linux/arch/arm64/kernel/suspend.c

153 lines
4.4 KiB
C
Raw Normal View History

arm64: kernel: pause/unpause function graph tracer in cpu_suspend() The function graph tracer adds instrumentation that is required to trace both entry and exit of a function. In particular the function graph tracer updates the "return address" of a function in order to insert a trace callback on function exit. Kernel power management functions like cpu_suspend() are called upon power down entry with functions called "finishers" that are in turn called to trigger the power down sequence but they may not return to the kernel through the normal return path. When the core resumes from low-power it returns to the cpu_suspend() function through the cpu_resume path, which leaves the trace stack frame set-up by the function tracer in an incosistent state upon return to the kernel when tracing is enabled. This patch fixes the issue by pausing/resuming the function graph tracer on the thread executing cpu_suspend() (ie the function call that subsequently triggers the "suspend finishers"), so that the function graph tracer state is kept consistent across functions that enter power down states and never return by effectively disabling graph tracer while they are executing. Fixes: 819e50e25d0c ("arm64: Add ftrace support") Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reported-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org> Suggested-by: Steven Rostedt <rostedt@goodmis.org> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> # 3.16+ Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-17 19:50:51 +08:00
#include <linux/ftrace.h>
#include <linux/percpu.h>
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
#include <linux/slab.h>
#include <asm/cacheflush.h>
#include <asm/debug-monitors.h>
#include <asm/pgtable.h>
#include <asm/memory.h>
arm64: kernel: fix __cpu_suspend mm switch on warm-boot On arm64 the TTBR0_EL1 register is set to either the reserved TTBR0 page tables on boot or to the active_mm mappings belonging to user space processes, it must never be set to swapper_pg_dir page tables mappings. When a CPU is booted its active_mm is set to init_mm even though its TTBR0_EL1 points at the reserved TTBR0 page mappings. This implies that when __cpu_suspend is triggered the active_mm can point at init_mm even if the current TTBR0_EL1 register contains the reserved TTBR0_EL1 mappings. Therefore, the mm save and restore executed in __cpu_suspend might turn out to be erroneous in that, if the current->active_mm corresponds to init_mm, on resume from low power it ends up restoring in the TTBR0_EL1 the init_mm mappings that are global and can cause speculation of TLB entries which end up being propagated to user space. This patch fixes the issue by checking the active_mm pointer before restoring the TTBR0 mappings. If the current active_mm == &init_mm, the code sets the TTBR0_EL1 to the reserved TTBR0 mapping instead of switching back to the active_mm, which is the expected behaviour corresponding to the TTBR0_EL1 settings when __cpu_suspend was entered. Fixes: 95322526ef62 ("arm64: kernel: cpu_{suspend/resume} implementation") Cc: <stable@vger.kernel.org> # 3.14+: 18ab7db Cc: <stable@vger.kernel.org> # 3.14+: 714f599 Cc: <stable@vger.kernel.org> # 3.14+: c3684fb Cc: <stable@vger.kernel.org> # 3.14+ Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-12-20 01:03:47 +08:00
#include <asm/mmu_context.h>
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
#include <asm/smp_plat.h>
#include <asm/suspend.h>
#include <asm/tlbflush.h>
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 21:54:50 +08:00
extern int __cpu_suspend_enter(unsigned long arg, int (*fn)(unsigned long));
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
/*
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 21:54:50 +08:00
* This is called by __cpu_suspend_enter() to save the state, and do whatever
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
* flushing is required to ensure that when the CPU goes to sleep we have
* the necessary data available when the caches are not searched.
*
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 21:54:50 +08:00
* ptr: CPU context virtual address
* save_ptr: address of the location where the context physical address
* must be saved
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
*/
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 21:54:50 +08:00
void notrace __cpu_suspend_save(struct cpu_suspend_ctx *ptr,
phys_addr_t *save_ptr)
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
{
*save_ptr = virt_to_phys(ptr);
cpu_do_suspend(ptr);
/*
* Only flush the context that must be retrieved with the MMU
* off. VA primitives ensure the flush is applied to all
* cache levels so context is pushed to DRAM.
