linux/net/ceph/osdmap.c

1764 lines
39 KiB
C
Raw Normal View History

#include <linux/ceph/ceph_debug.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <asm/div64.h>
#include <linux/ceph/libceph.h>
#include <linux/ceph/osdmap.h>
#include <linux/ceph/decode.h>
#include <linux/crush/hash.h>
#include <linux/crush/mapper.h>
char *ceph_osdmap_state_str(char *str, int len, int state)
{
if (!len)
return str;
if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
snprintf(str, len, "exists, up");
else if (state & CEPH_OSD_EXISTS)
snprintf(str, len, "exists");
else if (state & CEPH_OSD_UP)
snprintf(str, len, "up");
else
snprintf(str, len, "doesn't exist");
return str;
}
/* maps */
static int calc_bits_of(unsigned int t)
{
int b = 0;
while (t) {
t = t >> 1;
b++;
}
return b;
}
/*
* the foo_mask is the smallest value 2^n-1 that is >= foo.
*/
static void calc_pg_masks(struct ceph_pg_pool_info *pi)
{
pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
}
/*
* decode crush map
*/
static int crush_decode_uniform_bucket(void **p, void *end,
struct crush_bucket_uniform *b)
{
dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
b->item_weight = ceph_decode_32(p);
return 0;
bad:
return -EINVAL;
}
static int crush_decode_list_bucket(void **p, void *end,
struct crush_bucket_list *b)
{
int j;
dout("crush_decode_list_bucket %p to %p\n", *p, end);
b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
if (b->item_weights == NULL)
return -ENOMEM;
b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
if (b->sum_weights == NULL)
return -ENOMEM;
ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
for (j = 0; j < b->h.size; j++) {
b->item_weights[j] = ceph_decode_32(p);
b->sum_weights[j] = ceph_decode_32(p);
}
return 0;
bad:
return -EINVAL;
}
static int crush_decode_tree_bucket(void **p, void *end,
struct crush_bucket_tree *b)
{
int j;
dout("crush_decode_tree_bucket %p to %p\n", *p, end);
ceph_decode_8_safe(p, end, b->num_nodes, bad);
b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
if (b->node_weights == NULL)
return -ENOMEM;
ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
for (j = 0; j < b->num_nodes; j++)
b->node_weights[j] = ceph_decode_32(p);
return 0;
bad:
return -EINVAL;
}
static int crush_decode_straw_bucket(void **p, void *end,
struct crush_bucket_straw *b)
{
int j;
dout("crush_decode_straw_bucket %p to %p\n", *p, end);
b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
if (b->item_weights == NULL)
return -ENOMEM;
b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
if (b->straws == NULL)
return -ENOMEM;
ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
for (j = 0; j < b->h.size; j++) {
b->item_weights[j] = ceph_decode_32(p);
b->straws[j] = ceph_decode_32(p);
}
return 0;
bad:
return -EINVAL;
}
static int crush_decode_straw2_bucket(void **p, void *end,
struct crush_bucket_straw2 *b)
{
int j;
dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
if (b->item_weights == NULL)
return -ENOMEM;
ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
for (j = 0; j < b->h.size; j++)
b->item_weights[j] = ceph_decode_32(p);
return 0;
bad:
return -EINVAL;
}
static int skip_name_map(void **p, void *end)
{
int len;
ceph_decode_32_safe(p, end, len ,bad);
while (len--) {
int strlen;
*p += sizeof(u32);
ceph_decode_32_safe(p, end, strlen, bad);
*p += strlen;
}
return 0;
bad:
return -EINVAL;
}
static struct crush_map *crush_decode(void *pbyval, void *end)
{
struct crush_map *c;
int err = -EINVAL;
int i, j;
void **p = &pbyval;
void *start = pbyval;
u32 magic;
u32 num_name_maps;
dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
c = kzalloc(sizeof(*c), GFP_NOFS);
if (c == NULL)
return ERR_PTR(-ENOMEM);
/* set tunables to default values */
c->choose_local_tries = 2;
c->choose_local_fallback_tries = 5;
c->choose_total_tries = 19;
libceph: for chooseleaf rules, retry CRUSH map descent from root if leaf is failed Add libceph support for a new CRUSH tunable recently added to Ceph servers. Consider the CRUSH rule step chooseleaf firstn 0 type <node_type> This rule means that <n> replicas will be chosen in a manner such that each chosen leaf's branch will contain a unique instance of <node_type>. When an object is re-replicated after a leaf failure, if the CRUSH map uses a chooseleaf rule the remapped replica ends up under the <node_type> bucket that held the failed leaf. This causes uneven data distribution across the storage cluster, to the point that when all the leaves but one fail under a particular <node_type> bucket, that remaining leaf holds all the data from its failed peers. This behavior also limits the number of peers that can participate in the re-replication of the data held by the failed leaf, which increases the time required to re-replicate after a failure. For a chooseleaf CRUSH rule, the tree descent has two steps: call them the inner and outer descents. If the tree descent down to <node_type> is the outer descent, and the descent from <node_type> down to a leaf is the inner descent, the issue is that a down leaf is detected on the inner descent, so only the inner descent is retried. In order to disperse re-replicated data as widely as possible across a storage cluster after a failure, we want to retry the outer descent. So, fix up crush_choose() to allow the inner descent to return immediately on choosing a failed leaf. Wire this up as a new CRUSH tunable. Note that after this change, for a chooseleaf rule, if the primary OSD in a placement group has failed, choosing a replacement may result in one of the other OSDs in the PG colliding with the new primary. This requires that OSD's data for that PG to need moving as well. This seems unavoidable but should be relatively rare. This corresponds to ceph.git commit 88f218181a9e6d2292e2697fc93797d0f6d6e5dc. Signed-off-by: Jim Schutt <jaschut@sandia.gov> Reviewed-by: Sage Weil <sage@inktank.com>
