");
}
return status;
}
EXPORT_SYMBOL(gpmc_read_status);
/**
* gpmc_cs_configure - write request to configure gpmc
* @cs: chip select number
* @cmd: command type
* @wval: value to write
* @return status of the operation
*/
int gpmc_cs_configure(int cs, int cmd, int wval)
{
int err = 0;
u32 regval = 0;
switch (cmd) {
case GPMC_ENABLE_IRQ:
gpmc_write_reg(GPMC_IRQENABLE, wval);
break;
case GPMC_SET_IRQ_STATUS:
gpmc_write_reg(GPMC_IRQSTATUS, wval);
break;
case GPMC_CONFIG_WP:
regval = gpmc_read_reg(GPMC_CONFIG);
if (wval)
regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
else
regval |= GPMC_CONFIG_WRITEPROTECT; /* WP is OFF */
gpmc_write_reg(GPMC_CONFIG, regval);
break;
case GPMC_CONFIG_RDY_BSY:
regval = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
if (wval)
regval |= WR_RD_PIN_MONITORING;
else
regval &= ~WR_RD_PIN_MONITORING;
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, regval);
break;
case GPMC_CONFIG_DEV_SIZE:
regval = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
/* clear 2 target bits */
regval &= ~GPMC_CONFIG1_DEVICESIZE(3);
/* set the proper value */
regval |= GPMC_CONFIG1_DEVICESIZE(wval);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, regval);
break;
case GPMC_CONFIG_DEV_TYPE:
regval = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
regval |= GPMC_CONFIG1_DEVICETYPE(wval);
if (wval == GPMC_DEVICETYPE_NOR)
regval |= GPMC_CONFIG1_MUXADDDATA;
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, regval);
break;
default:
printk(KERN_ERR "gpmc_configure_cs: Not supported\n");
err = -EINVAL;
}
return err;
}
EXPORT_SYMBOL(gpmc_cs_configure);
/**
* gpmc_nand_read - nand specific read access request
* @cs: chip select number
* @cmd: command type
*/
int gpmc_nand_read(int cs, int cmd)
{
int rval = -EINVAL;
switch (cmd) {
case GPMC_NAND_DATA:
rval = gpmc_cs_read_byte(cs, GPMC_CS_NAND_DATA);
break;
default:
printk(KERN_ERR "gpmc_read_nand_ctrl: Not supported\n");
}
return rval;
}
EXPORT_SYMBOL(gpmc_nand_read);
/**
* gpmc_nand_write - nand specific write request
* @cs: chip select number
* @cmd: command type
* @wval: value to write
*/
int gpmc_nand_write(int cs, int cmd, int wval)
{
int err = 0;
switch (cmd) {
case GPMC_NAND_COMMAND:
gpmc_cs_write_byte(cs, GPMC_CS_NAND_COMMAND, wval);
break;
case GPMC_NAND_ADDRESS:
gpmc_cs_write_byte(cs, GPMC_CS_NAND_ADDRESS, wval);
break;
case GPMC_NAND_DATA:
gpmc_cs_write_byte(cs, GPMC_CS_NAND_DATA, wval);
default:
printk(KERN_ERR "gpmc_write_nand_ctrl: Not supported\n");
err = -EINVAL;
}
return err;
}
EXPORT_SYMBOL(gpmc_nand_write);
/**
* gpmc_prefetch_enable - configures and starts prefetch transfer
* @cs: cs (chip select) number
* @fifo_th: fifo threshold to be used for read/ write
* @dma_mode: dma mode enable (1) or disable (0)
* @u32_count: number of bytes to be transferred
* @is_write: prefetch read(0) or write post(1) mode
*/
int gpmc_prefetch_enable(int cs, int fifo_th, int dma_mode,
unsigned int u32_count, int is_write)
{
if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) {
pr_err("gpmc: fifo threshold is not supported\n");
return -1;
} else if (!(gpmc_read_reg(GPMC_PREFETCH_CONTROL))) {
/* Set the amount of bytes to be prefetched */
gpmc_write_reg(GPMC_PREFETCH_CONFIG2, u32_count);
/* Set dma/mpu mode, the prefetch read / post write and
* enable the engine. Set which cs is has requested for.
