linux/drivers/net/wireless/wavelan.c

4447 lines
122 KiB
C
Raw Normal View History

/*
* WaveLAN ISA driver
*
* Jean II - HPLB '96
*
* Reorganisation and extension of the driver.
* Original copyright follows (also see the end of this file).
* See wavelan.p.h for details.
*
*
*
* AT&T GIS (nee NCR) WaveLAN card:
* An Ethernet-like radio transceiver
* controlled by an Intel 82586 coprocessor.
*/
#include "wavelan.p.h" /* Private header */
/************************* MISC SUBROUTINES **************************/
/*
* Subroutines which won't fit in one of the following category
* (WaveLAN modem or i82586)
*/
/*------------------------------------------------------------------*/
/*
* Translate irq number to PSA irq parameter
*/
static u8 wv_irq_to_psa(int irq)
{
if (irq < 0 || irq >= NELS(irqvals))
return 0;
return irqvals[irq];
}
/*------------------------------------------------------------------*/
/*
* Translate PSA irq parameter to irq number
*/
static int __init wv_psa_to_irq(u8 irqval)
{
int irq;
for (irq = 0; irq < NELS(irqvals); irq++)
if (irqvals[irq] == irqval)
return irq;
return -1;
}
#ifdef STRUCT_CHECK
/*------------------------------------------------------------------*/
/*
* Sanity routine to verify the sizes of the various WaveLAN interface
* structures.
*/
static char *wv_struct_check(void)
{
#define SC(t,s,n) if (sizeof(t) != s) return(n);
SC(psa_t, PSA_SIZE, "psa_t");
SC(mmw_t, MMW_SIZE, "mmw_t");
SC(mmr_t, MMR_SIZE, "mmr_t");
SC(ha_t, HA_SIZE, "ha_t");
#undef SC
return ((char *) NULL);
} /* wv_struct_check */
#endif /* STRUCT_CHECK */
/********************* HOST ADAPTER SUBROUTINES *********************/
/*
* Useful subroutines to manage the WaveLAN ISA interface
*
* One major difference with the PCMCIA hardware (except the port mapping)
* is that we have to keep the state of the Host Control Register
* because of the interrupt enable & bus size flags.
*/
/*------------------------------------------------------------------*/
/*
* Read from card's Host Adaptor Status Register.
*/
static inline u16 hasr_read(unsigned long ioaddr)
{
return (inw(HASR(ioaddr)));
} /* hasr_read */
/*------------------------------------------------------------------*/
/*
* Write to card's Host Adapter Command Register.
*/
static inline void hacr_write(unsigned long ioaddr, u16 hacr)
{
outw(hacr, HACR(ioaddr));
} /* hacr_write */
/*------------------------------------------------------------------*/
/*
* Write to card's Host Adapter Command Register. Include a delay for
* those times when it is needed.
*/
static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
{
hacr_write(ioaddr, hacr);
/* delay might only be needed sometimes */
mdelay(1);
} /* hacr_write_slow */
/*------------------------------------------------------------------*/
/*
* Set the channel attention bit.
*/
static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
{
hacr_write(ioaddr, hacr | HACR_CA);
} /* set_chan_attn */
/*------------------------------------------------------------------*/
/*
* Reset, and then set host adaptor into default mode.
*/
static inline void wv_hacr_reset(unsigned long ioaddr)
{
hacr_write_slow(ioaddr, HACR_RESET);
hacr_write(ioaddr, HACR_DEFAULT);
} /* wv_hacr_reset */
/*------------------------------------------------------------------*/
/*
* Set the I/O transfer over the ISA bus to 8-bit mode
*/
static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
{
hacr &= ~HACR_16BITS;
hacr_write(ioaddr, hacr);
} /* wv_16_off */
/*------------------------------------------------------------------*/
/*
* Set the I/O transfer over the ISA bus to 8-bit mode
*/
static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
{
hacr |= HACR_16BITS;
hacr_write(ioaddr, hacr);
} /* wv_16_on */
/*------------------------------------------------------------------*/
/*
* Disable interrupts on the WaveLAN hardware.
* (called by wv_82586_stop())
*/
static inline void wv_ints_off(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned long ioaddr = dev->base_addr;
lp->hacr &= ~HACR_INTRON;
hacr_write(ioaddr, lp->hacr);
} /* wv_ints_off */
/*------------------------------------------------------------------*/
/*
* Enable interrupts on the WaveLAN hardware.
* (called by wv_hw_reset())
*/
static inline void wv_ints_on(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned long ioaddr = dev->base_addr;
lp->hacr |= HACR_INTRON;
hacr_write(ioaddr, lp->hacr);
} /* wv_ints_on */
/******************* MODEM MANAGEMENT SUBROUTINES *******************/
/*
* Useful subroutines to manage the modem of the WaveLAN
*/
/*------------------------------------------------------------------*/
/*
* Read the Parameter Storage Area from the WaveLAN card's memory
*/
/*
* Read bytes from the PSA.
*/
static void psa_read(unsigned long ioaddr, u16 hacr, int o, /* offset in PSA */
u8 * b, /* buffer to fill */
int n)
{ /* size to read */
wv_16_off(ioaddr, hacr);
while (n-- > 0) {
outw(o, PIOR2(ioaddr));
o++;
*b++ = inb(PIOP2(ioaddr));
}
wv_16_on(ioaddr, hacr);
} /* psa_read */
/*------------------------------------------------------------------*/
/*
* Write the Parameter Storage Area to the WaveLAN card's memory.
*/
static void psa_write(unsigned long ioaddr, u16 hacr, int o, /* Offset in PSA */
u8 * b, /* Buffer in memory */
int n)
{ /* Length of buffer */
int count = 0;
wv_16_off(ioaddr, hacr);
while (n-- > 0) {
outw(o, PIOR2(ioaddr));
o++;
outb(*b, PIOP2(ioaddr));
b++;
/* Wait for the memory to finish its write cycle */
count = 0;
while ((count++ < 100) &&
(hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
}
wv_16_on(ioaddr, hacr);
} /* psa_write */
#ifdef SET_PSA_CRC
/*------------------------------------------------------------------*/
/*
* Calculate the PSA CRC
* Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
* NOTE: By specifying a length including the CRC position the
* returned value should be zero. (i.e. a correct checksum in the PSA)
*
* The Windows drivers don't use the CRC, but the AP and the PtP tool
* depend on it.
*/
static u16 psa_crc(u8 * psa, /* The PSA */
int size)
{ /* Number of short for CRC */
int byte_cnt; /* Loop on the PSA */
u16 crc_bytes = 0; /* Data in the PSA */
int bit_cnt; /* Loop on the bits of the short */
for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
crc_bytes ^= psa[byte_cnt]; /* Its an xor */
for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
if (crc_bytes & 0x0001)
crc_bytes = (crc_bytes >> 1) ^ 0xA001;
else
crc_bytes >>= 1;
}
}
return crc_bytes;
} /* psa_crc */
#endif /* SET_PSA_CRC */
/*------------------------------------------------------------------*/
/*
* update the checksum field in the Wavelan's PSA
*/
static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
{
#ifdef SET_PSA_CRC
psa_t psa;
u16 crc;
/* read the parameter storage area */
psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
/* update the checksum */
crc = psa_crc((unsigned char *) &psa,
sizeof(psa) - sizeof(psa.psa_crc[0]) -
sizeof(psa.psa_crc[1])
- sizeof(psa.psa_crc_status));
psa.psa_crc[0] = crc & 0xFF;
psa.psa_crc[1] = (crc & 0xFF00) >> 8;
/* Write it ! */
psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
(unsigned char *) &psa.psa_crc, 2);
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
dev->name, psa.psa_crc[0], psa.psa_crc[1]);
/* Check again (luxury !) */
crc = psa_crc((unsigned char *) &psa,
sizeof(psa) - sizeof(psa.psa_crc_status));
if (crc != 0)
printk(KERN_WARNING
"%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
dev->name);
#endif /* DEBUG_IOCTL_INFO */
#endif /* SET_PSA_CRC */
} /* update_psa_checksum */
/*------------------------------------------------------------------*/
/*
* Write 1 byte to the MMC.
*/
static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
{
int count = 0;
/* Wait for MMC to go idle */
while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
udelay(10);
outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
}
/*------------------------------------------------------------------*/
/*
* Routine to write bytes to the Modem Management Controller.
* We start at the end because it is the way it should be!
*/
static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
{
o += n;
b += n;
while (n-- > 0)
mmc_out(ioaddr, --o, *(--b));
} /* mmc_write */
/*------------------------------------------------------------------*/
/*
* Read a byte from the MMC.
* Optimised version for 1 byte, avoid using memory.
*/
static u8 mmc_in(unsigned long ioaddr, u16 o)
{
int count = 0;
while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
udelay(10);
outw(o << 1, MMCR(ioaddr));
while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
udelay(10);
return (u8) (inw(MMCR(ioaddr)) >> 8);
}
/*------------------------------------------------------------------*/
/*
* Routine to read bytes from the Modem Management Controller.
* The implementation is complicated by a lack of address lines,
* which prevents decoding of the low-order bit.
* (code has just been moved in the above function)
* We start at the end because it is the way it should be!
*/
static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
{
o += n;
b += n;
while (n-- > 0)
*(--b) = mmc_in(ioaddr, --o);
} /* mmc_read */
/*------------------------------------------------------------------*/
/*
* Get the type of encryption available.
*/
static inline int mmc_encr(unsigned long ioaddr)
{ /* I/O port of the card */
int temp;
temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
return 0;
else
return temp;
}
/*------------------------------------------------------------------*/
/*
* Wait for the frequency EEPROM to complete a command.
* I hope this one will be optimally inlined.
*/
static inline void fee_wait(unsigned long ioaddr, /* I/O port of the card */
int delay, /* Base delay to wait for */
int number)
{ /* Number of time to wait */
int count = 0; /* Wait only a limited time */
while ((count++ < number) &&
(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
MMR_FEE_STATUS_BUSY)) udelay(delay);
}
/*------------------------------------------------------------------*/
/*
* Read bytes from the Frequency EEPROM (frequency select cards).
*/
static void fee_read(unsigned long ioaddr, /* I/O port of the card */
u16 o, /* destination offset */
u16 * b, /* data buffer */
int n)
{ /* number of registers */
b += n; /* Position at the end of the area */
/* Write the address */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
/* Loop on all buffer */
while (n-- > 0) {
/* Write the read command */
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
MMW_FEE_CTRL_READ);
/* Wait until EEPROM is ready (should be quick). */
fee_wait(ioaddr, 10, 100);
/* Read the value. */
*--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
}
}
/*------------------------------------------------------------------*/
/*
* Write bytes from the Frequency EEPROM (frequency select cards).
* This is a bit complicated, because the frequency EEPROM has to
* be unprotected and the write enabled.
* Jean II
*/
static void fee_write(unsigned long ioaddr, /* I/O port of the card */
u16 o, /* destination offset */
u16 * b, /* data buffer */
int n)
{ /* number of registers */
b += n; /* Position at the end of the area. */
#ifdef EEPROM_IS_PROTECTED /* disabled */
#ifdef DOESNT_SEEM_TO_WORK /* disabled */
/* Ask to read the protected register */
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
fee_wait(ioaddr, 10, 100);
/* Read the protected register. */
printk("Protected 2: %02X-%02X\n",
mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
#endif /* DOESNT_SEEM_TO_WORK */
/* Enable protected register. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
fee_wait(ioaddr, 10, 100);
/* Unprotect area. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
#ifdef DOESNT_SEEM_TO_WORK /* disabled */
/* or use: */
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
#endif /* DOESNT_SEEM_TO_WORK */
fee_wait(ioaddr, 10, 100);
#endif /* EEPROM_IS_PROTECTED */
/* Write enable. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
fee_wait(ioaddr, 10, 100);
/* Write the EEPROM address. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
/* Loop on all buffer */
while (n-- > 0) {
/* Write the value. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
/* Write the write command. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
MMW_FEE_CTRL_WRITE);
/* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
mdelay(10);
fee_wait(ioaddr, 10, 100);
}
/* Write disable. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
fee_wait(ioaddr, 10, 100);
#ifdef EEPROM_IS_PROTECTED /* disabled */
/* Reprotect EEPROM. */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
fee_wait(ioaddr, 10, 100);
#endif /* EEPROM_IS_PROTECTED */
}
/************************ I82586 SUBROUTINES *************************/
/*
* Useful subroutines to manage the Ethernet controller
*/
/*------------------------------------------------------------------*/
/*
* Read bytes from the on-board RAM.
* Why does inlining this function make it fail?
*/
static /*inline */ void obram_read(unsigned long ioaddr,
u16 o, u8 * b, int n)
{
outw(o, PIOR1(ioaddr));
insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
}
/*------------------------------------------------------------------*/
/*
* Write bytes to the on-board RAM.
*/
static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
{
outw(o, PIOR1(ioaddr));
outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
}
/*------------------------------------------------------------------*/
/*
* Acknowledge the reading of the status issued by the i82586.