2012-12-01 00:15:25 +08:00
c->chooseleaf_descend_once = 0;
ceph_decode_need(p, end, 4*sizeof(u32), bad);
magic = ceph_decode_32(p);
if (magic != CRUSH_MAGIC) {
pr_err("crush_decode magic %x != current %x\n",
(unsigned int)magic, (unsigned int)CRUSH_MAGIC);
goto bad;
}
c->max_buckets = ceph_decode_32(p);
c->max_rules = ceph_decode_32(p);
c->max_devices = ceph_decode_32(p);
c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
if (c->buckets == NULL)
goto badmem;
c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
if (c->rules == NULL)
goto badmem;
/* buckets */
for (i = 0; i < c->max_buckets; i++) {
int size = 0;
u32 alg;
struct crush_bucket *b;
ceph_decode_32_safe(p, end, alg, bad);
if (alg == 0) {
c->buckets[i] = NULL;
continue;
}
dout("crush_decode bucket %d off %x %p to %p\n",
i, (int)(*p-start), *p, end);
switch (alg) {
case CRUSH_BUCKET_UNIFORM:
size = sizeof(struct crush_bucket_uniform);
break;
case CRUSH_BUCKET_LIST:
size = sizeof(struct crush_bucket_list);
break;
case CRUSH_BUCKET_TREE:
size = sizeof(struct crush_bucket_tree);
break;
case CRUSH_BUCKET_STRAW:
size = sizeof(struct crush_bucket_straw);
break;
case CRUSH_BUCKET_STRAW2:
size = sizeof(struct crush_bucket_straw2);
break;
default:
err = -EINVAL;
goto bad;
}
BUG_ON(size == 0);
b = c->buckets[i] = kzalloc(size, GFP_NOFS);
if (b == NULL)
goto badmem;
ceph_decode_need(p, end, 4*sizeof(u32), bad);
b->id = ceph_decode_32(p);
b->type = ceph_decode_16(p);
b->alg = ceph_decode_8(p);
b->hash = ceph_decode_8(p);
b->weight = ceph_decode_32(p);
b->size = ceph_decode_32(p);
dout("crush_decode bucket size %d off %x %p to %p\n",
b->size, (int)(*p-start), *p, end);
b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
if (b->items == NULL)
goto badmem;
b->perm = kcalloc(b->size, sizeof(u32), GFP_NOFS);
if (b->perm == NULL)
goto badmem;
b->perm_n = 0;
ceph_decode_need(p, end, b->size*sizeof(u32), bad);
for (j = 0; j < b->size; j++)
b->items[j] = ceph_decode_32(p);
switch (b->alg) {
case CRUSH_BUCKET_UNIFORM:
err = crush_decode_uniform_bucket(p, end,
(struct crush_bucket_uniform *)b);
if (err < 0)
goto bad;
break;
case CRUSH_BUCKET_LIST:
err = crush_decode_list_bucket(p, end,
(struct crush_bucket_list *)b);
if (err < 0)
goto bad;
break;
case CRUSH_BUCKET_TREE:
err = crush_decode_tree_bucket(p, end,
(struct crush_bucket_tree *)b);
if (err < 0)
goto bad;
break;
case CRUSH_BUCKET_STRAW:
err = crush_decode_straw_bucket(p, end,
(struct crush_bucket_straw *)b);
if (err < 0)
goto bad;
break;
case CRUSH_BUCKET_STRAW2:
err = crush_decode_straw2_bucket(p, end,
(struct crush_bucket_straw2 *)b);
if (err < 0)
goto bad;
break;
}
}
/* rules */
dout("rule vec is %p\n", c->rules);
for (i = 0; i < c->max_rules; i++) {
u32 yes;
struct crush_rule *r;
ceph_decode_32_safe(p, end, yes, bad);
if (!yes) {
dout("crush_decode NO rule %d off %x %p to %p\n",
i, (int)(*p-start), *p, end);
c->rules[i] = NULL;
continue;
}
dout("crush_decode rule %d off %x %p to %p\n",
i, (int)(*p-start), *p, end);
/* len */
ceph_decode_32_safe(p, end, yes, bad);
#if BITS_PER_LONG == 32
err = -EINVAL;
if (yes > (ULONG_MAX - sizeof(*r))
/ sizeof(struct crush_rule_step))
goto bad;
#endif
r = c->rules[i] = kmalloc(sizeof(*r) +
yes*sizeof(struct crush_rule_step),
GFP_NOFS);
if (r == NULL)
goto badmem;
dout(" rule %d is at %p\n", i, r);
r->len = yes;
ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
for (j = 0; j < r->len; j++) {
r->steps[j].op = ceph_decode_32(p);
r->steps[j].arg1 = ceph_decode_32(p);
r->steps[j].arg2 = ceph_decode_32(p);
}
}
/* ignore trailing name maps. */
for (num_name_maps = 0; num_name_maps < 3; num_name_maps++) {
err = skip_name_map(p, end);
if (err < 0)
goto done;
}
/* tunables */
ceph_decode_need(p, end, 3*sizeof(u32), done);
c->choose_local_tries = ceph_decode_32(p);
c->choose_local_fallback_tries = ceph_decode_32(p);
c->choose_total_tries = ceph_decode_32(p);
dout("crush decode tunable choose_local_tries = %d\n",
c->choose_local_tries);
dout("crush decode tunable choose_local_fallback_tries = %d\n",
c->choose_local_fallback_tries);
dout("crush decode tunable choose_total_tries = %d\n",
c->choose_total_tries);
libceph: for chooseleaf rules, retry CRUSH map descent from root if leaf is failed Add libceph support for a new CRUSH tunable recently added to Ceph servers. Consider the CRUSH rule step chooseleaf firstn 0 type <node_type> This rule means that <n> replicas will be chosen in a manner such that each chosen leaf's branch will contain a unique instance of <node_type>. When an object is re-replicated after a leaf failure, if the CRUSH map uses a chooseleaf rule the remapped replica ends up under the <node_type> bucket that held the failed leaf. This causes uneven data distribution across the storage cluster, to the point that when all the leaves but one fail under a particular <node_type> bucket, that remaining leaf holds all the data from its failed peers. This behavior also limits the number of peers that can participate in the re-replication of the data held by the failed leaf, which increases the time required to re-replicate after a failure. For a chooseleaf CRUSH rule, the tree descent has two steps: call them the inner and outer descents. If the tree descent down to <node_type> is the outer descent, and the descent from <node_type> down to a leaf is the inner descent, the issue is that a down leaf is detected on the inner descent, so only the inner descent is retried. In order to disperse re-replicated data as widely as possible across a storage cluster after a failure, we want to retry the outer descent. So, fix up crush_choose() to allow the inner descent to return immediately on choosing a failed leaf. Wire this up as a new CRUSH tunable. Note that after this change, for a chooseleaf rule, if the primary OSD in a placement group has failed, choosing a replacement may result in one of the other OSDs in the PG colliding with the new primary. This requires that OSD's data for that PG to need moving as well. This seems unavoidable but should be relatively rare. This corresponds to ceph.git commit 88f218181a9e6d2292e2697fc93797d0f6d6e5dc. Signed-off-by: Jim Schutt <jaschut@sandia.gov> Reviewed-by: Sage Weil <sage@inktank.com>