*/
gpmc_write_reg(GPMC_PREFETCH_CONFIG1, ((cs << CS_NUM_SHIFT) |
PREFETCH_FIFOTHRESHOLD(fifo_th) |
ENABLE_PREFETCH |
(dma_mode << DMA_MPU_MODE) |
(0x1 & is_write)));
/* Start the prefetch engine */
gpmc_write_reg(GPMC_PREFETCH_CONTROL, 0x1);
} else {
return -EBUSY;
}
return 0;
}
EXPORT_SYMBOL(gpmc_prefetch_enable);
/**
* gpmc_prefetch_reset - disables and stops the prefetch engine
*/
int gpmc_prefetch_reset(int cs)
{
u32 config1;
/* check if the same module/cs is trying to reset */
config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
if (((config1 >> CS_NUM_SHIFT) & 0x7) != cs)
return -EINVAL;
/* Stop the PFPW engine */
gpmc_write_reg(GPMC_PREFETCH_CONTROL, 0x0);
/* Reset/disable the PFPW engine */
gpmc_write_reg(GPMC_PREFETCH_CONFIG1, 0x0);
return 0;
}
EXPORT_SYMBOL(gpmc_prefetch_reset);
void gpmc_update_nand_reg(struct gpmc_nand_regs *reg, int cs)
{
reg->gpmc_status = gpmc_base + GPMC_STATUS;
reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
reg->gpmc_bch_result0 = gpmc_base + GPMC_ECC_BCH_RESULT_0;
}
int gpmc_get_client_irq(unsigned irq_config)
{
int i;
if (hweight32(irq_config) > 1)
return 0;
for (i = 0; i < GPMC_NR_IRQ; i++)
if (gpmc_client_irq[i].bitmask & irq_config)
return gpmc_client_irq[i].irq;
return 0;
}
static int gpmc_irq_endis(unsigned irq, bool endis)
{
int i;
u32 regval;
for (i = 0; i < GPMC_NR_IRQ; i++)
if (irq == gpmc_client_irq[i].irq) {
regval = gpmc_read_reg(GPMC_IRQENABLE);
if (endis)
regval |= gpmc_client_irq[i].bitmask;
else
regval &= ~gpmc_client_irq[i].bitmask;
gpmc_write_reg(GPMC_IRQENABLE, regval);
break;
}
return 0;
}
static void gpmc_irq_disable(struct irq_data *p)
{
gpmc_irq_endis(p->irq, false);
}
static void gpmc_irq_enable(struct irq_data *p)
{
gpmc_irq_endis(p->irq, true);
}
static void gpmc_irq_noop(struct irq_data *data) { }
static unsigned int gpmc_irq_noop_ret(struct irq_data *data) { return 0; }
static int gpmc_setup_irq(int gpmc_irq)
{
int i;
u32 regval;
if (!gpmc_irq)
return -EINVAL;
gpmc_irq_start = irq_alloc_descs(-1, 0, GPMC_NR_IRQ, 0);
if (IS_ERR_VALUE(gpmc_irq_start)) {
pr_err("irq_alloc_descs failed\n");
return gpmc_irq_start;
}
gpmc_irq_chip.name = "gpmc";
gpmc_irq_chip.irq_startup = gpmc_irq_noop_ret;
gpmc_irq_chip.irq_enable = gpmc_irq_enable;
gpmc_irq_chip.irq_disable = gpmc_irq_disable;
gpmc_irq_chip.irq_shutdown = gpmc_irq_noop;
gpmc_irq_chip.irq_ack = gpmc_irq_noop;
gpmc_irq_chip.irq_mask = gpmc_irq_noop;
gpmc_irq_chip.irq_unmask = gpmc_irq_noop;
gpmc_client_irq[0].bitmask = GPMC_IRQ_FIFOEVENTENABLE;
gpmc_client_irq[1].bitmask = GPMC_IRQ_COUNT_EVENT;
for (i = 0; i < GPMC_NR_IRQ; i++) {
gpmc_client_irq[i].irq = gpmc_irq_start + i;
irq_set_chip_and_handler(gpmc_client_irq[i].irq,
&gpmc_irq_chip, handle_simple_irq);
set_irq_flags(gpmc_client_irq[i].irq,
IRQF_VALID | IRQF_NOAUTOEN);
}
/* Disable interrupts */
gpmc_write_reg(GPMC_IRQENABLE, 0);
/* clear interrupts */
regval = gpmc_read_reg(GPMC_IRQSTATUS);
gpmc_write_reg(GPMC_IRQSTATUS, regval);
return request_irq(gpmc_irq, gpmc_handle_irq, 0, "gpmc", NULL);
}
static void __init gpmc_mem_init(void)
{
int cs;
unsigned long boot_rom_space = 0;
/* never allocate the first page, to facilitate bug detection;
* even if we didn't boot from ROM.
