linux/drivers/media/usb/dvb-usb/dvb-usb-dvb.c

352 lines
9.3 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/* dvb-usb-dvb.c is part of the DVB USB library.
*
* Copyright (C) 2004-6 Patrick Boettcher (patrick.boettcher@posteo.de)
* see dvb-usb-init.c for copyright information.
*
* This file contains functions for initializing and handling the
* linux-dvb API.
*/
#include "dvb-usb-common.h"
#include <media/media-device.h>
/* does the complete input transfer handling */
static int dvb_usb_ctrl_feed(struct dvb_demux_feed *dvbdmxfeed, int onoff)
{
struct dvb_usb_adapter *adap = dvbdmxfeed->demux->priv;
int newfeedcount, ret;
if (adap == NULL)
return -ENODEV;
if ((adap->active_fe < 0) ||
(adap->active_fe >= adap->num_frontends_initialized)) {
return -EINVAL;
}
newfeedcount = adap->feedcount + (onoff ? 1 : -1);
/* stop feed before setting a new pid if there will be no pid anymore */
if (newfeedcount == 0) {
deb_ts("stop feeding\n");
usb_urb_kill(&adap->fe_adap[adap->active_fe].stream);
if (adap->props.fe[adap->active_fe].streaming_ctrl != NULL) {
ret = adap->props.fe[adap->active_fe].streaming_ctrl(adap, 0);
if (ret < 0) {
err("error while stopping stream.");
return ret;
}
}
}
adap->feedcount = newfeedcount;
/* activate the pid on the device specific pid_filter */
deb_ts("setting pid (%s): %5d %04x at index %d '%s'\n",
adap->fe_adap[adap->active_fe].pid_filtering ?
"yes" : "no", dvbdmxfeed->pid, dvbdmxfeed->pid,
dvbdmxfeed->index, onoff ? "on" : "off");
if (adap->props.fe[adap->active_fe].caps & DVB_USB_ADAP_HAS_PID_FILTER &&
adap->fe_adap[adap->active_fe].pid_filtering &&
adap->props.fe[adap->active_fe].pid_filter != NULL)
adap->props.fe[adap->active_fe].pid_filter(adap, dvbdmxfeed->index, dvbdmxfeed->pid, onoff);
/* start the feed if this was the first feed and there is still a feed
* for reception.
*/
if (adap->feedcount == onoff && adap->feedcount > 0) {
deb_ts("submitting all URBs\n");
usb_urb_submit(&adap->fe_adap[adap->active_fe].stream);
deb_ts("controlling pid parser\n");
if (adap->props.fe[adap->active_fe].caps & DVB_USB_ADAP_HAS_PID_FILTER &&
adap->props.fe[adap->active_fe].caps &
DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF &&
adap->props.fe[adap->active_fe].pid_filter_ctrl != NULL) {
ret = adap->props.fe[adap->active_fe].pid_filter_ctrl(adap,
adap->fe_adap[adap->active_fe].pid_filtering);
if (ret < 0) {
err("could not handle pid_parser");
return ret;
}
}
deb_ts("start feeding\n");
if (adap->props.fe[adap->active_fe].streaming_ctrl != NULL) {
ret = adap->props.fe[adap->active_fe].streaming_ctrl(adap, 1);
if (ret < 0) {
err("error while enabling fifo.");
return ret;
}
}
}
return 0;
}
static int dvb_usb_start_feed(struct dvb_demux_feed *dvbdmxfeed)
{
deb_ts("start pid: 0x%04x, feedtype: %d\n", dvbdmxfeed->pid,
dvbdmxfeed->type);
return dvb_usb_ctrl_feed(dvbdmxfeed, 1);
}
static int dvb_usb_stop_feed(struct dvb_demux_feed *dvbdmxfeed)
{
deb_ts("stop pid: 0x%04x, feedtype: %d\n", dvbdmxfeed->pid, dvbdmxfeed->type);
return dvb_usb_ctrl_feed(dvbdmxfeed, 0);
}
static int dvb_usb_media_device_init(struct dvb_usb_adapter *adap)
{
#ifdef CONFIG_MEDIA_CONTROLLER_DVB
struct media_device *mdev;
struct dvb_usb_device *d = adap->dev;
struct usb_device *udev = d->udev;
mdev = kzalloc(sizeof(*mdev), GFP_KERNEL);
if (!mdev)
return -ENOMEM;
media_device_usb_init(mdev, udev, d->desc->name);
dvb_register_media_controller(&adap->dvb_adap, mdev);
dev_info(&d->udev->dev, "media controller created\n");
#endif
return 0;
}
static int dvb_usb_media_device_register(struct dvb_usb_adapter *adap)
{
#ifdef CONFIG_MEDIA_CONTROLLER_DVB