2012-12-01 00:15:25 +08:00
ceph_decode_need(p, end, sizeof(u32), done);
c->chooseleaf_descend_once = ceph_decode_32(p);
dout("crush decode tunable chooseleaf_descend_once = %d\n",
libceph: for chooseleaf rules, retry CRUSH map descent from root if leaf is failed Add libceph support for a new CRUSH tunable recently added to Ceph servers. Consider the CRUSH rule step chooseleaf firstn 0 type <node_type> This rule means that <n> replicas will be chosen in a manner such that each chosen leaf's branch will contain a unique instance of <node_type>. When an object is re-replicated after a leaf failure, if the CRUSH map uses a chooseleaf rule the remapped replica ends up under the <node_type> bucket that held the failed leaf. This causes uneven data distribution across the storage cluster, to the point that when all the leaves but one fail under a particular <node_type> bucket, that remaining leaf holds all the data from its failed peers. This behavior also limits the number of peers that can participate in the re-replication of the data held by the failed leaf, which increases the time required to re-replicate after a failure. For a chooseleaf CRUSH rule, the tree descent has two steps: call them the inner and outer descents. If the tree descent down to <node_type> is the outer descent, and the descent from <node_type> down to a leaf is the inner descent, the issue is that a down leaf is detected on the inner descent, so only the inner descent is retried. In order to disperse re-replicated data as widely as possible across a storage cluster after a failure, we want to retry the outer descent. So, fix up crush_choose() to allow the inner descent to return immediately on choosing a failed leaf. Wire this up as a new CRUSH tunable. Note that after this change, for a chooseleaf rule, if the primary OSD in a placement group has failed, choosing a replacement may result in one of the other OSDs in the PG colliding with the new primary. This requires that OSD's data for that PG to need moving as well. This seems unavoidable but should be relatively rare. This corresponds to ceph.git commit 88f218181a9e6d2292e2697fc93797d0f6d6e5dc. Signed-off-by: Jim Schutt <jaschut@sandia.gov> Reviewed-by: Sage Weil <sage@inktank.com>
2012-12-01 00:15:25 +08:00
c->chooseleaf_descend_once);
ceph_decode_need(p, end, sizeof(u8), done);
c->chooseleaf_vary_r = ceph_decode_8(p);
dout("crush decode tunable chooseleaf_vary_r = %d\n",
c->chooseleaf_vary_r);
/* skip straw_calc_version, allowed_bucket_algs */
ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
*p += sizeof(u8) + sizeof(u32);
ceph_decode_need(p, end, sizeof(u8), done);
c->chooseleaf_stable = ceph_decode_8(p);
dout("crush decode tunable chooseleaf_stable = %d\n",
c->chooseleaf_stable);
done:
dout("crush_decode success\n");
return c;
badmem:
err = -ENOMEM;
bad:
dout("crush_decode fail %d\n", err);
crush_destroy(c);
return ERR_PTR(err);
}
/*
* rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
* to a set of osds) and primary_temp (explicit primary setting)
*/
static int pgid_cmp(struct ceph_pg l, struct ceph_pg r)
{
if (l.pool < r.pool)
return -1;
if (l.pool > r.pool)
return 1;
if (l.seed < r.seed)
return -1;
if (l.seed > r.seed)
return 1;
return 0;
}
static int __insert_pg_mapping(struct ceph_pg_mapping *new,
struct rb_root *root)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct ceph_pg_mapping *pg = NULL;
int c;
dout("__insert_pg_mapping %llx %p\n", *(u64 *)&new->pgid, new);
while (*p) {
parent = *p;
pg = rb_entry(parent, struct ceph_pg_mapping, node);
c = pgid_cmp(new->pgid, pg->pgid);
if (c < 0)
p = &(*p)->rb_left;
else if (c > 0)
p = &(*p)->rb_right;
else
return -EEXIST;
}
rb_link_node(&new->node, parent, p);
rb_insert_color(&new->node, root);
return 0;
}
static struct ceph_pg_mapping *__lookup_pg_mapping(struct rb_root *root,
struct ceph_pg pgid)
{
struct rb_node *n = root->rb_node;
struct ceph_pg_mapping *pg;
int c;
while (n) {
pg = rb_entry(n, struct ceph_pg_mapping, node);
c = pgid_cmp(pgid, pg->pgid);
if (c < 0) {
n = n->rb_left;
} else if (c > 0) {
n = n->rb_right;
} else {
dout("__lookup_pg_mapping %lld.%x got %p\n",
pgid.pool, pgid.seed, pg);
return pg;
}
}
return NULL;
}
static int __remove_pg_mapping(struct rb_root *root, struct ceph_pg pgid)
{
struct ceph_pg_mapping *pg = __lookup_pg_mapping(root, pgid);
if (pg) {
dout("__remove_pg_mapping %lld.%x %p\n", pgid.pool, pgid.seed,
pg);
rb_erase(&pg->node, root);
kfree(pg);
return 0;
}
dout("__remove_pg_mapping %lld.%x dne\n", pgid.pool, pgid.seed);
return -ENOENT;
}
/*
* rbtree of pg pool info
*/
static int __insert_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *new)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct ceph_pg_pool_info *pi = NULL;
while (*p) {
parent = *p;
pi = rb_entry(parent, struct ceph_pg_pool_info, node);