*/
static void wv_ack(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned long ioaddr = dev->base_addr;
u16 scb_cs;
int i;
obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
(unsigned char *) &scb_cs, sizeof(scb_cs));
scb_cs &= SCB_ST_INT;
if (scb_cs == 0)
return;
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cs, sizeof(scb_cs));
set_chan_attn(ioaddr, lp->hacr);
for (i = 1000; i > 0; i--) {
obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cs, sizeof(scb_cs));
if (scb_cs == 0)
break;
udelay(10);
}
udelay(100);
#ifdef DEBUG_CONFIG_ERROR
if (i <= 0)
printk(KERN_INFO
"%s: wv_ack(): board not accepting command.\n",
dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* Set channel attention bit and busy wait until command has
* completed, then acknowledge completion of the command.
*/
static int wv_synchronous_cmd(struct net_device * dev, const char *str)
{
net_local *lp = (net_local *) dev->priv;
unsigned long ioaddr = dev->base_addr;
u16 scb_cmd;
ach_t cb;
int i;
scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cmd, sizeof(scb_cmd));
set_chan_attn(ioaddr, lp->hacr);
for (i = 1000; i > 0; i--) {
obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
sizeof(cb));
if (cb.ac_status & AC_SFLD_C)
break;
udelay(10);
}
udelay(100);
if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
dev->name, str, cb.ac_status);
#endif
#ifdef DEBUG_I82586_SHOW
wv_scb_show(ioaddr);
#endif
return -1;
}
/* Ack the status */
wv_ack(dev);
return 0;
}
/*------------------------------------------------------------------*/
/*
* Configuration commands completion interrupt.
* Check if done, and if OK.
*/
static int
wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
{
unsigned short mcs_addr;
unsigned short status;
int ret;
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
#endif
mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
+ sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
/* Read the status of the last command (set mc list). */
obram_read(ioaddr, acoff(mcs_addr, ac_status),
(unsigned char *) &status, sizeof(status));
/* If not completed -> exit */
if ((status & AC_SFLD_C) == 0)
ret = 0; /* Not ready to be scrapped */
else {
#ifdef DEBUG_CONFIG_ERROR
unsigned short cfg_addr;
unsigned short ias_addr;
/* Check mc_config command */
if ((status & AC_SFLD_OK) != AC_SFLD_OK)
printk(KERN_INFO
"%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
dev->name, status);
/* check ia-config command */
ias_addr = mcs_addr - sizeof(ac_ias_t);
obram_read(ioaddr, acoff(ias_addr, ac_status),
(unsigned char *) &status, sizeof(status));
if ((status & AC_SFLD_OK) != AC_SFLD_OK)
printk(KERN_INFO
"%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
dev->name, status);
/* Check config command. */
cfg_addr = ias_addr - sizeof(ac_cfg_t);
obram_read(ioaddr, acoff(cfg_addr, ac_status),
(unsigned char *) &status, sizeof(status));
if ((status & AC_SFLD_OK) != AC_SFLD_OK)
printk(KERN_INFO
"%s: wv_config_complete(): configure failed; status = 0x%x\n",
dev->name, status);
#endif /* DEBUG_CONFIG_ERROR */
ret = 1; /* Ready to be scrapped */
}
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
ret);
#endif
return ret;
}
/*------------------------------------------------------------------*/
/*
* Command completion interrupt.
* Reclaim as many freed tx buffers as we can.
* (called in wavelan_interrupt()).
* Note : the spinlock is already grabbed for us.
*/
static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
{
int nreaped = 0;
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
#endif
/* Loop on all the transmit buffers */
while (lp->tx_first_in_use != I82586NULL) {
unsigned short tx_status;
/* Read the first transmit buffer */
obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
(unsigned char *) &tx_status,
sizeof(tx_status));
/* If not completed -> exit */
if ((tx_status & AC_SFLD_C) == 0)
break;
/* Hack for reconfiguration */
if (tx_status == 0xFFFF)
if (!wv_config_complete(dev, ioaddr, lp))
break; /* Not completed */
/* We now remove this buffer */
nreaped++;
--lp->tx_n_in_use;
/*
if (lp->tx_n_in_use > 0)
printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
*/
/* Was it the last one? */
if (lp->tx_n_in_use <= 0)
lp->tx_first_in_use = I82586NULL;
else {
/* Next one in the chain */
lp->tx_first_in_use += TXBLOCKZ;
if (lp->tx_first_in_use >=
OFFSET_CU +
NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
NTXBLOCKS * TXBLOCKZ;
}
/* Hack for reconfiguration */
if (tx_status == 0xFFFF)
continue;
/* Now, check status of the finished command */
if (tx_status & AC_SFLD_OK) {
int ncollisions;
lp->stats.tx_packets++;
ncollisions = tx_status & AC_SFLD_MAXCOL;
lp->stats.collisions += ncollisions;
#ifdef DEBUG_TX_INFO
if (ncollisions > 0)
printk(KERN_DEBUG
"%s: wv_complete(): tx completed after %d collisions.\n",
dev->name, ncollisions);
#endif
} else {
lp->stats.tx_errors++;
if (tx_status & AC_SFLD_S10) {
lp->stats.tx_carrier_errors++;
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG
"%s: wv_complete(): tx error: no CS.\n",
dev->name);
#endif
}
if (tx_status & AC_SFLD_S9) {
lp->stats.tx_carrier_errors++;
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG
"%s: wv_complete(): tx error: lost CTS.\n",
dev->name);
#endif
}
if (tx_status & AC_SFLD_S8) {
lp->stats.tx_fifo_errors++;
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG
"%s: wv_complete(): tx error: slow DMA.\n",
dev->name);
#endif
}
if (tx_status & AC_SFLD_S6) {
lp->stats.tx_heartbeat_errors++;
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG
"%s: wv_complete(): tx error: heart beat.\n",
dev->name);
#endif
}
if (tx_status & AC_SFLD_S5) {
lp->stats.tx_aborted_errors++;
#ifdef DEBUG_TX_FAIL
printk(KERN_DEBUG
"%s: wv_complete(): tx error: too many collisions.\n",
dev->name);
#endif
}
}
#ifdef DEBUG_TX_INFO
printk(KERN_DEBUG
"%s: wv_complete(): tx completed, tx_status 0x%04x\n",
dev->name, tx_status);
#endif
}
#ifdef DEBUG_INTERRUPT_INFO
if (nreaped > 1)
printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
dev->name, nreaped);
#endif
/*
* Inform upper layers.
*/
if (lp->tx_n_in_use < NTXBLOCKS - 1) {
netif_wake_queue(dev);
}
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
#endif
return nreaped;
}
/*------------------------------------------------------------------*/
/*
* Reconfigure the i82586, or at least ask for it.
* Because wv_82586_config uses a transmission buffer, we must do it
* when we are sure that there is one left, so we do it now
* or in wavelan_packet_xmit() (I can't find any better place,
* wavelan_interrupt is not an option), so you may experience
* delays sometimes.
*/
static void wv_82586_reconfig(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned long flags;
/* Arm the flag, will be cleard in wv_82586_config() */
lp->reconfig_82586 = 1;
/* Check if we can do it now ! */
if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
spin_lock_irqsave(&lp->spinlock, flags);
/* May fail */
wv_82586_config(dev);
spin_unlock_irqrestore(&lp->spinlock, flags);
}
else {
#ifdef DEBUG_CONFIG_INFO
printk(KERN_DEBUG
"%s: wv_82586_reconfig(): delayed (state = %lX)\n",
dev->name, dev->state);
#endif
}
}
/********************* DEBUG & INFO SUBROUTINES *********************/
/*
* This routine is used in the code to show information for debugging.
* Most of the time, it dumps the contents of hardware structures.
*/
#ifdef DEBUG_PSA_SHOW
/*------------------------------------------------------------------*/
/*
* Print the formatted contents of the Parameter Storage Area.
*/
static void wv_psa_show(psa_t * p)
{
printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
p->psa_io_base_addr_1,
p->psa_io_base_addr_2,
p->psa_io_base_addr_3, p->psa_io_base_addr_4);
printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
p->psa_rem_boot_addr_1,
p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
printk("psa_int_req_no: %d\n", p->psa_int_req_no);
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG
"psa_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
p->psa_unused0[0], p->psa_unused0[1], p->psa_unused0[2],
p->psa_unused0[3], p->psa_unused0[4], p->psa_unused0[5],
p->psa_unused0[6]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG
"psa_univ_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
p->psa_univ_mac_addr[0], p->psa_univ_mac_addr[1],
p->psa_univ_mac_addr[2], p->psa_univ_mac_addr[3],
p->psa_univ_mac_addr[4], p->psa_univ_mac_addr[5]);
printk(KERN_DEBUG
"psa_local_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
p->psa_local_mac_addr[0], p->psa_local_mac_addr[1],
p->psa_local_mac_addr[2], p->psa_local_mac_addr[3],
p->psa_local_mac_addr[4], p->psa_local_mac_addr[5]);
printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
p->psa_univ_local_sel);
printk("psa_comp_number: %d, ", p->psa_comp_number);
printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
p->psa_feature_select);
printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
p->psa_nwid[1]);
printk("psa_nwid_select: %d\n", p->psa_nwid_select);
printk(KERN_DEBUG "psa_encryption_select: %d, ",
p->psa_encryption_select);
printk
("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
p->psa_encryption_key[0], p->psa_encryption_key[1],
p->psa_encryption_key[2], p->psa_encryption_key[3],
p->psa_encryption_key[4], p->psa_encryption_key[5],
p->psa_encryption_key[6], p->psa_encryption_key[7]);
printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
p->psa_call_code[0]);
printk
("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
p->psa_call_code[6], p->psa_call_code[7]);
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n",
p->psa_reserved[0],
p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
} /* wv_psa_show */
#endif /* DEBUG_PSA_SHOW */
#ifdef DEBUG_MMC_SHOW
/*------------------------------------------------------------------*/
/*
* Print the formatted status of the Modem Management Controller.
* This function needs to be completed.
*/
static void wv_mmc_show(struct net_device * dev)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv;
mmr_t m;
/* Basic check */
if (hasr_read(ioaddr) & HASR_NO_CLK) {
printk(KERN_WARNING
"%s: wv_mmc_show: modem not connected\n",
dev->name);
return;
}
/* Read the mmc */
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
/* Don't forget to update statistics */
lp->wstats.discard.nwid +=
(m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG
"mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
m.mmr_unused0[6], m.mmr_unused0[7]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
m.mmr_des_avail, m.mmr_des_status);
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
m.mmr_unused1[0],
m.mmr_unused1[1],
m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
m.mmr_dce_status,
(m.
mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
"energy detected," : "",
(m.
mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
"loop test indicated," : "",
(m.
mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
"transmitter on," : "",
(m.
mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
"jabber timer expired," : "");
printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
m.mmr_unused2[0], m.mmr_unused2[1]);
#endif /* DEBUG_SHOW_UNUSED */
printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
(m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
(m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
m.mmr_thr_pre_set & MMR_THR_PRE_SET,
(m.
mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
"below");
printk(KERN_DEBUG "signal_lvl: %d [%s], ",
m.mmr_signal_lvl & MMR_SIGNAL_LVL,
(m.
mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
"no new msg");
printk("silence_lvl: %d [%s], ",
m.mmr_silence_lvl & MMR_SILENCE_LVL,
(m.
mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
"no new update");
printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
(m.
mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
"Antenna 0");
#ifdef DEBUG_SHOW_UNUSED
printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
#endif /* DEBUG_SHOW_UNUSED */
} /* wv_mmc_show */
#endif /* DEBUG_MMC_SHOW */
#ifdef DEBUG_I82586_SHOW
/*------------------------------------------------------------------*/
/*
* Print the last block of the i82586 memory.
*/
static void wv_scb_show(unsigned long ioaddr)
{
scb_t scb;
obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
sizeof(scb));
printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
printk(KERN_DEBUG "status: ");
printk("stat 0x%x[%s%s%s%s] ",
(scb.
scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
SCB_ST_RNR)) >> 12,
(scb.
scb_status & SCB_ST_CX) ? "command completion interrupt," :
"", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
(scb.
scb_status & SCB_ST_CNA) ? "command unit not active," : "",
(scb.
scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
"");
printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
((scb.scb_status & SCB_ST_CUS) ==
SCB_ST_CUS_IDLE) ? "idle" : "",
((scb.scb_status & SCB_ST_CUS) ==
SCB_ST_CUS_SUSP) ? "suspended" : "",
((scb.scb_status & SCB_ST_CUS) ==
SCB_ST_CUS_ACTV) ? "active" : "");
printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
((scb.scb_status & SCB_ST_RUS) ==
SCB_ST_RUS_IDLE) ? "idle" : "",
((scb.scb_status & SCB_ST_RUS) ==
SCB_ST_RUS_SUSP) ? "suspended" : "",
((scb.scb_status & SCB_ST_RUS) ==
SCB_ST_RUS_NRES) ? "no resources" : "",
((scb.scb_status & SCB_ST_RUS) ==
SCB_ST_RUS_RDY) ? "ready" : "");
printk(KERN_DEBUG "command: ");
printk("ack 0x%x[%s%s%s%s] ",
(scb.
scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
(scb.
scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
(scb.
scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
(scb.
scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
(scb.
scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
printk("cuc 0x%x[%s%s%s%s%s] ",
(scb.scb_command & SCB_CMD_CUC) >> 8,
((scb.scb_command & SCB_CMD_CUC) ==
SCB_CMD_CUC_NOP) ? "nop" : "",
((scb.scb_command & SCB_CMD_CUC) ==
SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
((scb.scb_command & SCB_CMD_CUC) ==
SCB_CMD_CUC_RES) ? "resume execution" : "",
((scb.scb_command & SCB_CMD_CUC) ==
SCB_CMD_CUC_SUS) ? "suspend execution" : "",
((scb.scb_command & SCB_CMD_CUC) ==
SCB_CMD_CUC_ABT) ? "abort execution" : "");
printk("ruc 0x%x[%s%s%s%s%s]\n",
(scb.scb_command & SCB_CMD_RUC) >> 4,
((scb.scb_command & SCB_CMD_RUC) ==
SCB_CMD_RUC_NOP) ? "nop" : "",
((scb.scb_command & SCB_CMD_RUC) ==
SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
((scb.scb_command & SCB_CMD_RUC) ==
SCB_CMD_RUC_RES) ? "resume reception" : "",
((scb.scb_command & SCB_CMD_RUC) ==
SCB_CMD_RUC_SUS) ? "suspend reception" : "",
((scb.scb_command & SCB_CMD_RUC) ==
SCB_CMD_RUC_ABT) ? "abort reception" : "");
printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
printk("alnerrs %d ", scb.scb_alnerrs);
printk("rscerrs %d ", scb.scb_rscerrs);
printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
}
/*------------------------------------------------------------------*/
/*
* Print the formatted status of the i82586's receive unit.