*/
boot_rom_space = BOOT_ROM_SPACE;
/* In apollon the CS0 is mapped as 0x0000 0000 */
if (machine_is_omap_apollon())
boot_rom_space = 0;
gpmc_mem_root.start = GPMC_MEM_START + boot_rom_space;
gpmc_mem_root.end = GPMC_MEM_END;
/* Reserve all regions that has been set up by bootloader */
for (cs = 0; cs < GPMC_CS_NUM; cs++) {
u32 base, size;
if (!gpmc_cs_mem_enabled(cs))
continue;
gpmc_cs_get_memconf(cs, &base, &size);
if (gpmc_cs_insert_mem(cs, base, size) < 0)
BUG();
}
}
static int __init gpmc_init(void)
{
u32 l;
int ret = -EINVAL;
int gpmc_irq;
char *ck = NULL;
if (cpu_is_omap24xx()) {
ck = "core_l3_ck";
if (cpu_is_omap2420())
l = OMAP2420_GPMC_BASE;
else
l = OMAP34XX_GPMC_BASE;
gpmc_irq = 20 + OMAP_INTC_START;
} else if (cpu_is_omap34xx()) {
ck = "gpmc_fck";
l = OMAP34XX_GPMC_BASE;
gpmc_irq = 20 + OMAP_INTC_START;
} else if (cpu_is_omap44xx() || soc_is_omap54xx()) {
/* Base address and irq number are same for OMAP4/5 */
ck = "gpmc_ck";
l = OMAP44XX_GPMC_BASE;
gpmc_irq = 20 + OMAP44XX_IRQ_GIC_START;
}
if (WARN_ON(!ck))
return ret;
gpmc_l3_clk = clk_get(NULL, ck);
if (IS_ERR(gpmc_l3_clk)) {
printk(KERN_ERR "Could not get GPMC clock %s\n", ck);
BUG();
}
gpmc_base = ioremap(l, SZ_4K);
if (!gpmc_base) {
clk_put(gpmc_l3_clk);
printk(KERN_ERR "Could not get GPMC register memory\n");
BUG();
}
ARM: omap: clk: add clk_prepare and clk_unprepare As part of Common Clk Framework (CCF) the clk_enable() operation was split into a clk_prepare() which could sleep, and a clk_enable() which should never sleep. Similarly the clk_disable() was split into clk_disable() and clk_unprepare(). This was needed to handle complex cases where in a clk gate/ungate would require a slow and a fast part to be implemented. None of the clocks below seem to be in the 'complex' clocks category and are just simple clocks which are enabled/disabled through simple register writes. Most of the instances also seem to be called in non-atomic context which means its safe to move all of those from using a clk_enable() to clk_prepare_enable() and clk_disable() to clk_disable_unprepare(). For some others, mainly the ones handled through the hwmod framework there is a possibility that they get called in either an atomic or a non-atomic context. The way these get handled below work only as long as clk_prepare is implemented as a no-op (which is the case today) since this gets called very early at boot while most subsystems are unavailable. Hence these are marked with a *HACK* comment, which says we need to re-visit these once we start doing something meaningful with clk_prepare/clk_unprepare like doing voltage scaling or something that involves i2c. This is in preparation of OMAP moving to CCF. Based on initial changes from Mike Turquette. Signed-off-by: Rajendra Nayak <rnayak@ti.com> Signed-off-by: Paul Walmsley <paul@pwsan.com>
2012-09-22 16:24:16 +08:00
clk_prepare_enable(gpmc_l3_clk);
l = gpmc_read_reg(GPMC_REVISION);
printk(KERN_INFO "GPMC revision %d.%d\n", (l >> 4) & 0x0f, l & 0x0f);
/* Set smart idle mode and automatic L3 clock gating */
l = gpmc_read_reg(GPMC_SYSCONFIG);
l &= 0x03 << 3;
l |= (0x02 << 3) | (1 << 0);
gpmc_write_reg(GPMC_SYSCONFIG, l);
gpmc_mem_init();
ret = gpmc_setup_irq(gpmc_irq);
if (ret)
pr_err("gpmc: irq-%d could not claim: err %d\n",
gpmc_irq, ret);
return ret;
}
postcore_initcall(gpmc_init);
static irqreturn_t gpmc_handle_irq(int irq, void *dev)