if (new->id < pi->id)
p = &(*p)->rb_left;
else if (new->id > pi->id)
p = &(*p)->rb_right;
else
return -EEXIST;
}
rb_link_node(&new->node, parent, p);
rb_insert_color(&new->node, root);
return 0;
}
static struct ceph_pg_pool_info *__lookup_pg_pool(struct rb_root *root, u64 id)
{
struct ceph_pg_pool_info *pi;
struct rb_node *n = root->rb_node;
while (n) {
pi = rb_entry(n, struct ceph_pg_pool_info, node);
if (id < pi->id)
n = n->rb_left;
else if (id > pi->id)
n = n->rb_right;
else
return pi;
}
return NULL;
}
struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
{
return __lookup_pg_pool(&map->pg_pools, id);
}
const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
{
struct ceph_pg_pool_info *pi;
if (id == CEPH_NOPOOL)
return NULL;
if (WARN_ON_ONCE(id > (u64) INT_MAX))
return NULL;
pi = __lookup_pg_pool(&map->pg_pools, (int) id);
return pi ? pi->name : NULL;
}
EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
{
struct rb_node *rbp;
for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
struct ceph_pg_pool_info *pi =
rb_entry(rbp, struct ceph_pg_pool_info, node);
if (pi->name && strcmp(pi->name, name) == 0)
return pi->id;
}
return -ENOENT;
}
EXPORT_SYMBOL(ceph_pg_poolid_by_name);
static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
{
rb_erase(&pi->node, root);
kfree(pi->name);
kfree(pi);
}
static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
{
u8 ev, cv;
unsigned len, num;
void *pool_end;
ceph_decode_need(p, end, 2 + 4, bad);
ev = ceph_decode_8(p); /* encoding version */
cv = ceph_decode_8(p); /* compat version */
if (ev < 5) {
pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
return -EINVAL;
}
if (cv > 9) {
pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
return -EINVAL;
}
len = ceph_decode_32(p);
ceph_decode_need(p, end, len, bad);
pool_end = *p + len;
pi->type = ceph_decode_8(p);
pi->size = ceph_decode_8(p);
pi->crush_ruleset = ceph_decode_8(p);
pi->object_hash = ceph_decode_8(p);
pi->pg_num = ceph_decode_32(p);
pi->pgp_num = ceph_decode_32(p);
*p += 4 + 4; /* skip lpg* */
*p += 4; /* skip last_change */
*p += 8 + 4; /* skip snap_seq, snap_epoch */
/* skip snaps */
num = ceph_decode_32(p);
while (num--) {
*p += 8; /* snapid key */
*p += 1 + 1; /* versions */
len = ceph_decode_32(p);
*p += len;
}
/* skip removed_snaps */
num = ceph_decode_32(p);
*p += num * (8 + 8);
*p += 8; /* skip auid */
pi->flags = ceph_decode_64(p);
*p += 4; /* skip crash_replay_interval */
if (ev >= 7)
*p += 1; /* skip min_size */
if (ev >= 8)
*p += 8 + 8; /* skip quota_max_* */
if (ev >= 9) {
/* skip tiers */
num = ceph_decode_32(p);
*p += num * 8;
*p += 8; /* skip tier_of */
*p += 1; /* skip cache_mode */
pi->read_tier = ceph_decode_64(p);
pi->write_tier = ceph_decode_64(p);
} else {
pi->read_tier = -1;
pi->write_tier = -1;
}
/* ignore the rest */
*p = pool_end;
calc_pg_masks(pi);
return 0;
bad:
return -EINVAL;
}
static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
{
struct ceph_pg_pool_info *pi;
u32 num, len;
u64 pool;
ceph_decode_32_safe(p, end, num, bad);
dout(" %d pool names\n", num);
while (num--) {
ceph_decode_64_safe(p, end, pool, bad);
ceph_decode_32_safe(p, end, len, bad);
dout(" pool %llu len %d\n", pool, len);
ceph_decode_need(p, end, len, bad);
pi = __lookup_pg_pool(&map->pg_pools, pool);
if (pi) {
char *name = kstrndup(*p, len, GFP_NOFS);
if (!name)
return -ENOMEM;
kfree(pi->name);
pi->name = name;
dout(" name is %s\n", pi->name);
}
*p += len;
}
return 0;
bad:
return -EINVAL;
}
/*
* osd map
*/
void ceph_osdmap_destroy(struct ceph_osdmap *map)
{
dout("osdmap_destroy %p\n", map);
if (map->crush)
crush_destroy(map->crush);
while (!RB_EMPTY_ROOT(&map->pg_temp)) {
struct ceph_pg_mapping *pg =
rb_entry(rb_first(&map->pg_temp),
struct ceph_pg_mapping, node);
rb_erase(&pg->node, &map->pg_temp);
kfree(pg);
}
while (!RB_EMPTY_ROOT(&map->primary_temp)) {
struct ceph_pg_mapping *pg =
rb_entry(rb_first(&map->primary_temp),
struct ceph_pg_mapping, node);
rb_erase(&pg->node, &map->primary_temp);
kfree(pg);
}
while (!RB_EMPTY_ROOT(&map->pg_pools)) {
struct ceph_pg_pool_info *pi =
rb_entry(rb_first(&map->pg_pools),
struct ceph_pg_pool_info, node);
__remove_pg_pool(&map->pg_pools, pi);
}
kfree(map->osd_state);
kfree(map->osd_weight);
kfree(map->osd_addr);
kfree(map->osd_primary_affinity);
kfree(map);
}
/*
* Adjust max_osd value, (re)allocate arrays.
*
* The new elements are properly initialized.
*/
static int osdmap_set_max_osd(struct ceph_osdmap *map, int max)
{
u8 *state;
u32 *weight;
struct ceph_entity_addr *addr;
int i;
state = krealloc(map->osd_state, max*sizeof(*state), GFP_NOFS);
if (!state)
return -ENOMEM;
map->osd_state = state;
weight = krealloc(map->osd_weight, max*sizeof(*weight), GFP_NOFS);
if (!weight)
return -ENOMEM;
map->osd_weight = weight;
addr = krealloc(map->osd_addr, max*sizeof(*addr), GFP_NOFS);
if (!addr)
return -ENOMEM;
map->osd_addr = addr;
for (i = map->max_osd; i < max; i++) {
map->osd_state[i] = 0;
map->osd_weight[i] = CEPH_OSD_OUT;
memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
}
if (map->osd_primary_affinity) {
u32 *affinity;
affinity = krealloc(map->osd_primary_affinity,
max*sizeof(*affinity), GFP_NOFS);
if (!affinity)
return -ENOMEM;
map->osd_primary_affinity = affinity;
for (i = map->max_osd; i < max; i++)
map->osd_primary_affinity[i] =
CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
}
map->max_osd = max;
return 0;
}
#define OSDMAP_WRAPPER_COMPAT_VER 7
#define OSDMAP_CLIENT_DATA_COMPAT_VER 1
/*
* Return 0 or error. On success, *v is set to 0 for old (v6) osdmaps,
* to struct_v of the client_data section for new (v7 and above)
* osdmaps.