return media_device_register(adap->dvb_adap.mdev);
#else
return 0;
#endif
}
static void dvb_usb_media_device_unregister(struct dvb_usb_adapter *adap)
{
#ifdef CONFIG_MEDIA_CONTROLLER_DVB
if (!adap->dvb_adap.mdev)
return;
media: dvbdev: add a mutex protecting the "mdev" pointer During destruction, a race condition in dvb_media_controller_disable_source() can cause a kernel crash, because the "mdev" pointer has been read successfully while another task executes dvb_usb_media_device_unregister(), which destroys the object. Example for such a crash: general protection fault: 0000 [#1] SMP CPU: 1 PID: 301 Comm: vdr Not tainted 4.8.1-nuc+ #102 [142B blob data] task: ffff8802301f2040 task.stack: ffff880233728000 RIP: 0010:[<ffffffff816c296b>] [<ffffffff816c296b>] dvb_frontend_release+0xcb/0x120 RSP: 0018:ffff88023372bdd8 EFLAGS: 00010202 RAX: 001fd55c000000da RBX: ffff880236bad810 RCX: 0000000000000000 RDX: ffff880235bd81f0 RSI: 0000000000000246 RDI: ffff880235bd81e8 RBP: ffff88023372be00 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: ffff88022f009910 R12: 0000000000000000 R13: ffff880235a21a80 R14: ffff880235bd8000 R15: ffff880235bb8a78 FS: 0000000000000000(0000) GS:ffff88023fd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f96edd69818 CR3: 0000000002406000 CR4: 00000000001006e0 Stack: ffff88022f009900 0000000000000008 ffff880235bb8a78 ffff8802344fbb20 ffff880236437b40 ffff88023372be48 ffffffff8117a81e ffff880235bb8a78 ffff88022f009910 ffff8802335a7400 ffff8802301f2040 ffff88022f009900 Call Trace: [<ffffffff8117a81e>] __fput+0xde/0x1d0 [<ffffffff8117a949>] ____fput+0x9/0x10 [<ffffffff810a9fce>] task_work_run+0x7e/0xa0 [<ffffffff81094bab>] do_exit+0x27b/0xa50 [<ffffffff810407e3>] ? __do_page_fault+0x1c3/0x430 [<ffffffff81095402>] do_group_exit+0x42/0xb0 [<ffffffff8109547f>] SyS_exit_group+0xf/0x10 [<ffffffff8108bedb>] entry_SYSCALL_64_fastpath+0x13/0x8f Code: 31 c9 49 8d be e8 01 00 00 ba 01 00 00 00 be 03 00 00 00 e8 68 2d a0 ff 48 8b 83 10 03 00 00 48 8b 80 88 00 00 00 48 85 c0 74 12 <48> 8b 80 88 02 00 00 48 85 c0 74 06 49 8b 7d RIP [<ffffffff816c296b>] dvb_frontend_release+0xcb/0x120 [mchehab+samsung@kernel.org: fix a Coding Style issue] Signed-off-by: Max Kellermann <max.kellermann@gmail.com> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2018-05-04 02:12:59 +08:00
mutex_lock(&adap->dvb_adap.mdev_lock);
media_device_unregister(adap->dvb_adap.mdev);
media_device_cleanup(adap->dvb_adap.mdev);
kfree(adap->dvb_adap.mdev);
adap->dvb_adap.mdev = NULL;
media: dvbdev: add a mutex protecting the "mdev" pointer During destruction, a race condition in dvb_media_controller_disable_source() can cause a kernel crash, because the "mdev" pointer has been read successfully while another task executes dvb_usb_media_device_unregister(), which destroys the object. Example for such a crash: general protection fault: 0000 [#1] SMP CPU: 1 PID: 301 Comm: vdr Not tainted 4.8.1-nuc+ #102 [142B blob data] task: ffff8802301f2040 task.stack: ffff880233728000 RIP: 0010:[<ffffffff816c296b>] [<ffffffff816c296b>] dvb_frontend_release+0xcb/0x120 RSP: 0018:ffff88023372bdd8 EFLAGS: 00010202 RAX: 001fd55c000000da RBX: ffff880236bad810 RCX: 0000000000000000 RDX: ffff880235bd81f0 RSI: 0000000000000246 RDI: ffff880235bd81e8 RBP: ffff88023372be00 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: ffff88022f009910 R12: 0000000000000000 R13: ffff880235a21a80 R14: ffff880235bd8000 R15: ffff880235bb8a78 FS: 0000000000000000(0000) GS:ffff88023fd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f96edd69818 CR3: 