*/
static void wv_ru_show(struct net_device * dev)
{
/* net_local *lp = (net_local *) dev->priv; */
printk(KERN_DEBUG
"##### WaveLAN i82586 receiver unit status: #####\n");
printk(KERN_DEBUG "ru:");
/*
* Not implemented yet
*/
printk("\n");
} /* wv_ru_show */
/*------------------------------------------------------------------*/
/*
* Display info about one control block of the i82586 memory.
*/
static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
{
unsigned long ioaddr;
ac_tx_t actx;
ioaddr = dev->base_addr;
printk("%d: 0x%x:", i, p);
obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
printk(" status=0x%x,", actx.tx_h.ac_status);
printk(" command=0x%x,", actx.tx_h.ac_command);
/*
{
tbd_t tbd;
obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
printk(" tbd_status=0x%x,", tbd.tbd_status);
}
*/
printk("|");
}
/*------------------------------------------------------------------*/
/*
* Print status of the command unit of the i82586.
*/
static void wv_cu_show(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned int i;
u16 p;
printk(KERN_DEBUG
"##### WaveLAN i82586 command unit status: #####\n");
printk(KERN_DEBUG);
for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
wv_cu_show_one(dev, lp, i, p);
p += TXBLOCKZ;
if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
p -= NTXBLOCKS * TXBLOCKZ;
}
printk("\n");
}
#endif /* DEBUG_I82586_SHOW */
#ifdef DEBUG_DEVICE_SHOW
/*------------------------------------------------------------------*/
/*
* Print the formatted status of the WaveLAN PCMCIA device driver.
*/
static void wv_dev_show(struct net_device * dev)
{
printk(KERN_DEBUG "dev:");
printk(" state=%lX,", dev->state);
printk(" trans_start=%ld,", dev->trans_start);
printk(" flags=0x%x,", dev->flags);
printk("\n");
} /* wv_dev_show */
/*------------------------------------------------------------------*/
/*
* Print the formatted status of the WaveLAN PCMCIA device driver's
* private information.
*/
static void wv_local_show(struct net_device * dev)
{
net_local *lp;
lp = (net_local *) dev->priv;
printk(KERN_DEBUG "local:");
printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
printk(" hacr=0x%x,", lp->hacr);
printk(" rx_head=0x%x,", lp->rx_head);
printk(" rx_last=0x%x,", lp->rx_last);
printk(" tx_first_free=0x%x,", lp->tx_first_free);
printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
printk("\n");
} /* wv_local_show */
#endif /* DEBUG_DEVICE_SHOW */
#if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
/*------------------------------------------------------------------*/
/*
* Dump packet header (and content if necessary) on the screen
*/
static inline void wv_packet_info(u8 * p, /* Packet to dump */
int length, /* Length of the packet */
char *msg1, /* Name of the device */
char *msg2)
{ /* Name of the function */
int i;
int maxi;
printk(KERN_DEBUG
"%s: %s(): dest %02X:%02X:%02X:%02X:%02X:%02X, length %d\n",
msg1, msg2, p[0], p[1], p[2], p[3], p[4], p[5], length);
printk(KERN_DEBUG
"%s: %s(): src %02X:%02X:%02X:%02X:%02X:%02X, type 0x%02X%02X\n",
msg1, msg2, p[6], p[7], p[8], p[9], p[10], p[11], p[12],
p[13]);
#ifdef DEBUG_PACKET_DUMP
printk(KERN_DEBUG "data=\"");
if ((maxi = length) > DEBUG_PACKET_DUMP)
maxi = DEBUG_PACKET_DUMP;
for (i = 14; i < maxi; i++)
if (p[i] >= ' ' && p[i] <= '~')
printk(" %c", p[i]);
else
printk("%02X", p[i]);
if (maxi < length)
printk("..");
printk("\"\n");
printk(KERN_DEBUG "\n");
#endif /* DEBUG_PACKET_DUMP */
}
#endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
/*------------------------------------------------------------------*/
/*
* This is the information which is displayed by the driver at startup.
* There are lots of flags for configuring it to your liking.
*/
static void wv_init_info(struct net_device * dev)
{
short ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv;
psa_t psa;
int i;
/* Read the parameter storage area */
psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
#ifdef DEBUG_PSA_SHOW
wv_psa_show(&psa);
#endif
#ifdef DEBUG_MMC_SHOW
wv_mmc_show(dev);
#endif
#ifdef DEBUG_I82586_SHOW
wv_cu_show(dev);
#endif
#ifdef DEBUG_BASIC_SHOW
/* Now, let's go for the basic stuff. */
printk(KERN_NOTICE "%s: WaveLAN at %#x,", dev->name, ioaddr);
for (i = 0; i < WAVELAN_ADDR_SIZE; i++)
printk("%s%02X", (i == 0) ? " " : ":", dev->dev_addr[i]);
printk(", IRQ %d", dev->irq);
/* Print current network ID. */
if (psa.psa_nwid_select)
printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
psa.psa_nwid[1]);
else
printk(", nwid off");
/* If 2.00 card */
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
unsigned short freq;
/* Ask the EEPROM to read the frequency from the first area. */
fee_read(ioaddr, 0x00, &freq, 1);
/* Print frequency */
printk(", 2.00, %ld", (freq >> 6) + 2400L);
/* Hack! */
if (freq & 0x20)
printk(".5");
} else {
printk(", PC");
switch (psa.psa_comp_number) {
case PSA_COMP_PC_AT_915:
case PSA_COMP_PC_AT_2400:
printk("-AT");
break;
case PSA_COMP_PC_MC_915:
case PSA_COMP_PC_MC_2400:
printk("-MC");
break;
case PSA_COMP_PCMCIA_915:
printk("MCIA");
break;
default:
printk("?");
}
printk(", ");
switch (psa.psa_subband) {
case PSA_SUBBAND_915:
printk("915");
break;
case PSA_SUBBAND_2425:
printk("2425");
break;
case PSA_SUBBAND_2460:
printk("2460");
break;
case PSA_SUBBAND_2484:
printk("2484");
break;
case PSA_SUBBAND_2430_5:
printk("2430.5");
break;
default:
printk("?");
}
}
printk(" MHz\n");
#endif /* DEBUG_BASIC_SHOW */
#ifdef DEBUG_VERSION_SHOW
/* Print version information */
printk(KERN_NOTICE "%s", version);
#endif
} /* wv_init_info */
/********************* IOCTL, STATS & RECONFIG *********************/
/*
* We found here routines that are called by Linux on different
* occasions after the configuration and not for transmitting data
* These may be called when the user use ifconfig, /proc/net/dev
* or wireless extensions
*/
/*------------------------------------------------------------------*/
/*
* Get the current Ethernet statistics. This may be called with the
* card open or closed.
* Used when the user read /proc/net/dev
*/
static en_stats *wavelan_get_stats(struct net_device * dev)
{
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
#endif
return (&((net_local *) dev->priv)->stats);
}
/*------------------------------------------------------------------*/
/*
* Set or clear the multicast filter for this adaptor.
* num_addrs == -1 Promiscuous mode, receive all packets
* num_addrs == 0 Normal mode, clear multicast list
* num_addrs > 0 Multicast mode, receive normal and MC packets,
* and do best-effort filtering.
*/
static void wavelan_set_multicast_list(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
dev->name);
#endif
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG
"%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
dev->name, dev->flags, dev->mc_count);
#endif
/* Are we asking for promiscuous mode,
* or all multicast addresses (we don't have that!)
* or too many multicast addresses for the hardware filter? */
if ((dev->flags & IFF_PROMISC) ||
(dev->flags & IFF_ALLMULTI) ||
(dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
/*
* Enable promiscuous mode: receive all packets.
*/
if (!lp->promiscuous) {
lp->promiscuous = 1;
lp->mc_count = 0;
wv_82586_reconfig(dev);
/* Tell the kernel that we are doing a really bad job. */
dev->flags |= IFF_PROMISC;
}
} else
/* Are there multicast addresses to send? */
if (dev->mc_list != (struct dev_mc_list *) NULL) {
/*
* Disable promiscuous mode, but receive all packets
* in multicast list
*/
#ifdef MULTICAST_AVOID
if (lp->promiscuous || (dev->mc_count != lp->mc_count))
#endif
{
lp->promiscuous = 0;
lp->mc_count = dev->mc_count;
wv_82586_reconfig(dev);
}
} else {
/*
* Switch to normal mode: disable promiscuous mode and
* clear the multicast list.
*/
if (lp->promiscuous || lp->mc_count == 0) {
lp->promiscuous = 0;
lp->mc_count = 0;
wv_82586_reconfig(dev);
}
}
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* This function doesn't exist.
* (Note : it was a nice way to test the reconfigure stuff...)
*/
#ifdef SET_MAC_ADDRESS
static int wavelan_set_mac_address(struct net_device * dev, void *addr)
{
struct sockaddr *mac = addr;
/* Copy the address. */
memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
/* Reconfigure the beast. */
wv_82586_reconfig(dev);
return 0;
}
#endif /* SET_MAC_ADDRESS */
/*------------------------------------------------------------------*/
/*
* Frequency setting (for hardware capable of it)
* It's a bit complicated and you don't really want to look into it.
* (called in wavelan_ioctl)
*/
static int wv_set_frequency(unsigned long ioaddr, /* I/O port of the card */
iw_freq * frequency)
{
const int BAND_NUM = 10; /* Number of bands */
long freq = 0L; /* offset to 2.4 GHz in .5 MHz */
#ifdef DEBUG_IOCTL_INFO
int i;
#endif
/* Setting by frequency */
/* Theoretically, you may set any frequency between
* the two limits with a 0.5 MHz precision. In practice,
* I don't want you to have trouble with local regulations.