*/
__flush_dcache_area(ptr, sizeof(*ptr));
__flush_dcache_area(save_ptr, sizeof(*save_ptr));
}
/*
* This hook is provided so that cpu_suspend code can restore HW
* breakpoints as early as possible in the resume path, before reenabling
* debug exceptions. Code cannot be run from a CPU PM notifier since by the
* time the notifier runs debug exceptions might have been enabled already,
* with HW breakpoints registers content still in an unknown state.
*/
static void (*hw_breakpoint_restore)(void *);
void __init cpu_suspend_set_dbg_restorer(void (*hw_bp_restore)(void *))
{
/* Prevent multiple restore hook initializations */
if (WARN_ON(hw_breakpoint_restore))
return;
hw_breakpoint_restore = hw_bp_restore;
}
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 21:54:50 +08:00
/*
* cpu_suspend
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 21:54:50 +08:00
*
* arg: argument to pass to the finisher function
* fn: finisher function pointer
*
*/
int cpu_suspend(unsigned long arg, int (*fn)(unsigned long))
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 21:54:50 +08:00
{
struct mm_struct *mm = current->active_mm;
int ret;
unsigned long flags;
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
/*
* From this point debug exceptions are disabled to prevent
* updates to mdscr register (saved and restored along with
* general purpose registers) from kernel debuggers.
*/
local_dbg_save(flags);
arm64: kernel: pause/unpause function graph tracer in cpu_suspend() The function graph tracer adds instrumentation that is required to trace both entry and exit of a function. In particular the function graph tracer updates the "return address" of a function in order to insert a trace callback on function exit. Kernel power management functions like cpu_suspend() are called upon power down entry with functions called "finishers" that are in turn called to trigger the power down sequence but they may not return to the kernel through the normal return path. When the core resumes from low-power it returns to the cpu_suspend() function through the cpu_resume path, which leaves the trace stack frame set-up by the function tracer in an incosistent state upon return to the kernel when tracing is enabled. This patch fixes the issue by pausing/resuming the function graph tracer on the thread executing cpu_suspend() (ie the function call that subsequently triggers the "suspend finishers"), so that the function graph tracer state is kept consistent across functions that enter power down states and never return by effectively disabling graph tracer while they are executing. Fixes: 819e50e25d0c ("arm64: Add ftrace support") Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reported-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org> Suggested-by: Steven Rostedt <rostedt@goodmis.org> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> # 3.16+ Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-17 19:50:51 +08:00
/*
* Function graph tracer state gets incosistent when the kernel
* calls functions that never return (aka suspend finishers) hence
* disable graph tracing during their execution.
*/
pause_graph_tracing();
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
/*
* mm context saved on the stack, it will be restored when
* the cpu comes out of reset through the identity mapped
* page tables, so that the thread address space is properly
* set-up on function return.
*/
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 21:54:50 +08:00
ret = __cpu_suspend_enter(arg, fn);
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
if (ret == 0) {
arm64: kernel: fix __cpu_suspend mm switch on warm-boot On arm64 the TTBR0_EL1 register is set to either the reserved TTBR0 page tables on boot or to the active_mm mappings belonging to user space processes, it must never be set to swapper_pg_dir page tables mappings. When a CPU is booted its active_mm is set to init_mm even though its TTBR0_EL1 points at the reserved TTBR0 page mappings. This implies that when __cpu_suspend is triggered the active_mm can point at init_mm even if the current TTBR0_EL1 register contains the reserved TTBR0_EL1 mappings. Therefore, the mm save and restore executed in __cpu_suspend might turn out to be erroneous in that, if the current->active_mm corresponds to init_mm, on resume from low power it ends up restoring in the TTBR0_EL1 the init_mm mappings that are global and can cause speculation of TLB entries which end up being propagated to user space. This patch fixes the issue by checking the active_mm pointer before restoring the TTBR0 mappings. If the current active_mm == &init_mm, the code sets the TTBR0_EL1 to the reserved TTBR0 mapping instead of switching back to the active_mm, which is the expected behaviour corresponding to the TTBR0_EL1 settings when __cpu_suspend was entered. Fixes: 95322526ef62 ("arm64: kernel: cpu_{suspend/resume} implementation") Cc: <stable@vger.kernel.org> # 3.14+: 18ab7db Cc: <stable@vger.kernel.org> # 3.14+: 714f599 Cc: <stable@vger.kernel.org> # 3.14+: c3684fb Cc: <stable@vger.kernel.org> # 3.14+ Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-12-20 01:03:47 +08:00