0000000002406000 CR4: 00000000001006e0 Stack: ffff88022f009900 0000000000000008 ffff880235bb8a78 ffff8802344fbb20 ffff880236437b40 ffff88023372be48 ffffffff8117a81e ffff880235bb8a78 ffff88022f009910 ffff8802335a7400 ffff8802301f2040 ffff88022f009900 Call Trace: [<ffffffff8117a81e>] __fput+0xde/0x1d0 [<ffffffff8117a949>] ____fput+0x9/0x10 [<ffffffff810a9fce>] task_work_run+0x7e/0xa0 [<ffffffff81094bab>] do_exit+0x27b/0xa50 [<ffffffff810407e3>] ? __do_page_fault+0x1c3/0x430 [<ffffffff81095402>] do_group_exit+0x42/0xb0 [<ffffffff8109547f>] SyS_exit_group+0xf/0x10 [<ffffffff8108bedb>] entry_SYSCALL_64_fastpath+0x13/0x8f Code: 31 c9 49 8d be e8 01 00 00 ba 01 00 00 00 be 03 00 00 00 e8 68 2d a0 ff 48 8b 83 10 03 00 00 48 8b 80 88 00 00 00 48 85 c0 74 12 <48> 8b 80 88 02 00 00 48 85 c0 74 06 49 8b 7d RIP [<ffffffff816c296b>] dvb_frontend_release+0xcb/0x120 [mchehab+samsung@kernel.org: fix a Coding Style issue] Signed-off-by: Max Kellermann <max.kellermann@gmail.com> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2018-05-04 02:12:59 +08:00
mutex_unlock(&adap->dvb_adap.mdev_lock);
#endif
}
int dvb_usb_adapter_dvb_init(struct dvb_usb_adapter *adap, short *adapter_nums)
{
int i;
int ret = dvb_register_adapter(&adap->dvb_adap, adap->dev->desc->name,
adap->dev->owner, &adap->dev->udev->dev,
adapter_nums);
if (ret < 0) {
deb_info("dvb_register_adapter failed: error %d", ret);
goto err;
}
adap->dvb_adap.priv = adap;
ret = dvb_usb_media_device_init(adap);
if (ret < 0) {
deb_info("dvb_usb_media_device_init failed: error %d", ret);
goto err_mc;
}
if (adap->dev->props.read_mac_address) {
if (adap->dev->props.read_mac_address(adap->dev, adap->dvb_adap.proposed_mac) == 0)
info("MAC address: %pM", adap->dvb_adap.proposed_mac);
else
err("MAC address reading failed.");
}
adap->demux.dmx.capabilities = DMX_TS_FILTERING | DMX_SECTION_FILTERING;
adap->demux.priv = adap;
adap->demux.filternum = 0;
for (i = 0; i < adap->props.num_frontends; i++) {
if (adap->demux.filternum < adap->fe_adap[i].max_feed_count)
adap->demux.filternum = adap->fe_adap[i].max_feed_count;
}
adap->demux.feednum = adap->demux.filternum;
adap->demux.start_feed = dvb_usb_start_feed;
adap->demux.stop_feed = dvb_usb_stop_feed;
adap->demux.write_to_decoder = NULL;
if ((ret = dvb_dmx_init(&adap->demux)) < 0) {
err("dvb_dmx_init failed: error %d", ret);
goto err_dmx;
}
adap->dmxdev.filternum = adap->demux.filternum;
adap->dmxdev.demux = &adap->demux.dmx;
adap->dmxdev.capabilities = 0;
if ((ret = dvb_dmxdev_init(&adap->dmxdev, &adap->dvb_adap)) < 0) {
err("dvb_dmxdev_init failed: error %d", ret);
goto err_dmx_dev;
}
if ((ret = dvb_net_init(&adap->dvb_adap, &adap->dvb_net,
&adap->demux.dmx)) < 0) {
err("dvb_net_init failed: error %d", ret);
goto err_net_init;
}
adap->state |= DVB_USB_ADAP_STATE_DVB;
return 0;
err_net_init:
dvb_dmxdev_release(&adap->dmxdev);
err_dmx_dev:
dvb_dmx_release(&adap->demux);
err_dmx:
dvb_usb_media_device_unregister(adap);
err_mc:
dvb_unregister_adapter(&adap->dvb_adap);
err:
return ret;
}
int dvb_usb_adapter_dvb_exit(struct dvb_usb_adapter *adap)
{
if (adap->state & DVB_USB_ADAP_STATE_DVB) {
deb_info("unregistering DVB part\n");
dvb_net_release(&adap->dvb_net);
adap->demux.dmx.close(&adap->demux.dmx);
dvb_dmxdev_release(&adap->dmxdev);
dvb_dmx_release(&adap->demux);
dvb_usb_media_device_unregister(adap);
dvb_unregister_adapter(&adap->dvb_adap);
adap->state &= ~DVB_USB_ADAP_STATE_DVB;
}
return 0;
}
static int dvb_usb_set_active_fe(struct dvb_frontend *fe, int onoff)
{
struct dvb_usb_adapter *adap = fe->dvb->priv;
int ret = (adap->props.frontend_ctrl) ?