*/
if ((frequency->e == 1) &&
(frequency->m >= (int) 2.412e8)
&& (frequency->m <= (int) 2.487e8)) {
freq = ((frequency->m / 10000) - 24000L) / 5;
}
/* Setting by channel (same as wfreqsel) */
/* Warning: each channel is 22 MHz wide, so some of the channels
* will interfere. */
if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
/* Get frequency offset. */
freq = channel_bands[frequency->m] >> 1;
}
/* Verify that the frequency is allowed. */
if (freq != 0L) {
u16 table[10]; /* Authorized frequency table */
/* Read the frequency table. */
fee_read(ioaddr, 0x71, table, 10);
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG "Frequency table: ");
for (i = 0; i < 10; i++) {
printk(" %04X", table[i]);
}
printk("\n");
#endif
/* Look in the table to see whether the frequency is allowed. */
if (!(table[9 - ((freq - 24) / 16)] &
(1 << ((freq - 24) % 16)))) return -EINVAL; /* not allowed */
} else
return -EINVAL;
/* if we get a usable frequency */
if (freq != 0L) {
unsigned short area[16];
unsigned short dac[2];
unsigned short area_verify[16];
unsigned short dac_verify[2];
/* Corresponding gain (in the power adjust value table)
* See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
* and WCIN062D.DOC, page 6.2.9. */
unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
int power_band = 0; /* Selected band */
unsigned short power_adjust; /* Correct value */
/* Search for the gain. */
power_band = 0;
while ((freq > power_limit[power_band]) &&
(power_limit[++power_band] != 0));
/* Read the first area. */
fee_read(ioaddr, 0x00, area, 16);
/* Read the DAC. */
fee_read(ioaddr, 0x60, dac, 2);
/* Read the new power adjust value. */
fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
1);
if (power_band & 0x1)
power_adjust >>= 8;
else
power_adjust &= 0xFF;
#ifdef DEBUG_IOCTL_INFO
printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
for (i = 0; i < 16; i++) {
printk(" %04X", area[i]);
}
printk("\n");
printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
dac[0], dac[1]);
#endif
/* Frequency offset (for info only) */
area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
/* Receiver Principle main divider coefficient */
area[3] = (freq >> 1) + 2400L - 352L;
area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
/* Transmitter Main divider coefficient */
area[13] = (freq >> 1) + 2400L;
area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
/* Other parts of the area are flags, bit streams or unused. */
/* Set the value in the DAC. */
dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
/* Write the first area. */
fee_write(ioaddr, 0x00, area, 16);
/* Write the DAC. */
fee_write(ioaddr, 0x60, dac, 2);
/* We now should verify here that the writing of the EEPROM went OK. */
/* Reread the first area. */
fee_read(ioaddr, 0x00, area_verify, 16);
/* Reread the DAC. */
fee_read(ioaddr, 0x60, dac_verify, 2);
/* Compare. */
if (memcmp(area, area_verify, 16 * 2) ||
memcmp(dac, dac_verify, 2 * 2)) {
#ifdef DEBUG_IOCTL_ERROR
printk(KERN_INFO
"WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
#endif
return -EOPNOTSUPP;
}
/* We must download the frequency parameters to the
* synthesizers (from the EEPROM - area 1)
* Note: as the EEPROM is automatically decremented, we set the end
* if the area... */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
/* Wait until the download is finished. */
fee_wait(ioaddr, 100, 100);
/* We must now download the power adjust value (gain) to
* the synthesizers (from the EEPROM - area 7 - DAC). */
mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
/* Wait for the download to finish. */
fee_wait(ioaddr, 100, 100);
#ifdef DEBUG_IOCTL_INFO
/* Verification of what we have done */
printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
for (i = 0; i < 16; i++) {
printk(" %04X", area_verify[i]);
}
printk("\n");
printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
dac_verify[0], dac_verify[1]);
#endif
return 0;
} else
return -EINVAL; /* Bah, never get there... */
}
/*------------------------------------------------------------------*/
/*
* Give the list of available frequencies.
*/
static int wv_frequency_list(unsigned long ioaddr, /* I/O port of the card */
iw_freq * list, /* List of frequencies to fill */
int max)
{ /* Maximum number of frequencies */
u16 table[10]; /* Authorized frequency table */
long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */
int i; /* index in the table */
int c = 0; /* Channel number */
/* Read the frequency table. */
fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
/* Check all frequencies. */
i = 0;
for (freq = 0; freq < 150; freq++)
/* Look in the table if the frequency is allowed */
if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
/* Compute approximate channel number */
while ((c < NELS(channel_bands)) &&
(((channel_bands[c] >> 1) - 24) < freq))
c++;
list[i].i = c; /* Set the list index */
/* put in the list */
list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
list[i++].e = 1;
/* Check number. */
if (i >= max)
return (i);
}
return (i);
}
#ifdef IW_WIRELESS_SPY
/*------------------------------------------------------------------*/
/*
* Gather wireless spy statistics: for each packet, compare the source
* address with our list, and if they match, get the statistics.
* Sorry, but this function really needs the wireless extensions.
*/
static inline void wl_spy_gather(struct net_device * dev,
u8 * mac, /* MAC address */
u8 * stats) /* Statistics to gather */
{
struct iw_quality wstats;
wstats.qual = stats[2] & MMR_SGNL_QUAL;
wstats.level = stats[0] & MMR_SIGNAL_LVL;
wstats.noise = stats[1] & MMR_SILENCE_LVL;
wstats.updated = 0x7;
/* Update spy records */
wireless_spy_update(dev, mac, &wstats);
}
#endif /* IW_WIRELESS_SPY */
#ifdef HISTOGRAM
/*------------------------------------------------------------------*/
/*
* This function calculates a histogram of the signal level.
* As the noise is quite constant, it's like doing it on the SNR.
* We have defined a set of interval (lp->his_range), and each time
* the level goes in that interval, we increment the count (lp->his_sum).
* With this histogram you may detect if one WaveLAN is really weak,
* or you may also calculate the mean and standard deviation of the level.
*/
static inline void wl_his_gather(struct net_device * dev, u8 * stats)
{ /* Statistics to gather */
net_local *lp = (net_local *) dev->priv;
u8 level = stats[0] & MMR_SIGNAL_LVL;
int i;
/* Find the correct interval. */
i = 0;
while ((i < (lp->his_number - 1))
&& (level >= lp->his_range[i++]));
/* Increment interval counter. */
(lp->his_sum[i])++;
}
#endif /* HISTOGRAM */
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get protocol name
*/
static int wavelan_get_name(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
strcpy(wrqu->name, "WaveLAN");
return 0;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set NWID
*/
static int wavelan_set_nwid(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
psa_t psa;
mm_t m;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Set NWID in WaveLAN. */
if (!wrqu->nwid.disabled) {
/* Set NWID in psa */
psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
psa.psa_nwid_select = 0x01;
psa_write(ioaddr, lp->hacr,
(char *) psa.psa_nwid - (char *) &psa,
(unsigned char *) psa.psa_nwid, 3);
/* Set NWID in mmc. */
m.w.mmw_netw_id_l = psa.psa_nwid[1];
m.w.mmw_netw_id_h = psa.psa_nwid[0];
mmc_write(ioaddr,
(char *) &m.w.mmw_netw_id_l -
(char *) &m,
(unsigned char *) &m.w.mmw_netw_id_l, 2);
mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
} else {
/* Disable NWID in the psa. */
psa.psa_nwid_select = 0x00;
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_nwid_select -
(char *) &psa,
(unsigned char *) &psa.psa_nwid_select,
1);
/* Disable NWID in the mmc (no filtering). */
mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
MMW_LOOPT_SEL_DIS_NWID);
}
/* update the Wavelan checksum */
update_psa_checksum(dev, ioaddr, lp->hacr);
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get NWID
*/
static int wavelan_get_nwid(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Read the NWID. */
psa_read(ioaddr, lp->hacr,
(char *) psa.psa_nwid - (char *) &psa,
(unsigned char *) psa.psa_nwid, 3);
wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
wrqu->nwid.disabled = !(psa.psa_nwid_select);
wrqu->nwid.fixed = 1; /* Superfluous */
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set frequency
*/
static int wavelan_set_freq(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
unsigned long flags;
int ret;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
ret = wv_set_frequency(ioaddr, &(wrqu->freq));
else
ret = -EOPNOTSUPP;
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get frequency
*/
static int wavelan_get_freq(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
* Does it work for everybody, especially old cards? */
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
unsigned short freq;
/* Ask the EEPROM to read the frequency from the first area. */
fee_read(ioaddr, 0x00, &freq, 1);
wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
wrqu->freq.e = 1;
} else {
psa_read(ioaddr, lp->hacr,
(char *) &psa.psa_subband - (char *) &psa,
(unsigned char *) &psa.psa_subband, 1);
if (psa.psa_subband <= 4) {
wrqu->freq.m = fixed_bands[psa.psa_subband];
wrqu->freq.e = (psa.psa_subband != 0);
} else
ret = -EOPNOTSUPP;
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set level threshold
*/
static int wavelan_set_sens(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Set the level threshold. */
/* We should complain loudly if wrqu->sens.fixed = 0, because we
* can't set auto mode... */
psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_thr_pre_set - (char *) &psa,
(unsigned char *) &psa.psa_thr_pre_set, 1);
/* update the Wavelan checksum */
update_psa_checksum(dev, ioaddr, lp->hacr);
mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
psa.psa_thr_pre_set);
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get level threshold
*/
static int wavelan_get_sens(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Read the level threshold. */
psa_read(ioaddr, lp->hacr,
(char *) &psa.psa_thr_pre_set - (char *) &psa,
(unsigned char *) &psa.psa_thr_pre_set, 1);
wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
wrqu->sens.fixed = 1;
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : set encryption key
*/
static int wavelan_set_encode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
unsigned long flags;
psa_t psa;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Check if capable of encryption */
if (!mmc_encr(ioaddr)) {
ret = -EOPNOTSUPP;
}
/* Check the size of the key */
if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
ret = -EINVAL;
}
if(!ret) {
/* Basic checking... */
if (wrqu->encoding.length == 8) {
/* Copy the key in the driver */
memcpy(psa.psa_encryption_key, extra,
wrqu->encoding.length);
psa.psa_encryption_select = 1;
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_encryption_select -
(char *) &psa,
(unsigned char *) &psa.
psa_encryption_select, 8 + 1);
mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
(unsigned char *) &psa.
psa_encryption_key, 8);
}
/* disable encryption */
if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
psa.psa_encryption_select = 0;
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_encryption_select -
(char *) &psa,
(unsigned char *) &psa.
psa_encryption_select, 1);
mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
}
/* update the Wavelan checksum */
update_psa_checksum(dev, ioaddr, lp->hacr);
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get encryption key
*/
static int wavelan_get_encode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
psa_t psa;
unsigned long flags;
int ret = 0;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Check if encryption is available */
if (!mmc_encr(ioaddr)) {
ret = -EOPNOTSUPP;
} else {
/* Read the encryption key */
psa_read(ioaddr, lp->hacr,
(char *) &psa.psa_encryption_select -
(char *) &psa,
(unsigned char *) &psa.
psa_encryption_select, 1 + 8);
/* encryption is enabled ? */
if (psa.psa_encryption_select)
wrqu->encoding.flags = IW_ENCODE_ENABLED;
else
wrqu->encoding.flags = IW_ENCODE_DISABLED;
wrqu->encoding.flags |= mmc_encr(ioaddr);
/* Copy the key to the user buffer */
wrqu->encoding.length = 8;
memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Handler : get range info
*/
static int wavelan_get_range(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
struct iw_range *range = (struct iw_range *) extra;
unsigned long flags;
int ret = 0;
/* Set the length (very important for backward compatibility) */
wrqu->data.length = sizeof(struct iw_range);
/* Set all the info we don't care or don't know about to zero */
memset(range, 0, sizeof(struct iw_range));
/* Set the Wireless Extension versions */
range->we_version_compiled = WIRELESS_EXT;
range->we_version_source = 9;
/* Set information in the range struct. */
range->throughput = 1.6 * 1000 * 1000; /* don't argue on this ! */
range->min_nwid = 0x0000;
range->max_nwid = 0xFFFF;
range->sensitivity = 0x3F;
range->max_qual.qual = MMR_SGNL_QUAL;
range->max_qual.level = MMR_SIGNAL_LVL;
range->max_qual.noise = MMR_SILENCE_LVL;
range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
/* Need to get better values for those two */
range->avg_qual.level = 30;
range->avg_qual.noise = 8;
range->num_bitrates = 1;
range->bitrate[0] = 2000000; /* 2 Mb/s */
/* Event capability (kernel + driver) */
range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
IW_EVENT_CAPA_MASK(0x8B04));
range->event_capa[1] = IW_EVENT_CAPA_K_1;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
range->num_channels = 10;
range->num_frequency = wv_frequency_list(ioaddr, range->freq,
IW_MAX_FREQUENCIES);
} else
range->num_channels = range->num_frequency = 0;
/* Encryption supported ? */
if (mmc_encr(ioaddr)) {
range->encoding_size[0] = 8; /* DES = 64 bits key */
range->num_encoding_sizes = 1;
range->max_encoding_tokens = 1; /* Only one key possible */
} else {
range->num_encoding_sizes = 0;
range->max_encoding_tokens = 0;
}
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return ret;
}
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : set quality threshold
*/
static int wavelan_set_qthr(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
psa_t psa;
unsigned long flags;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
psa.psa_quality_thr = *(extra) & 0x0F;
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_quality_thr - (char *) &psa,
(unsigned char *) &psa.psa_quality_thr, 1);
/* update the Wavelan checksum */
update_psa_checksum(dev, ioaddr, lp->hacr);
mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
psa.psa_quality_thr);
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return 0;
}
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : get quality threshold
*/
static int wavelan_get_qthr(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
psa_t psa;
unsigned long flags;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
psa_read(ioaddr, lp->hacr,
(char *) &psa.psa_quality_thr - (char *) &psa,
(unsigned char *) &psa.psa_quality_thr, 1);
*(extra) = psa.psa_quality_thr & 0x0F;
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
return 0;
}
#ifdef HISTOGRAM
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : set histogram
*/
static int wavelan_set_histo(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
/* Check the number of intervals. */
if (wrqu->data.length > 16) {
return(-E2BIG);
}
/* Disable histo while we copy the addresses.