{
int i;
u32 regval;
regval = gpmc_read_reg(GPMC_IRQSTATUS);
if (!regval)
return IRQ_NONE;
for (i = 0; i < GPMC_NR_IRQ; i++)
if (regval & gpmc_client_irq[i].bitmask)
generic_handle_irq(gpmc_client_irq[i].irq);
gpmc_write_reg(GPMC_IRQSTATUS, regval);
return IRQ_HANDLED;
}
#ifdef CONFIG_ARCH_OMAP3
static struct omap3_gpmc_regs gpmc_context;
void omap3_gpmc_save_context(void)
{
int i;
gpmc_context.sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
gpmc_context.irqenable = gpmc_read_reg(GPMC_IRQENABLE);
gpmc_context.timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
gpmc_context.config = gpmc_read_reg(GPMC_CONFIG);
gpmc_context.prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
gpmc_context.prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
gpmc_context.prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
for (i = 0; i < GPMC_CS_NUM; i++) {
gpmc_context.cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
if (gpmc_context.cs_context[i].is_valid) {
gpmc_context.cs_context[i].config1 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
gpmc_context.cs_context[i].config2 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
gpmc_context.cs_context[i].config3 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
gpmc_context.cs_context[i].config4 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
gpmc_context.cs_context[i].config5 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
gpmc_context.cs_context[i].config6 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
gpmc_context.cs_context[i].config7 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
}
}
}
void omap3_gpmc_restore_context(void)
{
int i;
gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context.sysconfig);
gpmc_write_reg(GPMC_IRQENABLE, gpmc_context.irqenable);
gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context.timeout_ctrl);
gpmc_write_reg(GPMC_CONFIG, gpmc_context.config);
gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context.prefetch_config1);
gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context.prefetch_config2);
gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context.prefetch_control);
for (i = 0; i < GPMC_CS_NUM; i++) {
if (gpmc_context.cs_context[i].is_valid) {
gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
gpmc_context.cs_context[i].config1);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
gpmc_context.cs_context[i].config2);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
gpmc_context.cs_context[i].config3);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
gpmc_context.cs_context[i].config4);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
gpmc_context.cs_context[i].config5);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
gpmc_context.cs_context[i].config6);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
gpmc_context.cs_context[i].config7);
}
}
}
#endif /* CONFIG_ARCH_OMAP3 */
/**
* gpmc_enable_hwecc - enable hardware ecc functionality
* @cs: chip select number
* @mode: read/write mode
* @dev_width: device bus width(1 for x16, 0 for x8)
* @ecc_size: bytes for which ECC will be generated
*/
int gpmc_enable_hwecc(int cs, int mode, int dev_width, int ecc_size)
{
unsigned int val;
/* check if ecc module is in used */
if (gpmc_ecc_used != -EINVAL)
return -EINVAL;
gpmc_ecc_used = cs;
/* clear ecc and enable bits */