*/
static int get_osdmap_client_data_v(void **p, void *end,
const char *prefix, u8 *v)
{
u8 struct_v;
ceph_decode_8_safe(p, end, struct_v, e_inval);
if (struct_v >= 7) {
u8 struct_compat;
ceph_decode_8_safe(p, end, struct_compat, e_inval);
if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
struct_v, struct_compat,
OSDMAP_WRAPPER_COMPAT_VER, prefix);
return -EINVAL;
}
*p += 4; /* ignore wrapper struct_len */
ceph_decode_8_safe(p, end, struct_v, e_inval);
ceph_decode_8_safe(p, end, struct_compat, e_inval);
if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
struct_v, struct_compat,
OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
return -EINVAL;
}
*p += 4; /* ignore client data struct_len */
} else {
u16 version;
*p -= 1;
ceph_decode_16_safe(p, end, version, e_inval);
if (version < 6) {
pr_warn("got v %d < 6 of %s ceph_osdmap\n",
version, prefix);
return -EINVAL;
}
/* old osdmap enconding */
struct_v = 0;
}
*v = struct_v;
return 0;
e_inval:
return -EINVAL;
}
static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
bool incremental)
{
u32 n;
ceph_decode_32_safe(p, end, n, e_inval);
while (n--) {
struct ceph_pg_pool_info *pi;
u64 pool;
int ret;
ceph_decode_64_safe(p, end, pool, e_inval);
pi = __lookup_pg_pool(&map->pg_pools, pool);
if (!incremental || !pi) {
pi = kzalloc(sizeof(*pi), GFP_NOFS);
if (!pi)
return -ENOMEM;
pi->id = pool;
ret = __insert_pg_pool(&map->pg_pools, pi);
if (ret) {
kfree(pi);
return ret;
}
}
ret = decode_pool(p, end, pi);
if (ret)
return ret;
}
return 0;
e_inval:
return -EINVAL;
}
static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
{
return __decode_pools(p, end, map, false);
}
static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
{
return __decode_pools(p, end, map, true);
}
static int __decode_pg_temp(void **p, void *end, struct ceph_osdmap *map,
bool incremental)
{
u32 n;
ceph_decode_32_safe(p, end, n, e_inval);
while (n--) {
struct ceph_pg pgid;
u32 len, i;
int ret;
ret = ceph_decode_pgid(p, end, &pgid);
if (ret)
return ret;
ceph_decode_32_safe(p, end, len, e_inval);
ret = __remove_pg_mapping(&map->pg_temp, pgid);
BUG_ON(!incremental && ret != -ENOENT);
if (!incremental || len > 0) {
struct ceph_pg_mapping *pg;
ceph_decode_need(p, end, len*sizeof(u32), e_inval);
if (len > (UINT_MAX - sizeof(*pg)) / sizeof(u32))
return -EINVAL;
pg = kzalloc(sizeof(*pg) + len*sizeof(u32), GFP_NOFS);
if (!pg)
return -ENOMEM;
pg->pgid = pgid;
pg->pg_temp.len = len;
for (i = 0; i < len; i++)
pg->pg_temp.osds[i] = ceph_decode_32(p);
ret = __insert_pg_mapping(pg, &map->pg_temp);
if (ret) {
kfree(pg);
return ret;
}
}
}
return 0;
e_inval:
return -EINVAL;
}
static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
{
return __decode_pg_temp(p, end, map, false);
}
static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
{
return __decode_pg_temp(p, end, map, true);
}
static int __decode_primary_temp(void **p, void *end, struct ceph_osdmap *map,
bool incremental)
{
u32 n;
ceph_decode_32_safe(p, end, n, e_inval);
while (n--) {
struct ceph_pg pgid;
u32 osd;
int ret;
ret = ceph_decode_pgid(p, end, &pgid);
if (ret)
return ret;
ceph_decode_32_safe(p, end, osd, e_inval);
ret = __remove_pg_mapping(&map->primary_temp, pgid);
BUG_ON(!incremental && ret != -ENOENT);
if (!incremental || osd != (u32)-1) {
struct ceph_pg_mapping *pg;
pg = kzalloc(sizeof(*pg), GFP_NOFS);
if (!pg)
return -ENOMEM;
pg->pgid = pgid;
pg->primary_temp.osd = osd;
ret = __insert_pg_mapping(pg, &map->primary_temp);
if (ret) {
kfree(pg);
return ret;
}
}
}
return 0;
e_inval:
return -EINVAL;
}
static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
{
return __decode_primary_temp(p, end, map, false);
}
static int decode_new_primary_temp(void **p, void *end,
struct ceph_osdmap *map)
{
return __decode_primary_temp(p, end, map, true);
}
u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
{
BUG_ON(osd >= map->max_osd);
if (!map->osd_primary_affinity)
return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
return map->osd_primary_affinity[osd];
}
static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
{
BUG_ON(osd >= map->max_osd);
if (!map->osd_primary_affinity) {
int i;
map->osd_primary_affinity = kmalloc(map->max_osd*sizeof(u32),
GFP_NOFS);
if (!map->osd_primary_affinity)
return -ENOMEM;
for (i = 0; i < map->max_osd; i++)
map->osd_primary_affinity[i] =
CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
}
map->osd_primary_affinity[osd] = aff;
return 0;
}
static int decode_primary_affinity(void **p, void *end,
struct ceph_osdmap *map)
{
u32 len, i;
ceph_decode_32_safe(p, end, len, e_inval);
if (len == 0) {
kfree(map->osd_primary_affinity);
map->osd_primary_affinity = NULL;
return 0;
}
if (len != map->max_osd)
goto e_inval;
ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
for (i = 0; i < map->max_osd; i++) {
int ret;
ret = set_primary_affinity(map, i, ceph_decode_32(p));
if (ret)
return ret;
}
return 0;
e_inval:
return -EINVAL;
}
static int decode_new_primary_affinity(void **p, void *end,
struct ceph_osdmap *map)
{
u32 n;
ceph_decode_32_safe(p, end, n, e_inval);
while (n--) {
u32 osd, aff;
int ret;
ceph_decode_32_safe(p, end, osd, e_inval);
ceph_decode_32_safe(p, end, aff, e_inval);
ret = set_primary_affinity(map, osd, aff);
if (ret)
return ret;
pr_info("osd%d primary-affinity 0x%x\n", osd, aff);
}
return 0;
e_inval:
return -EINVAL;
}
/*
* decode a full map.