* As we don't disable interrupts, we need to do this */
lp->his_number = 0;
/* Are there ranges to copy? */
if (wrqu->data.length > 0) {
/* Copy interval ranges to the driver */
memcpy(lp->his_range, extra, wrqu->data.length);
{
int i;
printk(KERN_DEBUG "Histo :");
for(i = 0; i < wrqu->data.length; i++)
printk(" %d", lp->his_range[i]);
printk("\n");
}
/* Reset result structure. */
memset(lp->his_sum, 0x00, sizeof(long) * 16);
}
/* Now we can set the number of ranges */
lp->his_number = wrqu->data.length;
return(0);
}
/*------------------------------------------------------------------*/
/*
* Wireless Private Handler : get histogram
*/
static int wavelan_get_histo(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu,
char *extra)
{
net_local *lp = (net_local *) dev->priv; /* lp is not unused */
/* Set the number of intervals. */
wrqu->data.length = lp->his_number;
/* Give back the distribution statistics */
if(lp->his_number > 0)
memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
return(0);
}
#endif /* HISTOGRAM */
/*------------------------------------------------------------------*/
/*
* Structures to export the Wireless Handlers
*/
static const iw_handler wavelan_handler[] =
{
NULL, /* SIOCSIWNAME */
wavelan_get_name, /* SIOCGIWNAME */
wavelan_set_nwid, /* SIOCSIWNWID */
wavelan_get_nwid, /* SIOCGIWNWID */
wavelan_set_freq, /* SIOCSIWFREQ */
wavelan_get_freq, /* SIOCGIWFREQ */
NULL, /* SIOCSIWMODE */
NULL, /* SIOCGIWMODE */
wavelan_set_sens, /* SIOCSIWSENS */
wavelan_get_sens, /* SIOCGIWSENS */
NULL, /* SIOCSIWRANGE */
wavelan_get_range, /* SIOCGIWRANGE */
NULL, /* SIOCSIWPRIV */
NULL, /* SIOCGIWPRIV */
NULL, /* SIOCSIWSTATS */
NULL, /* SIOCGIWSTATS */
iw_handler_set_spy, /* SIOCSIWSPY */
iw_handler_get_spy, /* SIOCGIWSPY */
iw_handler_set_thrspy, /* SIOCSIWTHRSPY */
iw_handler_get_thrspy, /* SIOCGIWTHRSPY */
NULL, /* SIOCSIWAP */
NULL, /* SIOCGIWAP */
NULL, /* -- hole -- */
NULL, /* SIOCGIWAPLIST */
NULL, /* -- hole -- */
NULL, /* -- hole -- */
NULL, /* SIOCSIWESSID */
NULL, /* SIOCGIWESSID */
NULL, /* SIOCSIWNICKN */
NULL, /* SIOCGIWNICKN */
NULL, /* -- hole -- */
NULL, /* -- hole -- */
NULL, /* SIOCSIWRATE */
NULL, /* SIOCGIWRATE */
NULL, /* SIOCSIWRTS */
NULL, /* SIOCGIWRTS */
NULL, /* SIOCSIWFRAG */
NULL, /* SIOCGIWFRAG */
NULL, /* SIOCSIWTXPOW */
NULL, /* SIOCGIWTXPOW */
NULL, /* SIOCSIWRETRY */
NULL, /* SIOCGIWRETRY */
/* Bummer ! Why those are only at the end ??? */
wavelan_set_encode, /* SIOCSIWENCODE */
wavelan_get_encode, /* SIOCGIWENCODE */
};
static const iw_handler wavelan_private_handler[] =
{
wavelan_set_qthr, /* SIOCIWFIRSTPRIV */
wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */
#ifdef HISTOGRAM
wavelan_set_histo, /* SIOCIWFIRSTPRIV + 2 */
wavelan_get_histo, /* SIOCIWFIRSTPRIV + 3 */
#endif /* HISTOGRAM */
};
static const struct iw_priv_args wavelan_private_args[] = {
/*{ cmd, set_args, get_args, name } */
{ SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
{ SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
{ SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" },
{ SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" },
};
static const struct iw_handler_def wavelan_handler_def =
{
.num_standard = sizeof(wavelan_handler)/sizeof(iw_handler),
.num_private = sizeof(wavelan_private_handler)/sizeof(iw_handler),
.num_private_args = sizeof(wavelan_private_args)/sizeof(struct iw_priv_args),
.standard = wavelan_handler,
.private = wavelan_private_handler,
.private_args = wavelan_private_args,
.get_wireless_stats = wavelan_get_wireless_stats,
};
/*------------------------------------------------------------------*/
/*
* Get wireless statistics.
* Called by /proc/net/wireless
*/
static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv;
mmr_t m;
iw_stats *wstats;
unsigned long flags;
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
dev->name);
#endif
/* Check */
if (lp == (net_local *) NULL)
return (iw_stats *) NULL;
/* Disable interrupts and save flags. */
spin_lock_irqsave(&lp->spinlock, flags);
wstats = &lp->wstats;
/* Get data from the mmc. */
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
2);
mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
4);
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
/* Copy data to wireless stuff. */
wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7)
| ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6)
| ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
wstats->discard.code = 0L;
wstats->discard.misc = 0L;
/* Enable interrupts and restore flags. */
spin_unlock_irqrestore(&lp->spinlock, flags);
#ifdef DEBUG_IOCTL_TRACE
printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
dev->name);
#endif
return &lp->wstats;
}
/************************* PACKET RECEPTION *************************/
/*
* This part deals with receiving the packets.
* The interrupt handler gets an interrupt when a packet has been
* successfully received and calls this part.
*/
/*------------------------------------------------------------------*/
/*
* This routine does the actual copying of data (including the Ethernet
* header structure) from the WaveLAN card to an sk_buff chain that
* will be passed up to the network interface layer. NOTE: we
* currently don't handle trailer protocols (neither does the rest of
* the network interface), so if that is needed, it will (at least in
* part) be added here. The contents of the receive ring buffer are
* copied to a message chain that is then passed to the kernel.
*
* Note: if any errors occur, the packet is "dropped on the floor".
* (called by wv_packet_rcv())
*/
static void
wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
{
net_local *lp = (net_local *) dev->priv;
unsigned long ioaddr = dev->base_addr;
struct sk_buff *skb;
#ifdef DEBUG_RX_TRACE
printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
dev->name, buf_off, sksize);
#endif
/* Allocate buffer for the data */
if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
#ifdef DEBUG_RX_ERROR
printk(KERN_INFO
"%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
dev->name, sksize);
#endif
lp->stats.rx_dropped++;
return;
}
skb->dev = dev;
/* Copy the packet to the buffer. */
obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
skb->protocol = eth_type_trans(skb, dev);
#ifdef DEBUG_RX_INFO
wv_packet_info(skb->mac.raw, sksize, dev->name, "wv_packet_read");
#endif /* DEBUG_RX_INFO */
/* Statistics-gathering and associated stuff.
* It seem a bit messy with all the define, but it's really
* simple... */
if (
#ifdef IW_WIRELESS_SPY /* defined in iw_handler.h */
(lp->spy_data.spy_number > 0) ||
#endif /* IW_WIRELESS_SPY */
#ifdef HISTOGRAM
(lp->his_number > 0) ||
#endif /* HISTOGRAM */
0) {
u8 stats[3]; /* signal level, noise level, signal quality */
/* Read signal level, silence level and signal quality bytes */
/* Note: in the PCMCIA hardware, these are part of the frame.
* It seems that for the ISA hardware, it's nowhere to be
* found in the frame, so I'm obliged to do this (it has a
* side effect on /proc/net/wireless).
* Any ideas?
*/
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
#ifdef DEBUG_RX_INFO
printk(KERN_DEBUG
"%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
stats[2] & 0x0F);
#endif
/* Spying stuff */
#ifdef IW_WIRELESS_SPY
wl_spy_gather(dev, skb->mac.raw + WAVELAN_ADDR_SIZE,
stats);
#endif /* IW_WIRELESS_SPY */
#ifdef HISTOGRAM
wl_his_gather(dev, stats);
#endif /* HISTOGRAM */
}
/*
* Hand the packet to the network module.
*/
netif_rx(skb);
/* Keep statistics up to date */
dev->last_rx = jiffies;
lp->stats.rx_packets++;
lp->stats.rx_bytes += sksize;
#ifdef DEBUG_RX_TRACE
printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* Transfer as many packets as we can
* from the device RAM.
* (called in wavelan_interrupt()).
* Note : the spinlock is already grabbed for us.
*/
static void wv_receive(struct net_device * dev)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv;
fd_t fd;
rbd_t rbd;
int nreaped = 0;
#ifdef DEBUG_RX_TRACE
printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
#endif
/* Loop on each received packet. */
for (;;) {
obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
sizeof(fd));
/* Note about the status :
* It start up to be 0 (the value we set). Then, when the RU
* grab the buffer to prepare for reception, it sets the
* FD_STATUS_B flag. When the RU has finished receiving the
* frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
* completion and set the other flags to indicate the eventual
* errors. FD_STATUS_OK indicates that the reception was OK.
*/
/* If the current frame is not complete, we have reached the end. */
if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
break; /* This is how we exit the loop. */
nreaped++;
/* Check whether frame was correctly received. */
if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
/* Does the frame contain a pointer to the data? Let's check. */
if (fd.fd_rbd_offset != I82586NULL) {
/* Read the receive buffer descriptor */
obram_read(ioaddr, fd.fd_rbd_offset,
(unsigned char *) &rbd,
sizeof(rbd));
#ifdef DEBUG_RX_ERROR
if ((rbd.rbd_status & RBD_STATUS_EOF) !=
RBD_STATUS_EOF) printk(KERN_INFO
"%s: wv_receive(): missing EOF flag.\n",
dev->name);
if ((rbd.rbd_status & RBD_STATUS_F) !=
RBD_STATUS_F) printk(KERN_INFO
"%s: wv_receive(): missing F flag.\n",
dev->name);
#endif /* DEBUG_RX_ERROR */
/* Read the packet and transmit to Linux */
wv_packet_read(dev, rbd.rbd_bufl,
rbd.
rbd_status &
RBD_STATUS_ACNT);
}
#ifdef DEBUG_RX_ERROR
else /* if frame has no data */
printk(KERN_INFO
"%s: wv_receive(): frame has no data.\n",
dev->name);
#endif
} else { /* If reception was no successful */
lp->stats.rx_errors++;
#ifdef DEBUG_RX_INFO
printk(KERN_DEBUG
"%s: wv_receive(): frame not received successfully (%X).\n",
dev->name, fd.fd_status);
#endif
#ifdef DEBUG_RX_ERROR
if ((fd.fd_status & FD_STATUS_S6) != 0)
printk(KERN_INFO
"%s: wv_receive(): no EOF flag.\n",
dev->name);
#endif
if ((fd.fd_status & FD_STATUS_S7) != 0) {
lp->stats.rx_length_errors++;
#ifdef DEBUG_RX_FAIL
printk(KERN_DEBUG
"%s: wv_receive(): frame too short.\n",
dev->name);
#endif
}
if ((fd.fd_status & FD_STATUS_S8) != 0) {
lp->stats.rx_over_errors++;
#ifdef DEBUG_RX_FAIL
printk(KERN_DEBUG
"%s: wv_receive(): rx DMA overrun.\n",
dev->name);
#endif
}
if ((fd.fd_status & FD_STATUS_S9) != 0) {
lp->stats.rx_fifo_errors++;
#ifdef DEBUG_RX_FAIL
printk(KERN_DEBUG
"%s: wv_receive(): ran out of resources.\n",
dev->name);
#endif
}
if ((fd.fd_status & FD_STATUS_S10) != 0) {
lp->stats.rx_frame_errors++;
#ifdef DEBUG_RX_FAIL
printk(KERN_DEBUG
"%s: wv_receive(): alignment error.\n",
dev->name);
#endif
}
if ((fd.fd_status & FD_STATUS_S11) != 0) {
lp->stats.rx_crc_errors++;
#ifdef DEBUG_RX_FAIL
printk(KERN_DEBUG
"%s: wv_receive(): CRC error.\n",
dev->name);
#endif
}
}
fd.fd_status = 0;
obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
(unsigned char *) &fd.fd_status,
sizeof(fd.fd_status));
fd.fd_command = FD_COMMAND_EL;
obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
(unsigned char *) &fd.fd_command,
sizeof(fd.fd_command));
fd.fd_command = 0;
obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
(unsigned char *) &fd.fd_command,
sizeof(fd.fd_command));
lp->rx_last = lp->rx_head;
lp->rx_head = fd.fd_link_offset;
} /* for(;;) -> loop on all frames */
#ifdef DEBUG_RX_INFO
if (nreaped > 1)
printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
dev->name, nreaped);
#endif
#ifdef DEBUG_RX_TRACE
printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
#endif
}
/*********************** PACKET TRANSMISSION ***********************/
/*
* This part deals with sending packets through the WaveLAN.
*
*/
/*------------------------------------------------------------------*/
/*
* This routine fills in the appropriate registers and memory
* locations on the WaveLAN card and starts the card off on
* the transmit.
*
* The principle:
* Each block contains a transmit command, a NOP command,
* a transmit block descriptor and a buffer.
* The CU read the transmit block which point to the tbd,
* read the tbd and the content of the buffer.
* When it has finish with it, it goes to the next command
* which in our case is the NOP. The NOP points on itself,
* so the CU stop here.
* When we add the next block, we modify the previous nop
* to make it point on the new tx command.
* Simple, isn't it ?