gpmc_write_reg(GPMC_ECC_CONTROL,
GPMC_ECC_CTRL_ECCCLEAR |
GPMC_ECC_CTRL_ECCREG1);
/* program ecc and result sizes */
val = ((((ecc_size >> 1) - 1) << 22) | (0x0000000F));
gpmc_write_reg(GPMC_ECC_SIZE_CONFIG, val);
switch (mode) {
case GPMC_ECC_READ:
case GPMC_ECC_WRITE:
gpmc_write_reg(GPMC_ECC_CONTROL,
GPMC_ECC_CTRL_ECCCLEAR |
GPMC_ECC_CTRL_ECCREG1);
break;
case GPMC_ECC_READSYN:
gpmc_write_reg(GPMC_ECC_CONTROL,
GPMC_ECC_CTRL_ECCCLEAR |
GPMC_ECC_CTRL_ECCDISABLE);
break;
default:
printk(KERN_INFO "Error: Unrecognized Mode[%d]!\n", mode);
break;
}
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
val = (dev_width << 7) | (cs << 1) | (0x1);
gpmc_write_reg(GPMC_ECC_CONFIG, val);
return 0;
}
EXPORT_SYMBOL_GPL(gpmc_enable_hwecc);
/**
* gpmc_calculate_ecc - generate non-inverted ecc bytes
* @cs: chip select number
* @dat: data pointer over which ecc is computed
* @ecc_code: ecc code buffer
*
* Using non-inverted ECC is considered ugly since writing a blank
* page (padding) will clear the ECC bytes. This is not a problem as long
* no one is trying to write data on the seemingly unused page. Reading
* an erased page will produce an ECC mismatch between generated and read
* ECC bytes that has to be dealt with separately.
*/
int gpmc_calculate_ecc(int cs, const u_char *dat, u_char *ecc_code)
{
unsigned int val = 0x0;
if (gpmc_ecc_used != cs)
return -EINVAL;
/* read ecc result */
val = gpmc_read_reg(GPMC_ECC1_RESULT);
*ecc_code++ = val; /* P128e, ..., P1e */
*ecc_code++ = val >> 16; /* P128o, ..., P1o */
/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
gpmc_ecc_used = -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(gpmc_calculate_ecc);
#ifdef CONFIG_ARCH_OMAP3
/**
* gpmc_init_hwecc_bch - initialize hardware BCH ecc functionality
* @cs: chip select number
* @nsectors: how many 512-byte sectors to process
* @nerrors: how many errors to correct per sector (4 or 8)
*
* This function must be executed before any call to gpmc_enable_hwecc_bch.
*/
int gpmc_init_hwecc_bch(int cs, int nsectors, int nerrors)
{
/* check if ecc module is in use */
if (gpmc_ecc_used != -EINVAL)
return -EINVAL;
/* support only OMAP3 class */
if (!cpu_is_omap34xx()) {
printk(KERN_ERR "BCH ecc is not supported on this CPU\n");
return -EINVAL;
}
/*
* For now, assume 4-bit mode is only supported on OMAP3630 ES1.x, x>=1.
* Other chips may be added if confirmed to work.
*/
if ((nerrors == 4) &&
(!cpu_is_omap3630() || (GET_OMAP_REVISION() == 0))) {
printk(KERN_ERR "BCH 4-bit mode is not supported on this CPU\n");
return -EINVAL;
}
/* sanity check */
if (nsectors > 8) {
printk(KERN_ERR "BCH cannot process %d sectors (max is 8)\n",
nsectors);
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL_GPL(gpmc_init_hwecc_bch);
/**
* gpmc_enable_hwecc_bch - enable hardware BCH ecc functionality
* @cs: chip select number
* @mode: read/write mode
* @dev_width: device bus width(1 for x16, 0 for x8)
* @nsectors: how many 512-byte sectors to process
* @nerrors: how many errors to correct per sector (4 or 8)
*/
int gpmc_enable_hwecc_bch(int cs, int mode, int dev_width, int nsectors,
int nerrors)
{
unsigned int val;
/* check if ecc module is in use */
if (gpmc_ecc_used != -EINVAL)
return -EINVAL;
gpmc_ecc_used = cs;
/* clear ecc and enable bits */
gpmc_write_reg(GPMC_ECC_CONTROL, 0x1);
/*
* When using BCH, sector size is hardcoded to 512 bytes.
