linux/drivers/s390/char/sclp_sdias.c

278 lines
6.4 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* SCLP "store data in absolute storage"
*
* Copyright IBM Corp. 2003, 2013
* Author(s): Michael Holzheu
*/
#define KMSG_COMPONENT "sclp_sdias"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/completion.h>
#include <linux/sched.h>
#include <asm/sclp.h>
#include <asm/debug.h>
#include <asm/ipl.h>
#include "sclp_sdias.h"
#include "sclp.h"
#include "sclp_rw.h"
#define TRACE(x...) debug_sprintf_event(sdias_dbf, 1, x)
#define SDIAS_RETRIES 300
static struct debug_info *sdias_dbf;
static struct sclp_register sclp_sdias_register = {
.send_mask = EVTYP_SDIAS_MASK,
};
static struct sdias_sccb sccb __attribute__((aligned(4096)));
static struct sdias_evbuf sdias_evbuf;
static DECLARE_COMPLETION(evbuf_accepted);
static DECLARE_COMPLETION(evbuf_done);
static DEFINE_MUTEX(sdias_mutex);
/*
* Called by SCLP base when read event data has been completed (async mode only)
*/
static void sclp_sdias_receiver_fn(struct evbuf_header *evbuf)
{
memcpy(&sdias_evbuf, evbuf,
min_t(unsigned long, sizeof(sdias_evbuf), evbuf->length));
complete(&evbuf_done);
TRACE("sclp_sdias_receiver_fn done\n");
}
/*
* Called by SCLP base when sdias event has been accepted
*/
static void sdias_callback(struct sclp_req *request, void *data)
{
complete(&evbuf_accepted);
TRACE("callback done\n");
}
static int sdias_sclp_send(struct sclp_req *req)
{
int retries;
int rc;
for (retries = SDIAS_RETRIES; retries; retries--) {
TRACE("add request\n");
rc = sclp_add_request(req);
if (rc) {
/* not initiated, wait some time and retry */
set_current_state(TASK_INTERRUPTIBLE);
TRACE("add request failed: rc = %i\n",rc);
schedule_timeout(msecs_to_jiffies(500));
continue;
}
/* initiated, wait for completion of service call */
wait_for_completion(&evbuf_accepted);
if (req->status == SCLP_REQ_FAILED) {
TRACE("sclp request failed\n");
continue;
}
/* if not accepted, retry */
if (!(sccb.evbuf.hdr.flags & 0x80)) {
TRACE("sclp request failed: flags=%x\n",
sccb.evbuf.hdr.flags);
continue;
}
/*
* for the sync interface the response is in the initial sccb
*/
if (!sclp_sdias_register.receiver_fn) {
memcpy(&sdias_evbuf, &sccb.evbuf, sizeof(sdias_evbuf));
TRACE("sync request done\n");
return 0;
}
/* otherwise we wait for completion */
wait_for_completion(&evbuf_done);
TRACE("request done\n");
return 0;
}
return -EIO;
}
/*
* Get number of blocks (4K) available in the HSA
*/
int sclp_sdias_blk_count(void)
{
struct sclp_req request;
int rc;
mutex_lock(&sdias_mutex);
memset(&sccb, 0, sizeof(sccb));
memset(&request, 0, sizeof(request));
sccb.hdr.length = sizeof(sccb);
sccb.evbuf.hdr.length = sizeof(struct sdias_evbuf);
sccb.evbuf.hdr.type = EVTYP_SDIAS;
sccb.evbuf.event_qual = SDIAS_EQ_SIZE;
sccb.evbuf.data_id = SDIAS_DI_FCP_DUMP;
sccb.evbuf.event_id = 4712;
sccb.evbuf.dbs = 1;
request.sccb = &sccb;
request.command = SCLP_CMDW_WRITE_EVENT_DATA;
request.status = SCLP_REQ_FILLED;
request.callback = sdias_callback;
rc = sdias_sclp_send(&request);
if (rc) {
pr_err("sclp_send failed for get_nr_blocks\n");
goto out;
}
if (sccb.hdr.response_code != 0x0020) {