*/
static int osdmap_decode(void **p, void *end, struct ceph_osdmap *map)
{
u8 struct_v;
u32 epoch = 0;
void *start = *p;
u32 max;
u32 len, i;
int err;
dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
err = get_osdmap_client_data_v(p, end, "full", &struct_v);
if (err)
goto bad;
/* fsid, epoch, created, modified */
ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
sizeof(map->created) + sizeof(map->modified), e_inval);
ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
epoch = map->epoch = ceph_decode_32(p);
ceph_decode_copy(p, &map->created, sizeof(map->created));
ceph_decode_copy(p, &map->modified, sizeof(map->modified));
/* pools */
err = decode_pools(p, end, map);
if (err)
goto bad;
/* pool_name */
err = decode_pool_names(p, end, map);
if (err)
goto bad;
ceph_decode_32_safe(p, end, map->pool_max, e_inval);
ceph_decode_32_safe(p, end, map->flags, e_inval);
/* max_osd */
ceph_decode_32_safe(p, end, max, e_inval);
/* (re)alloc osd arrays */
err = osdmap_set_max_osd(map, max);
if (err)
goto bad;
/* osd_state, osd_weight, osd_addrs->client_addr */
ceph_decode_need(p, end, 3*sizeof(u32) +
map->max_osd*(1 + sizeof(*map->osd_weight) +
sizeof(*map->osd_addr)), e_inval);
if (ceph_decode_32(p) != map->max_osd)
goto e_inval;
ceph_decode_copy(p, map->osd_state, map->max_osd);
if (ceph_decode_32(p) != map->max_osd)
goto e_inval;
for (i = 0; i < map->max_osd; i++)
map->osd_weight[i] = ceph_decode_32(p);
if (ceph_decode_32(p) != map->max_osd)
goto e_inval;
ceph_decode_copy(p, map->osd_addr, map->max_osd*sizeof(*map->osd_addr));
for (i = 0; i < map->max_osd; i++)
ceph_decode_addr(&map->osd_addr[i]);
/* pg_temp */
err = decode_pg_temp(p, end, map);
if (err)
goto bad;
/* primary_temp */
if (struct_v >= 1) {
err = decode_primary_temp(p, end, map);
if (err)
goto bad;
}
/* primary_affinity */
if (struct_v >= 2) {
err = decode_primary_affinity(p, end, map);
if (err)
goto bad;
} else {
/* XXX can this happen? */
kfree(map->osd_primary_affinity);
map->osd_primary_affinity = NULL;
}
/* crush */
ceph_decode_32_safe(p, end, len, e_inval);
map->crush = crush_decode(*p, min(*p + len, end));
if (IS_ERR(map->crush)) {
err = PTR_ERR(map->crush);
map->crush = NULL;
goto bad;
}
*p += len;
/* ignore the rest */
*p = end;
dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
return 0;
e_inval:
err = -EINVAL;
bad:
pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
err, epoch, (int)(*p - start), *p, start, end);
print_hex_dump(KERN_DEBUG, "osdmap: ",
DUMP_PREFIX_OFFSET, 16, 1,
start, end - start, true);
return err;
}
/*
* Allocate and decode a full map.
*/
struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end)
{
struct ceph_osdmap *map;
int ret;
map = kzalloc(sizeof(*map), GFP_NOFS);
if (!map)
return ERR_PTR(-ENOMEM);
map->pg_temp = RB_ROOT;
map->primary_temp = RB_ROOT;
mutex_init(&map->crush_scratch_mutex);
ret = osdmap_decode(p, end, map);
if (ret) {
ceph_osdmap_destroy(map);
return ERR_PTR(ret);
}
return map;
}
/*
* decode and apply an incremental map update.
*/
struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end,
struct ceph_osdmap *map,
struct ceph_messenger *msgr)
{
struct crush_map *newcrush = NULL;
struct ceph_fsid fsid;
u32 epoch = 0;
struct ceph_timespec modified;
s32 len;
u64 pool;
__s64 new_pool_max;
__s32 new_flags, max;
void *start = *p;
int err;
u8 struct_v;
dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
if (err)
goto bad;
/* fsid, epoch, modified, new_pool_max, new_flags */
ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
sizeof(u64) + sizeof(u32), e_inval);
ceph_decode_copy(p, &fsid, sizeof(fsid));
epoch = ceph_decode_32(p);
BUG_ON(epoch != map->epoch+1);
ceph_decode_copy(p, &modified, sizeof(modified));
new_pool_max = ceph_decode_64(p);
new_flags = ceph_decode_32(p);
/* full map? */
ceph_decode_32_safe(p, end, len, e_inval);
if (len > 0) {
dout("apply_incremental full map len %d, %p to %p\n",
len, *p, end);
return ceph_osdmap_decode(p, min(*p+len, end));
}
/* new crush? */
ceph_decode_32_safe(p, end, len, e_inval);
if (len > 0) {
newcrush = crush_decode(*p, min(*p+len, end));
if (IS_ERR(newcrush)) {
err = PTR_ERR(newcrush);
newcrush = NULL;
goto bad;
}
*p += len;
}
/* new flags? */
if (new_flags >= 0)
map->flags = new_flags;
if (new_pool_max >= 0)
map->pool_max = new_pool_max;
/* new max? */
ceph_decode_32_safe(p, end, max, e_inval);
if (max >= 0) {
err = osdmap_set_max_osd(map, max);
if (err)
goto bad;
}
map->epoch++;
map->modified = modified;
if (newcrush) {
if (map->crush)
crush_destroy(map->crush);
map->crush = newcrush;
newcrush = NULL;
}
/* new_pools */
err = decode_new_pools(p, end, map);
if (err)
goto bad;
/* new_pool_names */
err = decode_pool_names(p, end, map);
if (err)
goto bad;
/* old_pool */
ceph_decode_32_safe(p, end, len, e_inval);