adap->props.frontend_ctrl(fe, onoff) : 0;
if (ret < 0) {
err("frontend_ctrl request failed");
return ret;
}
if (onoff)
adap->active_fe = fe->id;
return 0;
}
static int dvb_usb_fe_wakeup(struct dvb_frontend *fe)
{
struct dvb_usb_adapter *adap = fe->dvb->priv;
dvb_usb_device_power_ctrl(adap->dev, 1);
dvb_usb_set_active_fe(fe, 1);
if (adap->fe_adap[fe->id].fe_init)
adap->fe_adap[fe->id].fe_init(fe);
return 0;
}
static int dvb_usb_fe_sleep(struct dvb_frontend *fe)
{
struct dvb_usb_adapter *adap = fe->dvb->priv;
if (adap->fe_adap[fe->id].fe_sleep)
adap->fe_adap[fe->id].fe_sleep(fe);
dvb_usb_set_active_fe(fe, 0);
return dvb_usb_device_power_ctrl(adap->dev, 0);
}
int dvb_usb_adapter_frontend_init(struct dvb_usb_adapter *adap)
{
int ret, i;
/* register all given adapter frontends */
for (i = 0; i < adap->props.num_frontends; i++) {
if (adap->props.fe[i].frontend_attach == NULL) {
err("strange: '%s' #%d,%d doesn't want to attach a frontend.",
adap->dev->desc->name, adap->id, i);
return 0;
}
ret = adap->props.fe[i].frontend_attach(adap);
if (ret || adap->fe_adap[i].fe == NULL) {
/* only print error when there is no FE at all */
if (i == 0)
err("no frontend was attached by '%s'",
adap->dev->desc->name);
return 0;
}
adap->fe_adap[i].fe->id = i;
/* re-assign sleep and wakeup functions */
adap->fe_adap[i].fe_init = adap->fe_adap[i].fe->ops.init;
adap->fe_adap[i].fe->ops.init = dvb_usb_fe_wakeup;
adap->fe_adap[i].fe_sleep = adap->fe_adap[i].fe->ops.sleep;
adap->fe_adap[i].fe->ops.sleep = dvb_usb_fe_sleep;
if (dvb_register_frontend(&adap->dvb_adap, adap->fe_adap[i].fe)) {
err("Frontend %d registration failed.", i);
dvb_frontend_detach(adap->fe_adap[i].fe);
adap->fe_adap[i].fe = NULL;
/* In error case, do not try register more FEs,
* still leaving already registered FEs alive. */
if (i == 0)
return -ENODEV;
else
return 0;
}
/* only attach the tuner if the demod is there */
if (adap->props.fe[i].tuner_attach != NULL)
adap->props.fe[i].tuner_attach(adap);
adap->num_frontends_initialized++;
}
ret = dvb_create_media_graph(&adap->dvb_adap, true);
if (ret)
return ret;
ret = dvb_usb_media_device_register(adap);
return ret;
}
int dvb_usb_adapter_frontend_exit(struct dvb_usb_adapter *adap)
{
int i = adap->num_frontends_initialized - 1;
/* unregister all given adapter frontends */
for (; i >= 0; i--) {
if (adap->fe_adap[i].fe != NULL) {
dvb_unregister_frontend(adap->fe_adap[i].fe);
dvb_frontend_detach(adap->fe_adap[i].fe);
}
}
adap->num_frontends_initialized = 0;
return 0;
}