TRACE("send failed: %x\n", sccb.hdr.response_code);
rc = -EIO;
goto out;
}
switch (sdias_evbuf.event_status) {
case 0:
rc = sdias_evbuf.blk_cnt;
break;
default:
pr_err("SCLP error: %x\n", sdias_evbuf.event_status);
rc = -EIO;
goto out;
}
TRACE("%i blocks\n", rc);
out:
mutex_unlock(&sdias_mutex);
return rc;
}
/*
* Copy from HSA to absolute storage (not reentrant):
*
* @dest : Address of buffer where data should be copied
* @start_blk: Start Block (beginning with 1)
* @nr_blks : Number of 4K blocks to copy
*
* Return Value: 0 : Requested 'number' of blocks of data copied
* <0: ERROR - negative event status
*/
int sclp_sdias_copy(void *dest, int start_blk, int nr_blks)
{
struct sclp_req request;
int rc;
mutex_lock(&sdias_mutex);
memset(&sccb, 0, sizeof(sccb));
memset(&request, 0, sizeof(request));
sccb.hdr.length = sizeof(sccb);
sccb.evbuf.hdr.length = sizeof(struct sdias_evbuf);
sccb.evbuf.hdr.type = EVTYP_SDIAS;
sccb.evbuf.hdr.flags = 0;
sccb.evbuf.event_qual = SDIAS_EQ_STORE_DATA;
sccb.evbuf.data_id = SDIAS_DI_FCP_DUMP;
sccb.evbuf.event_id = 4712;
sccb.evbuf.asa_size = SDIAS_ASA_SIZE_64;
sccb.evbuf.event_status = 0;
sccb.evbuf.blk_cnt = nr_blks;
sccb.evbuf.asa = (unsigned long)dest;
sccb.evbuf.fbn = start_blk;
sccb.evbuf.lbn = 0;
sccb.evbuf.dbs = 1;
request.sccb = &sccb;
request.command = SCLP_CMDW_WRITE_EVENT_DATA;
request.status = SCLP_REQ_FILLED;
request.callback = sdias_callback;
rc = sdias_sclp_send(&request);
if (rc) {
pr_err("sclp_send failed: %x\n", rc);
goto out;
}
if (sccb.hdr.response_code != 0x0020) {
TRACE("copy failed: %x\n", sccb.hdr.response_code);
rc = -EIO;
goto out;
}
switch (sdias_evbuf.event_status) {
case SDIAS_EVSTATE_ALL_STORED:
TRACE("all stored\n");
break;
case SDIAS_EVSTATE_PART_STORED:
TRACE("part stored: %i\n", sdias_evbuf.blk_cnt);
break;
case SDIAS_EVSTATE_NO_DATA:
TRACE("no data\n");
/* fall through */
default:
pr_err("Error from SCLP while copying hsa. Event status = %x\n",
sdias_evbuf.event_status);
rc = -EIO;
}
out:
mutex_unlock(&sdias_mutex);
return rc;
}
static int __init sclp_sdias_register_check(void)
{
int rc;
rc = sclp_register(&sclp_sdias_register);
if (rc)
return rc;
if (sclp_sdias_blk_count() == 0) {
sclp_unregister(&sclp_sdias_register);
return -ENODEV;
}
return 0;
}
static int __init sclp_sdias_init_sync(void)
{
TRACE("Try synchronous mode\n");
sclp_sdias_register.receive_mask = 0;
sclp_sdias_register.receiver_fn = NULL;
return sclp_sdias_register_check();
}
static int __init sclp_sdias_init_async(void)
{
TRACE("Try asynchronous mode\n");
sclp_sdias_register.receive_mask = EVTYP_SDIAS_MASK;
sclp_sdias_register.receiver_fn = sclp_sdias_receiver_fn;
return sclp_sdias_register_check();
}
int __init sclp_sdias_init(void)
{
if (ipl_info.type != IPL_TYPE_FCP_DUMP)
return 0;
sdias_dbf = debug_register("dump_sdias", 4, 1, 4 * sizeof(long));
debug_register_view(sdias_dbf, &debug_sprintf_view);
debug_set_level(sdias_dbf, 6);
if (sclp_sdias_init_sync() == 0)
goto out;
if (sclp_sdias_init_async() == 0)
goto out;
TRACE("init failed\n");
return -ENODEV;
out:
TRACE("init done\n");
return 0;
}
void __exit sclp_sdias_exit(void)
{
debug_unregister(sdias_dbf);
sclp_unregister(&sclp_sdias_register);
}