while (len--) {
struct ceph_pg_pool_info *pi;
ceph_decode_64_safe(p, end, pool, e_inval);
pi = __lookup_pg_pool(&map->pg_pools, pool);
if (pi)
__remove_pg_pool(&map->pg_pools, pi);
}
/* new_up */
ceph_decode_32_safe(p, end, len, e_inval);
while (len--) {
u32 osd;
struct ceph_entity_addr addr;
ceph_decode_32_safe(p, end, osd, e_inval);
ceph_decode_copy_safe(p, end, &addr, sizeof(addr), e_inval);
ceph_decode_addr(&addr);
pr_info("osd%d up\n", osd);
BUG_ON(osd >= map->max_osd);
map->osd_state[osd] |= CEPH_OSD_UP | CEPH_OSD_EXISTS;
map->osd_addr[osd] = addr;
}
/* new_state */
ceph_decode_32_safe(p, end, len, e_inval);
while (len--) {
u32 osd;
u8 xorstate;
ceph_decode_32_safe(p, end, osd, e_inval);
xorstate = **(u8 **)p;
(*p)++; /* clean flag */
if (xorstate == 0)
xorstate = CEPH_OSD_UP;
if (xorstate & CEPH_OSD_UP)
pr_info("osd%d down\n", osd);
if (osd < map->max_osd)
map->osd_state[osd] ^= xorstate;
}
/* new_weight */
ceph_decode_32_safe(p, end, len, e_inval);
while (len--) {
u32 osd, off;
ceph_decode_need(p, end, sizeof(u32)*2, e_inval);
osd = ceph_decode_32(p);
off = ceph_decode_32(p);
pr_info("osd%d weight 0x%x %s\n", osd, off,
off == CEPH_OSD_IN ? "(in)" :
(off == CEPH_OSD_OUT ? "(out)" : ""));
if (osd < map->max_osd)
map->osd_weight[osd] = off;
}
/* new_pg_temp */
err = decode_new_pg_temp(p, end, map);
if (err)
goto bad;
/* new_primary_temp */
if (struct_v >= 1) {
err = decode_new_primary_temp(p, end, map);
if (err)
goto bad;
}
/* new_primary_affinity */
if (struct_v >= 2) {
err = decode_new_primary_affinity(p, end, map);
if (err)
goto bad;
}
/* ignore the rest */
*p = end;
dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
return map;
e_inval:
err = -EINVAL;
bad:
pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
err, epoch, (int)(*p - start), *p, start, end);
print_hex_dump(KERN_DEBUG, "osdmap: ",
DUMP_PREFIX_OFFSET, 16, 1,
start, end - start, true);
if (newcrush)
crush_destroy(newcrush);
return ERR_PTR(err);
}
/*
* calculate file layout from given offset, length.
* fill in correct oid, logical length, and object extent
* offset, length.
*
* for now, we write only a single su, until we can
* pass a stride back to the caller.
*/
int ceph_calc_file_object_mapping(struct ceph_file_layout *layout,
u64 off, u64 len,
u64 *ono,
u64 *oxoff, u64 *oxlen)
{
u32 osize = le32_to_cpu(layout->fl_object_size);
u32 su = le32_to_cpu(layout->fl_stripe_unit);
u32 sc = le32_to_cpu(layout->fl_stripe_count);
u32 bl, stripeno, stripepos, objsetno;
u32 su_per_object;
u64 t, su_offset;
dout("mapping %llu~%llu osize %u fl_su %u\n", off, len,
osize, su);
if (su == 0 || sc == 0)
goto invalid;
su_per_object = osize / su;
if (su_per_object == 0)
goto invalid;
dout("osize %u / su %u = su_per_object %u\n", osize, su,
su_per_object);
if ((su & ~PAGE_MASK) != 0)
goto invalid;
/* bl = *off / su; */
t = off;
do_div(t, su);
bl = t;
dout("off %llu / su %u = bl %u\n", off, su, bl);
stripeno = bl / sc;
stripepos = bl % sc;
objsetno = stripeno / su_per_object;
*ono = objsetno * sc + stripepos;
dout("objset %u * sc %u = ono %u\n", objsetno, sc, (unsigned int)*ono);
/* *oxoff = *off % layout->fl_stripe_unit; # offset in su */
t = off;
su_offset = do_div(t, su);
*oxoff = su_offset + (stripeno % su_per_object) * su;
/*
* Calculate the length of the extent being written to the selected
* object. This is the minimum of the full length requested (len) or
* the remainder of the current stripe being written to.
*/
*oxlen = min_t(u64, len, su - su_offset);
dout(" obj extent %llu~%llu\n", *oxoff, *oxlen);
return 0;
invalid:
dout(" invalid layout\n");
*ono = 0;
*oxoff = 0;
*oxlen = 0;
return -EINVAL;
}
EXPORT_SYMBOL(ceph_calc_file_object_mapping);
/*
* Calculate mapping of a (oloc, oid) pair to a PG. Should only be
* called with target's (oloc, oid), since tiering isn't taken into
* account.
*/
int ceph_oloc_oid_to_pg(struct ceph_osdmap *osdmap,
struct ceph_object_locator *oloc,
struct ceph_object_id *oid,
struct ceph_pg *pg_out)
{
struct ceph_pg_pool_info *pi;
pi = __lookup_pg_pool(&osdmap->pg_pools, oloc->pool);
if (!pi)
return -EIO;
pg_out->pool = oloc->pool;
pg_out->seed = ceph_str_hash(pi->object_hash, oid->name,
oid->name_len);
dout("%s '%.*s' pgid %llu.%x\n", __func__, oid->name_len, oid->name,
pg_out->pool, pg_out->seed);
return 0;
}
EXPORT_SYMBOL(ceph_oloc_oid_to_pg);
static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
int *result, int result_max,
const __u32 *weight, int weight_max)
{
int r;
BUG_ON(result_max > CEPH_PG_MAX_SIZE);
mutex_lock(&map->crush_scratch_mutex);
r = crush_do_rule(map->crush, ruleno, x, result, result_max,
weight, weight_max, map->crush_scratch_ary);
mutex_unlock(&map->crush_scratch_mutex);
return r;
}
/*
* Calculate raw (crush) set for given pgid.
*
* Return raw set length, or error.