*
* (called in wavelan_packet_xmit())
*/
static int wv_packet_write(struct net_device * dev, void *buf, short length)
{
net_local *lp = (net_local *) dev->priv;
unsigned long ioaddr = dev->base_addr;
unsigned short txblock;
unsigned short txpred;
unsigned short tx_addr;
unsigned short nop_addr;
unsigned short tbd_addr;
unsigned short buf_addr;
ac_tx_t tx;
ac_nop_t nop;
tbd_t tbd;
int clen = length;
unsigned long flags;
#ifdef DEBUG_TX_TRACE
printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
length);
#endif
spin_lock_irqsave(&lp->spinlock, flags);
/* Check nothing bad has happened */
if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
#ifdef DEBUG_TX_ERROR
printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
dev->name);
#endif
spin_unlock_irqrestore(&lp->spinlock, flags);
return 1;
}
/* Calculate addresses of next block and previous block. */
txblock = lp->tx_first_free;
txpred = txblock - TXBLOCKZ;
if (txpred < OFFSET_CU)
txpred += NTXBLOCKS * TXBLOCKZ;
lp->tx_first_free += TXBLOCKZ;
if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
lp->tx_n_in_use++;
/* Calculate addresses of the different parts of the block. */
tx_addr = txblock;
nop_addr = tx_addr + sizeof(tx);
tbd_addr = nop_addr + sizeof(nop);
buf_addr = tbd_addr + sizeof(tbd);
/*
* Transmit command
*/
tx.tx_h.ac_status = 0;
obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
(unsigned char *) &tx.tx_h.ac_status,
sizeof(tx.tx_h.ac_status));
/*
* NOP command
*/
nop.nop_h.ac_status = 0;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
(unsigned char *) &nop.nop_h.ac_status,
sizeof(nop.nop_h.ac_status));
nop.nop_h.ac_link = nop_addr;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
(unsigned char *) &nop.nop_h.ac_link,
sizeof(nop.nop_h.ac_link));
/*
* Transmit buffer descriptor
*/
tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
tbd.tbd_next_bd_offset = I82586NULL;
tbd.tbd_bufl = buf_addr;
tbd.tbd_bufh = 0;
obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
/*
* Data
*/
obram_write(ioaddr, buf_addr, buf, length);
/*
* Overwrite the predecessor NOP link
* so that it points to this txblock.
*/
nop_addr = txpred + sizeof(tx);
nop.nop_h.ac_status = 0;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
(unsigned char *) &nop.nop_h.ac_status,
sizeof(nop.nop_h.ac_status));
nop.nop_h.ac_link = txblock;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
(unsigned char *) &nop.nop_h.ac_link,
sizeof(nop.nop_h.ac_link));
/* Make sure the watchdog will keep quiet for a while */
dev->trans_start = jiffies;
/* Keep stats up to date. */
lp->stats.tx_bytes += length;
if (lp->tx_first_in_use == I82586NULL)
lp->tx_first_in_use = txblock;
if (lp->tx_n_in_use < NTXBLOCKS - 1)
netif_wake_queue(dev);
spin_unlock_irqrestore(&lp->spinlock, flags);
#ifdef DEBUG_TX_INFO
wv_packet_info((u8 *) buf, length, dev->name,
"wv_packet_write");
#endif /* DEBUG_TX_INFO */
#ifdef DEBUG_TX_TRACE
printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* This routine is called when we want to send a packet (NET3 callback)
* In this routine, we check if the harware is ready to accept
* the packet. We also prevent reentrance. Then we call the function
* to send the packet.
*/
static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned long flags;
char data[ETH_ZLEN];
#ifdef DEBUG_TX_TRACE
printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
(unsigned) skb);
#endif
/*
* Block a timer-based transmit from overlapping.
* In other words, prevent reentering this routine.
*/
netif_stop_queue(dev);
/* If somebody has asked to reconfigure the controller,
* we can do it now.
*/
if (lp->reconfig_82586) {
spin_lock_irqsave(&lp->spinlock, flags);
wv_82586_config(dev);
spin_unlock_irqrestore(&lp->spinlock, flags);
/* Check that we can continue */
if (lp->tx_n_in_use == (NTXBLOCKS - 1))
return 1;
}
#ifdef DEBUG_TX_ERROR
if (skb->next)
printk(KERN_INFO "skb has next\n");
#endif
/* Do we need some padding? */
/* Note : on wireless the propagation time is in the order of 1us,
* and we don't have the Ethernet specific requirement of beeing
* able to detect collisions, therefore in theory we don't really
* need to pad. Jean II */
if (skb->len < ETH_ZLEN) {
memset(data, 0, ETH_ZLEN);
memcpy(data, skb->data, skb->len);
/* Write packet on the card */
if(wv_packet_write(dev, data, ETH_ZLEN))
return 1; /* We failed */
}
else if(wv_packet_write(dev, skb->data, skb->len))
return 1; /* We failed */
dev_kfree_skb(skb);
#ifdef DEBUG_TX_TRACE
printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
#endif
return 0;
}
/*********************** HARDWARE CONFIGURATION ***********************/
/*
* This part does the real job of starting and configuring the hardware.
*/
/*--------------------------------------------------------------------*/
/*
* Routine to initialize the Modem Management Controller.
* (called by wv_hw_reset())
*/
static int wv_mmc_init(struct net_device * dev)
{
unsigned long ioaddr = dev->base_addr;
net_local *lp = (net_local *) dev->priv;
psa_t psa;
mmw_t m;
int configured;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
#endif
/* Read the parameter storage area. */
psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
#ifdef USE_PSA_CONFIG
configured = psa.psa_conf_status & 1;
#else
configured = 0;
#endif
/* Is the PSA is not configured */
if (!configured) {
/* User will be able to configure NWID later (with iwconfig). */
psa.psa_nwid[0] = 0;
psa.psa_nwid[1] = 0;
/* no NWID checking since NWID is not set */
psa.psa_nwid_select = 0;
/* Disable encryption */
psa.psa_encryption_select = 0;
/* Set to standard values:
* 0x04 for AT,
* 0x01 for MCA,
* 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
*/
if (psa.psa_comp_number & 1)
psa.psa_thr_pre_set = 0x01;
else
psa.psa_thr_pre_set = 0x04;
psa.psa_quality_thr = 0x03;
/* It is configured */
psa.psa_conf_status |= 1;
#ifdef USE_PSA_CONFIG
/* Write the psa. */
psa_write(ioaddr, lp->hacr,
(char *) psa.psa_nwid - (char *) &psa,
(unsigned char *) psa.psa_nwid, 4);
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_thr_pre_set - (char *) &psa,
(unsigned char *) &psa.psa_thr_pre_set, 1);
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_quality_thr - (char *) &psa,
(unsigned char *) &psa.psa_quality_thr, 1);
psa_write(ioaddr, lp->hacr,
(char *) &psa.psa_conf_status - (char *) &psa,
(unsigned char *) &psa.psa_conf_status, 1);
/* update the Wavelan checksum */
update_psa_checksum(dev, ioaddr, lp->hacr);
#endif
}
/* Zero the mmc structure. */
memset(&m, 0x00, sizeof(m));
/* Copy PSA info to the mmc. */
m.mmw_netw_id_l = psa.psa_nwid[1];
m.mmw_netw_id_h = psa.psa_nwid[0];
if (psa.psa_nwid_select & 1)
m.mmw_loopt_sel = 0x00;
else
m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
sizeof(m.mmw_encr_key));
if (psa.psa_encryption_select)
m.mmw_encr_enable =
MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
else
m.mmw_encr_enable = 0;
m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
/*
* Set default modem control parameters.
* See NCR document 407-0024326 Rev. A.
*/
m.mmw_jabber_enable = 0x01;
m.mmw_freeze = 0;
m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
m.mmw_ifs = 0x20;
m.mmw_mod_delay = 0x04;
m.mmw_jam_time = 0x38;
m.mmw_des_io_invert = 0;
m.mmw_decay_prm = 0;
m.mmw_decay_updat_prm = 0;
/* Write all info to MMC. */
mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
/* The following code starts the modem of the 2.00 frequency
* selectable cards at power on. It's not strictly needed for the
* following boots.
* The original patch was by Joe Finney for the PCMCIA driver, but
* I've cleaned it up a bit and added documentation.
* Thanks to Loeke Brederveld from Lucent for the info.
*/
/* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
* Does it work for everybody, especially old cards? */
/* Note: WFREQSEL verifies that it is able to read a sensible
* frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
* is 0xA (Xilinx version) or 0xB (Ariadne version).
* My test is more crude but does work. */
if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
(MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
/* We must download the frequency parameters to the
* synthesizers (from the EEPROM - area 1)
* Note: as the EEPROM is automatically decremented, we set the end
* if the area... */
m.mmw_fee_addr = 0x0F;
m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
(unsigned char *) &m.mmw_fee_ctrl, 2);
/* Wait until the download is finished. */
fee_wait(ioaddr, 100, 100);
#ifdef DEBUG_CONFIG_INFO
/* The frequency was in the last word downloaded. */
mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
(unsigned char *) &m.mmw_fee_data_l, 2);
/* Print some info for the user. */
printk(KERN_DEBUG
"%s: WaveLAN 2.00 recognised (frequency select). Current frequency = %ld\n",
dev->name,
((m.
mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
5 / 2 + 24000L);
#endif
/* We must now download the power adjust value (gain) to
* the synthesizers (from the EEPROM - area 7 - DAC). */
m.mmw_fee_addr = 0x61;
m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
(unsigned char *) &m.mmw_fee_ctrl, 2);
/* Wait until the download is finished. */
}
/* if 2.00 card */
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* Construct the fd and rbd structures.
* Start the receive unit.
* (called by wv_hw_reset())
*/
static int wv_ru_start(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned long ioaddr = dev->base_addr;
u16 scb_cs;
fd_t fd;
rbd_t rbd;
u16 rx;
u16 rx_next;
int i;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
#endif
obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
(unsigned char *) &scb_cs, sizeof(scb_cs));
if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
return 0;
lp->rx_head = OFFSET_RU;
for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
rx_next =
(i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
fd.fd_status = 0;
fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
fd.fd_link_offset = rx_next;
fd.fd_rbd_offset = rx + sizeof(fd);
obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
rbd.rbd_status = 0;
rbd.rbd_next_rbd_offset = I82586NULL;
rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
rbd.rbd_bufh = 0;
rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
obram_write(ioaddr, rx + sizeof(fd),
(unsigned char *) &rbd, sizeof(rbd));
lp->rx_last = rx;
}
obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
(unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
scb_cs = SCB_CMD_RUC_GO;
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cs, sizeof(scb_cs));
set_chan_attn(ioaddr, lp->hacr);
for (i = 1000; i > 0; i--) {
obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cs, sizeof(scb_cs));
if (scb_cs == 0)
break;
udelay(10);
}
if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wavelan_ru_start(): board not accepting command.\n",
dev->name);
#endif
return -1;
}
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* Initialise the transmit blocks.
* Start the command unit executing the NOP
* self-loop of the first transmit block.
*
* Here we create the list of send buffers used to transmit packets
* between the PC and the command unit. For each buffer, we create a
* buffer descriptor (pointing on the buffer), a transmit command
* (pointing to the buffer descriptor) and a NOP command.
* The transmit command is linked to the NOP, and the NOP to itself.
* When we will have finished executing the transmit command, we will
* then loop on the NOP. By releasing the NOP link to a new command,
* we may send another buffer.
*
* (called by wv_hw_reset())
*/
static int wv_cu_start(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned long ioaddr = dev->base_addr;
int i;
u16 txblock;
u16 first_nop;
u16 scb_cs;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
#endif
lp->tx_first_free = OFFSET_CU;
lp->tx_first_in_use = I82586NULL;
for (i = 0, txblock = OFFSET_CU;
i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
ac_tx_t tx;
ac_nop_t nop;
tbd_t tbd;
unsigned short tx_addr;
unsigned short nop_addr;
unsigned short tbd_addr;
unsigned short buf_addr;
tx_addr = txblock;
nop_addr = tx_addr + sizeof(tx);
tbd_addr = nop_addr + sizeof(nop);
buf_addr = tbd_addr + sizeof(tbd);
tx.tx_h.ac_status = 0;
tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
tx.tx_h.ac_link = nop_addr;
tx.tx_tbd_offset = tbd_addr;
obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
sizeof(tx));
nop.nop_h.ac_status = 0;
nop.nop_h.ac_command = acmd_nop;
nop.nop_h.ac_link = nop_addr;
obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
sizeof(nop));
tbd.tbd_status = TBD_STATUS_EOF;
tbd.tbd_next_bd_offset = I82586NULL;
tbd.tbd_bufl = buf_addr;
tbd.tbd_bufh = 0;
obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
sizeof(tbd));
}
first_nop =
OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
(unsigned char *) &first_nop, sizeof(first_nop));
scb_cs = SCB_CMD_CUC_GO;
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cs, sizeof(scb_cs));
set_chan_attn(ioaddr, lp->hacr);
for (i = 1000; i > 0; i--) {
obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cs, sizeof(scb_cs));
if (scb_cs == 0)
break;
udelay(10);
}
if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wavelan_cu_start(): board not accepting command.\n",
dev->name);
#endif
return -1;
}
lp->tx_n_in_use = 0;
netif_start_queue(dev);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* This routine does a standard configuration of the WaveLAN
* controller (i82586).
*
* It initialises the scp, iscp and scb structure
* The first two are just pointers to the next.
* The last one is used for basic configuration and for basic
* communication (interrupt status).