* Here we are using wrapping mode 6 both for reading and writing, with:
* size0 = 0 (no additional protected byte in spare area)
* size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
*/
gpmc_write_reg(GPMC_ECC_SIZE_CONFIG, (32 << 22) | (0 << 12));
/* BCH configuration */
val = ((1 << 16) | /* enable BCH */
(((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
(0x06 << 8) | /* wrap mode = 6 */
(dev_width << 7) | /* bus width */
(((nsectors-1) & 0x7) << 4) | /* number of sectors */
(cs << 1) | /* ECC CS */
(0x1)); /* enable ECC */
gpmc_write_reg(GPMC_ECC_CONFIG, val);
gpmc_write_reg(GPMC_ECC_CONTROL, 0x101);
return 0;
}
EXPORT_SYMBOL_GPL(gpmc_enable_hwecc_bch);
/**
* gpmc_calculate_ecc_bch4 - Generate 7 ecc bytes per sector of 512 data bytes
* @cs: chip select number
* @dat: The pointer to data on which ecc is computed
* @ecc: The ecc output buffer
*/
int gpmc_calculate_ecc_bch4(int cs, const u_char *dat, u_char *ecc)
{
int i;
unsigned long nsectors, reg, val1, val2;
if (gpmc_ecc_used != cs)
return -EINVAL;
nsectors = ((gpmc_read_reg(GPMC_ECC_CONFIG) >> 4) & 0x7) + 1;
for (i = 0; i < nsectors; i++) {
reg = GPMC_ECC_BCH_RESULT_0 + 16*i;
/* Read hw-computed remainder */
val1 = gpmc_read_reg(reg + 0);
val2 = gpmc_read_reg(reg + 4);
/*
* Add constant polynomial to remainder, in order to get an ecc
* sequence of 0xFFs for a buffer filled with 0xFFs; and
* left-justify the resulting polynomial.
*/
*ecc++ = 0x28 ^ ((val2 >> 12) & 0xFF);
*ecc++ = 0x13 ^ ((val2 >> 4) & 0xFF);
*ecc++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
*ecc++ = 0x39 ^ ((val1 >> 20) & 0xFF);
*ecc++ = 0x96 ^ ((val1 >> 12) & 0xFF);
*ecc++ = 0xac ^ ((val1 >> 4) & 0xFF);
*ecc++ = 0x7f ^ ((val1 & 0xF) << 4);
}
gpmc_ecc_used = -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(gpmc_calculate_ecc_bch4);
/**
* gpmc_calculate_ecc_bch8 - Generate 13 ecc bytes per block of 512 data bytes
* @cs: chip select number
* @dat: The pointer to data on which ecc is computed
* @ecc: The ecc output buffer
*/
int gpmc_calculate_ecc_bch8(int cs, const u_char *dat, u_char *ecc)
{
int i;
unsigned long nsectors, reg, val1, val2, val3, val4;
if (gpmc_ecc_used != cs)
return -EINVAL;
nsectors = ((gpmc_read_reg(GPMC_ECC_CONFIG) >> 4) & 0x7) + 1;
for (i = 0; i < nsectors; i++) {
reg = GPMC_ECC_BCH_RESULT_0 + 16*i;
/* Read hw-computed remainder */
val1 = gpmc_read_reg(reg + 0);
val2 = gpmc_read_reg(reg + 4);
val3 = gpmc_read_reg(reg + 8);
val4 = gpmc_read_reg(reg + 12);
/*
* Add constant polynomial to remainder, in order to get an ecc
* sequence of 0xFFs for a buffer filled with 0xFFs.
*/
*ecc++ = 0xef ^ (val4 & 0xFF);
*ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
*ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
*ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
*ecc++ = 0xed ^ (val3 & 0xFF);
*ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
*ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
*ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
*ecc++ = 0x97 ^ (val2 & 0xFF);
*ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
*ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
*ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
*ecc++ = 0xb5 ^ (val1 & 0xFF);
}
gpmc_ecc_used = -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(gpmc_calculate_ecc_bch8);
#endif /* CONFIG_ARCH_OMAP3 */