*/
static int pg_to_raw_osds(struct ceph_osdmap *osdmap,
struct ceph_pg_pool_info *pool,
struct ceph_pg pgid, u32 pps, int *osds)
{
int ruleno;
int len;
/* crush */
ruleno = crush_find_rule(osdmap->crush, pool->crush_ruleset,
pool->type, pool->size);
if (ruleno < 0) {
pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
pgid.pool, pool->crush_ruleset, pool->type,
pool->size);
return -ENOENT;
}
len = do_crush(osdmap, ruleno, pps, osds,
min_t(int, pool->size, CEPH_PG_MAX_SIZE),
osdmap->osd_weight, osdmap->max_osd);
if (len < 0) {
pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
len, ruleno, pgid.pool, pool->crush_ruleset,
pool->type, pool->size);
return len;
}
return len;
}
/*
* Given raw set, calculate up set and up primary.
*
* Return up set length. *primary is set to up primary osd id, or -1
* if up set is empty.
*/
static int raw_to_up_osds(struct ceph_osdmap *osdmap,
struct ceph_pg_pool_info *pool,
int *osds, int len, int *primary)
{
int up_primary = -1;
int i;
if (ceph_can_shift_osds(pool)) {
int removed = 0;
for (i = 0; i < len; i++) {
if (ceph_osd_is_down(osdmap, osds[i])) {
removed++;
continue;
}
if (removed)
osds[i - removed] = osds[i];
}
len -= removed;
if (len > 0)
up_primary = osds[0];
} else {
for (i = len - 1; i >= 0; i--) {
if (ceph_osd_is_down(osdmap, osds[i]))
osds[i] = CRUSH_ITEM_NONE;
else
up_primary = osds[i];
}
}
*primary = up_primary;
return len;
}
static void apply_primary_affinity(struct ceph_osdmap *osdmap, u32 pps,
struct ceph_pg_pool_info *pool,
int *osds, int len, int *primary)
{
int i;
int pos = -1;
/*
* Do we have any non-default primary_affinity values for these
* osds?
*/
if (!osdmap->osd_primary_affinity)
return;
for (i = 0; i < len; i++) {
int osd = osds[i];
if (osd != CRUSH_ITEM_NONE &&
osdmap->osd_primary_affinity[osd] !=
CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
break;
}
}
if (i == len)
return;
/*
* Pick the primary. Feed both the seed (for the pg) and the
* osd into the hash/rng so that a proportional fraction of an
* osd's pgs get rejected as primary.
*/
for (i = 0; i < len; i++) {
int osd = osds[i];
u32 aff;
if (osd == CRUSH_ITEM_NONE)
continue;
aff = osdmap->osd_primary_affinity[osd];
if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
(crush_hash32_2(CRUSH_HASH_RJENKINS1,
pps, osd) >> 16) >= aff) {
/*
* We chose not to use this primary. Note it
* anyway as a fallback in case we don't pick
* anyone else, but keep looking.
*/
if (pos < 0)
pos = i;
} else {
pos = i;
break;
}
}
if (pos < 0)
return;
*primary = osds[pos];
if (ceph_can_shift_osds(pool) && pos > 0) {
/* move the new primary to the front */
for (i = pos; i > 0; i--)
osds[i] = osds[i - 1];
osds[0] = *primary;
}
}
/*
* Given up set, apply pg_temp and primary_temp mappings.
*
* Return acting set length. *primary is set to acting primary osd id,
* or -1 if acting set is empty.
*/
static int apply_temps(struct ceph_osdmap *osdmap,
struct ceph_pg_pool_info *pool, struct ceph_pg pgid,
int *osds, int len, int *primary)
{
struct ceph_pg_mapping *pg;
int temp_len;
int temp_primary;
int i;
/* raw_pg -> pg */
pgid.seed = ceph_stable_mod(pgid.seed, pool->pg_num,
pool->pg_num_mask);
/* pg_temp? */
pg = __lookup_pg_mapping(&osdmap->pg_temp, pgid);
if (pg) {
temp_len = 0;
temp_primary = -1;
for (i = 0; i < pg->pg_temp.len; i++) {
if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
if (ceph_can_shift_osds(pool))
continue;
else
osds[temp_len++] = CRUSH_ITEM_NONE;
} else {
osds[temp_len++] = pg->pg_temp.osds[i];
}
}
/* apply pg_temp's primary */
for (i = 0; i < temp_len; i++) {
if (osds[i] != CRUSH_ITEM_NONE) {
temp_primary = osds[i];
break;
}
}
} else {
temp_len = len;
temp_primary = *primary;
}
/* primary_temp? */
pg = __lookup_pg_mapping(&osdmap->primary_temp, pgid);
if (pg)
temp_primary = pg->primary_temp.osd;
*primary = temp_primary;
return temp_len;
}
/*
* Calculate acting set for given pgid.
*
* Return acting set length, or error. *primary is set to acting
* primary osd id, or -1 if acting set is empty or on error.
*/
int ceph_calc_pg_acting(struct ceph_osdmap *osdmap, struct ceph_pg pgid,
int *osds, int *primary)
{
struct ceph_pg_pool_info *pool;
u32 pps;
int len;
pool = __lookup_pg_pool(&osdmap->pg_pools, pgid.pool);
if (!pool) {
*primary = -1;
return -ENOENT;
}
if (pool->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
/* hash pool id and seed so that pool PGs do not overlap */
pps = crush_hash32_2(CRUSH_HASH_RJENKINS1,
ceph_stable_mod(pgid.seed, pool->pgp_num,
pool->pgp_num_mask),
pgid.pool);
} else {
/*
* legacy behavior: add ps and pool together. this is
* not a great approach because the PGs from each pool
* will overlap on top of each other: 0.5 == 1.4 ==
* 2.3 == ...
*/
pps = ceph_stable_mod(pgid.seed, pool->pgp_num,
pool->pgp_num_mask) +
(unsigned)pgid.pool;
}
len = pg_to_raw_osds(osdmap, pool, pgid, pps, osds);
if (len < 0) {
*primary = -1;
return len;
}
len = raw_to_up_osds(osdmap, pool, osds, len, primary);
apply_primary_affinity(osdmap, pps, pool, osds, len, primary);
len = apply_temps(osdmap, pool, pgid, osds, len, primary);
return len;
}
/*
* Return primary osd for given pgid, or -1 if none.
*/
int ceph_calc_pg_primary(struct ceph_osdmap *osdmap, struct ceph_pg pgid)
{
int osds[CEPH_PG_MAX_SIZE];
int primary;
ceph_calc_pg_acting(osdmap, pgid, osds, &primary);
return primary;
}
EXPORT_SYMBOL(ceph_calc_pg_primary);