*
* (called by wv_hw_reset())
*/
static int wv_82586_start(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned long ioaddr = dev->base_addr;
scp_t scp; /* system configuration pointer */
iscp_t iscp; /* intermediate scp */
scb_t scb; /* system control block */
ach_t cb; /* Action command header */
u8 zeroes[512];
int i;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
#endif
/*
* Clear the onboard RAM.
*/
memset(&zeroes[0], 0x00, sizeof(zeroes));
for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
/*
* Construct the command unit structures:
* scp, iscp, scb, cb.
*/
memset(&scp, 0x00, sizeof(scp));
scp.scp_sysbus = SCP_SY_16BBUS;
scp.scp_iscpl = OFFSET_ISCP;
obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
sizeof(scp));
memset(&iscp, 0x00, sizeof(iscp));
iscp.iscp_busy = 1;
iscp.iscp_offset = OFFSET_SCB;
obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
sizeof(iscp));
/* Our first command is to reset the i82586. */
memset(&scb, 0x00, sizeof(scb));
scb.scb_command = SCB_CMD_RESET;
scb.scb_cbl_offset = OFFSET_CU;
scb.scb_rfa_offset = OFFSET_RU;
obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
sizeof(scb));
set_chan_attn(ioaddr, lp->hacr);
/* Wait for command to finish. */
for (i = 1000; i > 0; i--) {
obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
sizeof(iscp));
if (iscp.iscp_busy == (unsigned short) 0)
break;
udelay(10);
}
if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wv_82586_start(): iscp_busy timeout.\n",
dev->name);
#endif
return -1;
}
/* Check command completion. */
for (i = 15; i > 0; i--) {
obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
sizeof(scb));
if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
break;
udelay(10);
}
if (i <= 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
#endif
return -1;
}
wv_ack(dev);
/* Set the action command header. */
memset(&cb, 0x00, sizeof(cb));
cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
cb.ac_link = OFFSET_CU;
obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
if (wv_synchronous_cmd(dev, "diag()") == -1)
return -1;
obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
if (cb.ac_status & AC_SFLD_FAIL) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wv_82586_start(): i82586 Self Test failed.\n",
dev->name);
#endif
return -1;
}
#ifdef DEBUG_I82586_SHOW
wv_scb_show(ioaddr);
#endif
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* This routine does a standard configuration of the WaveLAN
* controller (i82586).
*
* This routine is a violent hack. We use the first free transmit block
* to make our configuration. In the buffer area, we create the three
* configuration commands (linked). We make the previous NOP point to
* the beginning of the buffer instead of the tx command. After, we go
* as usual to the NOP command.
* Note that only the last command (mc_set) will generate an interrupt.
*
* (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
*/
static void wv_82586_config(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned long ioaddr = dev->base_addr;
unsigned short txblock;
unsigned short txpred;
unsigned short tx_addr;
unsigned short nop_addr;
unsigned short tbd_addr;
unsigned short cfg_addr;
unsigned short ias_addr;
unsigned short mcs_addr;
ac_tx_t tx;
ac_nop_t nop;
ac_cfg_t cfg; /* Configure action */
ac_ias_t ias; /* IA-setup action */
ac_mcs_t mcs; /* Multicast setup */
struct dev_mc_list *dmi;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
#endif
/* Check nothing bad has happened */
if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
dev->name);
#endif
return;
}
/* Calculate addresses of next block and previous block. */
txblock = lp->tx_first_free;
txpred = txblock - TXBLOCKZ;
if (txpred < OFFSET_CU)
txpred += NTXBLOCKS * TXBLOCKZ;
lp->tx_first_free += TXBLOCKZ;
if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
lp->tx_n_in_use++;
/* Calculate addresses of the different parts of the block. */
tx_addr = txblock;
nop_addr = tx_addr + sizeof(tx);
tbd_addr = nop_addr + sizeof(nop);
cfg_addr = tbd_addr + sizeof(tbd_t); /* beginning of the buffer */
ias_addr = cfg_addr + sizeof(cfg);
mcs_addr = ias_addr + sizeof(ias);
/*
* Transmit command
*/
tx.tx_h.ac_status = 0xFFFF; /* Fake completion value */
obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
(unsigned char *) &tx.tx_h.ac_status,
sizeof(tx.tx_h.ac_status));
/*
* NOP command
*/
nop.nop_h.ac_status = 0;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
(unsigned char *) &nop.nop_h.ac_status,
sizeof(nop.nop_h.ac_status));
nop.nop_h.ac_link = nop_addr;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
(unsigned char *) &nop.nop_h.ac_link,
sizeof(nop.nop_h.ac_link));
/* Create a configure action. */
memset(&cfg, 0x00, sizeof(cfg));
/*
* For Linux we invert AC_CFG_ALOC() so as to conform
* to the way that net packets reach us from above.
* (See also ac_tx_t.)
*
* Updated from Wavelan Manual WCIN085B
*/
cfg.cfg_byte_cnt =
AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
AC_CFG_ILPBCK(0) |
AC_CFG_PRELEN(AC_CFG_PLEN_2) |
AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
cfg.cfg_ifs = 0x20;
cfg.cfg_slotl = 0x0C;
cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
AC_CFG_BTSTF(0) |
AC_CFG_CRC16(0) |
AC_CFG_NCRC(0) |
AC_CFG_TNCRS(1) |
AC_CFG_MANCH(0) |
AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
cfg.cfg_byte15 = AC_CFG_ICDS(0) |
AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
/*
cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
*/
cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
cfg.cfg_h.ac_link = ias_addr;
obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
/* Set up the MAC address */
memset(&ias, 0x00, sizeof(ias));
ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
ias.ias_h.ac_link = mcs_addr;
memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
sizeof(ias.ias_addr));
obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
/* Initialize adapter's Ethernet multicast addresses */
memset(&mcs, 0x00, sizeof(mcs));
mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
mcs.mcs_h.ac_link = nop_addr;
mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
/* Any address to set? */
if (lp->mc_count) {
for (dmi = dev->mc_list; dmi; dmi = dmi->next)
outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
WAVELAN_ADDR_SIZE >> 1);
#ifdef DEBUG_CONFIG_INFO
printk(KERN_DEBUG
"%s: wv_82586_config(): set %d multicast addresses:\n",
dev->name, lp->mc_count);
for (dmi = dev->mc_list; dmi; dmi = dmi->next)
printk(KERN_DEBUG
" %02x:%02x:%02x:%02x:%02x:%02x\n",
dmi->dmi_addr[0], dmi->dmi_addr[1],
dmi->dmi_addr[2], dmi->dmi_addr[3],
dmi->dmi_addr[4], dmi->dmi_addr[5]);
#endif
}
/*
* Overwrite the predecessor NOP link
* so that it points to the configure action.
*/
nop_addr = txpred + sizeof(tx);
nop.nop_h.ac_status = 0;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
(unsigned char *) &nop.nop_h.ac_status,
sizeof(nop.nop_h.ac_status));
nop.nop_h.ac_link = cfg_addr;
obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
(unsigned char *) &nop.nop_h.ac_link,
sizeof(nop.nop_h.ac_link));
/* Job done, clear the flag */
lp->reconfig_82586 = 0;
if (lp->tx_first_in_use == I82586NULL)
lp->tx_first_in_use = txblock;
if (lp->tx_n_in_use == (NTXBLOCKS - 1))
netif_stop_queue(dev);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* This routine, called by wavelan_close(), gracefully stops the
* WaveLAN controller (i82586).
* (called by wavelan_close())
*/
static void wv_82586_stop(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned long ioaddr = dev->base_addr;
u16 scb_cmd;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
#endif
/* Suspend both command unit and receive unit. */
scb_cmd =
(SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
SCB_CMD_RUC_SUS);
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &scb_cmd, sizeof(scb_cmd));
set_chan_attn(ioaddr, lp->hacr);
/* No more interrupts */
wv_ints_off(dev);
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
#endif
}
/*------------------------------------------------------------------*/
/*
* Totally reset the WaveLAN and restart it.
* Performs the following actions:
* 1. A power reset (reset DMA)
* 2. Initialize the radio modem (using wv_mmc_init)
* 3. Reset & Configure LAN controller (using wv_82586_start)
* 4. Start the LAN controller's command unit
* 5. Start the LAN controller's receive unit
* (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
*/
static int wv_hw_reset(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned long ioaddr = dev->base_addr;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
(unsigned int) dev);
#endif
/* Increase the number of resets done. */
lp->nresets++;
wv_hacr_reset(ioaddr);
lp->hacr = HACR_DEFAULT;
if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
return -1;
/* Enable the card to send interrupts. */
wv_ints_on(dev);
/* Start card functions */
if (wv_cu_start(dev) < 0)
return -1;
/* Setup the controller and parameters */
wv_82586_config(dev);
/* Finish configuration with the receive unit */
if (wv_ru_start(dev) < 0)
return -1;
#ifdef DEBUG_CONFIG_TRACE
printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* Check if there is a WaveLAN at the specific base address.
* As a side effect, this reads the MAC address.
* (called in wavelan_probe() and init_module())
*/
static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
{
int i; /* Loop counter */
/* Check if the base address if available. */
if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
return -EBUSY; /* ioaddr already used */
/* Reset host interface */
wv_hacr_reset(ioaddr);
/* Read the MAC address from the parameter storage area. */
psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
mac, 6);
release_region(ioaddr, sizeof(ha_t));
/*
* Check the first three octets of the address for the manufacturer's code.
* Note: if this can't find your WaveLAN card, you've got a
* non-NCR/AT&T/Lucent ISA card. See wavelan.p.h for detail on
* how to configure your card.
*/
for (i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++)
if ((mac[0] == MAC_ADDRESSES[i][0]) &&
(mac[1] == MAC_ADDRESSES[i][1]) &&
(mac[2] == MAC_ADDRESSES[i][2]))
return 0;
#ifdef DEBUG_CONFIG_INFO
printk(KERN_WARNING
"WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
ioaddr, mac[0], mac[1], mac[2]);
#endif
return -ENODEV;
}
/************************ INTERRUPT HANDLING ************************/
/*
* This function is the interrupt handler for the WaveLAN card. This
* routine will be called whenever:
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
{
struct net_device *dev;
unsigned long ioaddr;
net_local *lp;
u16 hasr;
u16 status;
u16 ack_cmd;
dev = dev_id;
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
#endif
lp = (net_local *) dev->priv;
ioaddr = dev->base_addr;
#ifdef DEBUG_INTERRUPT_INFO
/* Check state of our spinlock */
if(spin_is_locked(&lp->spinlock))
printk(KERN_DEBUG
"%s: wavelan_interrupt(): spinlock is already locked !!!\n",
dev->name);
#endif
/* Prevent reentrancy. We need to do that because we may have
* multiple interrupt handler running concurrently.
* It is safe because interrupts are disabled before acquiring
* the spinlock. */
spin_lock(&lp->spinlock);
/* We always had spurious interrupts at startup, but lately I
* saw them comming *between* the request_irq() and the
* spin_lock_irqsave() in wavelan_open(), so the spinlock
* protection is no enough.
* So, we also check lp->hacr that will tell us is we enabled
* irqs or not (see wv_ints_on()).
* We can't use netif_running(dev) because we depend on the
* proper processing of the irq generated during the config. */
/* Which interrupt it is ? */
hasr = hasr_read(ioaddr);
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_INFO
"%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
dev->name, hasr, lp->hacr);
#endif
/* Check modem interrupt */
if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
u8 dce_status;
/*
* Interrupt from the modem management controller.
* This will clear it -- ignored for now.
*/
mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
sizeof(dce_status));
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO
"%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
dev->name, dce_status);
#endif
}
/* Check if not controller interrupt */
if (((hasr & HASR_82586_INTR) == 0) ||
((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO
"%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
dev->name, hasr);
#endif
spin_unlock (&lp->spinlock);
return IRQ_NONE;
}
/* Read interrupt data. */
obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
(unsigned char *) &status, sizeof(status));
/*
* Acknowledge the interrupt(s).
*/
ack_cmd = status & SCB_ST_INT;
obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
(unsigned char *) &ack_cmd, sizeof(ack_cmd));
set_chan_attn(ioaddr, lp->hacr);
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
dev->name, status);
#endif
/* Command completed. */
if ((status & SCB_ST_CX) == SCB_ST_CX) {
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_DEBUG
"%s: wavelan_interrupt(): command completed.\n",
dev->name);
#endif
wv_complete(dev, ioaddr, lp);
}
/* Frame received. */
if ((status & SCB_ST_FR) == SCB_ST_FR) {
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_DEBUG
"%s: wavelan_interrupt(): received packet.\n",
dev->name);
#endif
wv_receive(dev);
}
/* Check the state of the command unit. */
if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
(((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
(netif_running(dev)))) {
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO
"%s: wavelan_interrupt(): CU inactive -- restarting\n",
dev->name);
#endif
wv_hw_reset(dev);
}
/* Check the state of the command unit. */
if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
(((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
(netif_running(dev)))) {
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO
"%s: wavelan_interrupt(): RU not ready -- restarting\n",
dev->name);
#endif
wv_hw_reset(dev);
}
/* Release spinlock */
spin_unlock (&lp->spinlock);
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
#endif
return IRQ_HANDLED;
}
/*------------------------------------------------------------------*/
/*
* Watchdog: when we start a transmission, a timer is set for us in the
* kernel. If the transmission completes, this timer is disabled. If
* the timer expires, we are called and we try to unlock the hardware.
*/
static void wavelan_watchdog(struct net_device * dev)
{
net_local * lp = (net_local *)dev->priv;
u_long ioaddr = dev->base_addr;
unsigned long flags;
unsigned int nreaped;
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
#endif
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
dev->name);
#endif
/* Check that we came here for something */
if (lp->tx_n_in_use <= 0) {
return;
}
spin_lock_irqsave(&lp->spinlock, flags);
/* Try to see if some buffers are not free (in case we missed
* an interrupt */
nreaped = wv_complete(dev, ioaddr, lp);
#ifdef DEBUG_INTERRUPT_INFO
printk(KERN_DEBUG
"%s: wavelan_watchdog(): %d reaped, %d remain.\n",
dev->name, nreaped, lp->tx_n_in_use);
#endif
#ifdef DEBUG_PSA_SHOW
{
psa_t psa;
psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
wv_psa_show(&psa);
}
#endif
#ifdef DEBUG_MMC_SHOW
wv_mmc_show(dev);
#endif
#ifdef DEBUG_I82586_SHOW
wv_cu_show(dev);
#endif
/* If no buffer has been freed */
if (nreaped == 0) {
#ifdef DEBUG_INTERRUPT_ERROR
printk(KERN_INFO
"%s: wavelan_watchdog(): cleanup failed, trying reset\n",
dev->name);
#endif
wv_hw_reset(dev);
}
/* At this point, we should have some free Tx buffer ;-) */
if (lp->tx_n_in_use < NTXBLOCKS - 1)
netif_wake_queue(dev);
spin_unlock_irqrestore(&lp->spinlock, flags);
#ifdef DEBUG_INTERRUPT_TRACE
printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
#endif
}
/********************* CONFIGURATION CALLBACKS *********************/
/*
* Here are the functions called by the Linux networking code (NET3)
* for initialization, configuration and deinstallations of the
* WaveLAN ISA hardware.
*/
/*------------------------------------------------------------------*/
/*
* Configure and start up the WaveLAN PCMCIA adaptor.
* Called by NET3 when it "opens" the device.
*/
static int wavelan_open(struct net_device * dev)
{
net_local * lp = (net_local *)dev->priv;
unsigned long flags;
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
(unsigned int) dev);
#endif
/* Check irq */
if (dev->irq == 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
dev->name);
#endif
return -ENXIO;
}
if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0)
{
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
dev->name);
#endif
return -EAGAIN;
}
spin_lock_irqsave(&lp->spinlock, flags);
if (wv_hw_reset(dev) != -1) {
netif_start_queue(dev);
} else {
free_irq(dev->irq, dev);
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wavelan_open(): impossible to start the card\n",
dev->name);
#endif
spin_unlock_irqrestore(&lp->spinlock, flags);
return -EAGAIN;
}
spin_unlock_irqrestore(&lp->spinlock, flags);
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* Shut down the WaveLAN ISA card.
* Called by NET3 when it "closes" the device.
*/
static int wavelan_close(struct net_device * dev)
{
net_local *lp = (net_local *) dev->priv;
unsigned long flags;
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
(unsigned int) dev);
#endif
netif_stop_queue(dev);
/*
* Flush the Tx and disable Rx.
*/
spin_lock_irqsave(&lp->spinlock, flags);
wv_82586_stop(dev);
spin_unlock_irqrestore(&lp->spinlock, flags);
free_irq(dev->irq, dev);
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
#endif
return 0;
}
/*------------------------------------------------------------------*/
/*
* Probe an I/O address, and if the WaveLAN is there configure the
* device structure
* (called by wavelan_probe() and via init_module()).
*/
static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
{
u8 irq_mask;
int irq;
net_local *lp;
mac_addr mac;
int err;
if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
return -EADDRINUSE;
err = wv_check_ioaddr(ioaddr, mac);
if (err)
goto out;
memcpy(dev->dev_addr, mac, 6);
dev->base_addr = ioaddr;
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
dev->name, (unsigned int) dev, ioaddr);
#endif
/* Check IRQ argument on command line. */
if (dev->irq != 0) {
irq_mask = wv_irq_to_psa(dev->irq);
if (irq_mask == 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_WARNING
"%s: wavelan_config(): invalid IRQ %d ignored.\n",
dev->name, dev->irq);
#endif
dev->irq = 0;
} else {
#ifdef DEBUG_CONFIG_INFO
printk(KERN_DEBUG
"%s: wavelan_config(): changing IRQ to %d\n",
dev->name, dev->irq);
#endif
psa_write(ioaddr, HACR_DEFAULT,
psaoff(0, psa_int_req_no), &irq_mask, 1);
/* update the Wavelan checksum */
update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
wv_hacr_reset(ioaddr);
}
}
psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
&irq_mask, 1);
if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_INFO
"%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
dev->name, irq_mask);
#endif
err = -EAGAIN;
goto out;
}
dev->irq = irq;
dev->mem_start = 0x0000;
dev->mem_end = 0x0000;
dev->if_port = 0;
/* Initialize device structures */
memset(dev->priv, 0, sizeof(net_local));
lp = (net_local *) dev->priv;
/* Back link to the device structure. */
lp->dev = dev;
/* Add the device at the beginning of the linked list. */
lp->next = wavelan_list;
wavelan_list = lp;
lp->hacr = HACR_DEFAULT;
/* Multicast stuff */
lp->promiscuous = 0;
lp->mc_count = 0;
/* Init spinlock */
spin_lock_init(&lp->spinlock);
SET_MODULE_OWNER(dev);
dev->open = wavelan_open;
dev->stop = wavelan_close;
dev->hard_start_xmit = wavelan_packet_xmit;
dev->get_stats = wavelan_get_stats;
dev->set_multicast_list = &wavelan_set_multicast_list;
dev->tx_timeout = &wavelan_watchdog;
dev->watchdog_timeo = WATCHDOG_JIFFIES;
#ifdef SET_MAC_ADDRESS
dev->set_mac_address = &wavelan_set_mac_address;
#endif /* SET_MAC_ADDRESS */
dev->wireless_handlers = &wavelan_handler_def;
lp->wireless_data.spy_data = &lp->spy_data;
dev->wireless_data = &lp->wireless_data;
dev->mtu = WAVELAN_MTU;
/* Display nice information. */
wv_init_info(dev);
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
#endif
return 0;
out:
release_region(ioaddr, sizeof(ha_t));
return err;
}
/*------------------------------------------------------------------*/
/*
* Check for a network adaptor of this type. Return '0' iff one
* exists. There seem to be different interpretations of
* the initial value of dev->base_addr.
* We follow the example in drivers/net/ne.c.
* (called in "Space.c")
*/
struct net_device * __init wavelan_probe(int unit)
{
struct net_device *dev;
short base_addr;
int def_irq;
int i;
int r = 0;
#ifdef STRUCT_CHECK
if (wv_struct_check() != (char *) NULL) {
printk(KERN_WARNING
"%s: wavelan_probe(): structure/compiler botch: \"%s\"\n",
dev->name, wv_struct_check());
return -ENODEV;
}
#endif /* STRUCT_CHECK */
dev = alloc_etherdev(sizeof(net_local));
if (!dev)
return ERR_PTR(-ENOMEM);
sprintf(dev->name, "eth%d", unit);
netdev_boot_setup_check(dev);
base_addr = dev->base_addr;
def_irq = dev->irq;
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG
"%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
dev->name, dev, (unsigned int) dev->base_addr);
#endif
/* Don't probe at all. */
if (base_addr < 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_WARNING
"%s: wavelan_probe(): invalid base address\n",
dev->name);
#endif
r = -ENXIO;
} else if (base_addr > 0x100) { /* Check a single specified location. */
r = wavelan_config(dev, base_addr);
#ifdef DEBUG_CONFIG_INFO
if (r != 0)
printk(KERN_DEBUG
"%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
dev->name, base_addr);
#endif
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
#endif
} else { /* Scan all possible addresses of the WaveLAN hardware. */
for (i = 0; i < NELS(iobase); i++) {
dev->irq = def_irq;
if (wavelan_config(dev, iobase[i]) == 0) {
#ifdef DEBUG_CALLBACK_TRACE
printk(KERN_DEBUG
"%s: <-wavelan_probe()\n",
dev->name);
#endif
break;
}
}
if (i == NELS(iobase))
r = -ENODEV;
}
if (r)
goto out;
r = register_netdev(dev);
if (r)
goto out1;
return dev;
out1:
release_region(dev->base_addr, sizeof(ha_t));
wavelan_list = wavelan_list->next;
out:
free_netdev(dev);
return ERR_PTR(r);
}
/****************************** MODULE ******************************/
/*
* Module entry point: insertion and removal
*/
#ifdef MODULE
/*------------------------------------------------------------------*/
/*
* Insertion of the module
* I'm now quite proud of the multi-device support.
*/
int __init init_module(void)
{
int ret = -EIO; /* Return error if no cards found */
int i;
#ifdef DEBUG_MODULE_TRACE
printk(KERN_DEBUG "-> init_module()\n");
#endif
/* If probing is asked */
if (io[0] == 0) {
#ifdef DEBUG_CONFIG_ERROR
printk(KERN_WARNING
"WaveLAN init_module(): doing device probing (bad !)\n");
printk(KERN_WARNING
"Specify base addresses while loading module to correct the problem\n");
#endif
/* Copy the basic set of address to be probed. */
for (i = 0; i < NELS(iobase); i++)
io[i] = iobase[i];
}
/* Loop on all possible base addresses. */
i = -1;
while ((io[++i] != 0) && (i < NELS(io))) {
struct net_device *dev = alloc_etherdev(sizeof(net_local));
if (!dev)
break;
if (name[i])
strcpy(dev->name, name[i]); /* Copy name */
dev->base_addr = io[i];
dev->irq = irq[i];
/* Check if there is something at this base address. */
if (wavelan_config(dev, io[i]) == 0) {
if (register_netdev(dev) != 0) {
release_region(dev->base_addr, sizeof(ha_t));
wavelan_list = wavelan_list->next;
} else {
ret = 0;
continue;
}
}
free_netdev(dev);
}
#ifdef DEBUG_CONFIG_ERROR
if (!wavelan_list)
printk(KERN_WARNING
"WaveLAN init_module(): no device found\n");
#endif
#ifdef DEBUG_MODULE_TRACE
printk(KERN_DEBUG "<- init_module()\n");
#endif
return ret;
}
/*------------------------------------------------------------------*/
/*
* Removal of the module
*/
void cleanup_module(void)
{
#ifdef DEBUG_MODULE_TRACE
printk(KERN_DEBUG "-> cleanup_module()\n");
#endif
/* Loop on all devices and release them. */
while (wavelan_list) {
struct net_device *dev = wavelan_list->dev;
#ifdef DEBUG_CONFIG_INFO
printk(KERN_DEBUG
"%s: cleanup_module(): removing device at 0x%x\n",
dev->name, (unsigned int) dev);
#endif
unregister_netdev(dev);
release_region(dev->base_addr, sizeof(ha_t));
wavelan_list = wavelan_list->next;
free_netdev(dev);
}
#ifdef DEBUG_MODULE_TRACE
printk(KERN_DEBUG "<- cleanup_module()\n");
#endif
}
#endif /* MODULE */
MODULE_LICENSE("GPL");
/*
* This software may only be used and distributed
* according to the terms of the GNU General Public License.
*
* This software was developed as a component of the
* Linux operating system.
* It is based on other device drivers and information
* either written or supplied by:
* Ajay Bakre (bakre@paul.rutgers.edu),
* Donald Becker (becker@scyld.com),
* Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
* Anders Klemets (klemets@it.kth.se),
* Vladimir V. Kolpakov (w@stier.koenig.ru),
* Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
* Pauline Middelink (middelin@polyware.iaf.nl),
* Robert Morris (rtm@das.harvard.edu),
* Jean Tourrilhes (jt@hplb.hpl.hp.com),
* Girish Welling (welling@paul.rutgers.edu),
*
* Thanks go also to:
* James Ashton (jaa101@syseng.anu.edu.au),
* Alan Cox (alan@redhat.com),
* Allan Creighton (allanc@cs.usyd.edu.au),
* Matthew Geier (matthew@cs.usyd.edu.au),
* Remo di Giovanni (remo@cs.usyd.edu.au),
* Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
* Vipul Gupta (vgupta@cs.binghamton.edu),
* Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
* Tim Nicholson (tim@cs.usyd.edu.au),
* Ian Parkin (ian@cs.usyd.edu.au),
* John Rosenberg (johnr@cs.usyd.edu.au),
* George Rossi (george@phm.gov.au),
* Arthur Scott (arthur@cs.usyd.edu.au),
* Peter Storey,
* for their assistance and advice.
*
* Please send bug reports, updates, comments to:
*
* Bruce Janson Email: bruce@cs.usyd.edu.au
* Basser Department of Computer Science Phone: +61-2-9351-3423
* University of Sydney, N.S.W., 2006, AUSTRALIA Fax: +61-2-9351-3838
*/