/*
* We are resuming from reset with TTBR0_EL1 set to the
arm64: kernel: fix tcr_el1.t0sz restore on systems with extended idmap Commit dd006da21646 ("arm64: mm: increase VA range of identity map") introduced a mechanism to extend the virtual memory map range to support arm64 systems with system RAM located at very high offset, where the identity mapping used to enable/disable the MMU requires additional translation levels to map the physical memory at an equal virtual offset. The kernel detects at boot time the tcr_el1.t0sz value required by the identity mapping and sets-up the tcr_el1.t0sz register field accordingly, any time the identity map is required in the kernel (ie when enabling the MMU). After enabling the MMU, in the cold boot path the kernel resets the tcr_el1.t0sz to its default value (ie the actual configuration value for the system virtual address space) so that after enabling the MMU the memory space translated by ttbr0_el1 is restored as expected. Commit dd006da21646 ("arm64: mm: increase VA range of identity map") also added code to set-up the tcr_el1.t0sz value when the kernel resumes from low-power states with the MMU off through cpu_resume() in order to effectively use the identity mapping to enable the MMU but failed to add the code required to restore the tcr_el1.t0sz to its default value, when the core returns to the kernel with the MMU enabled, so that the kernel might end up running with tcr_el1.t0sz value set-up for the identity mapping which can be lower than the value required by the actual virtual address space, resulting in an erroneous set-up. This patchs adds code in the resume path that restores the tcr_el1.t0sz default value upon core resume, mirroring this way the cold boot path behaviour therefore fixing the issue. Cc: <stable@vger.kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Fixes: dd006da21646 ("arm64: mm: increase VA range of identity map") Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-10-28 01:29:10 +08:00
* idmap to enable the MMU; set the TTBR0 to the reserved
* page tables to prevent speculative TLB allocations, flush
* the local tlb and set the default tcr_el1.t0sz so that
* the TTBR0 address space set-up is properly restored.
* If the current active_mm != &init_mm we entered cpu_suspend
* with mappings in TTBR0 that must be restored, so we switch
* them back to complete the address space configuration
* restoration before returning.
arm64: kernel: fix __cpu_suspend mm switch on warm-boot On arm64 the TTBR0_EL1 register is set to either the reserved TTBR0 page tables on boot or to the active_mm mappings belonging to user space processes, it must never be set to swapper_pg_dir page tables mappings. When a CPU is booted its active_mm is set to init_mm even though its TTBR0_EL1 points at the reserved TTBR0 page mappings. This implies that when __cpu_suspend is triggered the active_mm can point at init_mm even if the current TTBR0_EL1 register contains the reserved TTBR0_EL1 mappings. Therefore, the mm save and restore executed in __cpu_suspend might turn out to be erroneous in that, if the current->active_mm corresponds to init_mm, on resume from low power it ends up restoring in the TTBR0_EL1 the init_mm mappings that are global and can cause speculation of TLB entries which end up being propagated to user space. This patch fixes the issue by checking the active_mm pointer before restoring the TTBR0 mappings. If the current active_mm == &init_mm, the code sets the TTBR0_EL1 to the reserved TTBR0 mapping instead of switching back to the active_mm, which is the expected behaviour corresponding to the TTBR0_EL1 settings when __cpu_suspend was entered. Fixes: 95322526ef62 ("arm64: kernel: cpu_{suspend/resume} implementation") Cc: <stable@vger.kernel.org> # 3.14+: 18ab7db Cc: <stable@vger.kernel.org> # 3.14+: 714f599 Cc: <stable@vger.kernel.org> # 3.14+: c3684fb Cc: <stable@vger.kernel.org> # 3.14+ Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-12-20 01:03:47 +08:00
*/
arm64: kernel: fix tcr_el1.t0sz restore on systems with extended idmap Commit dd006da21646 ("arm64: mm: increase VA range of identity map") introduced a mechanism to extend the virtual memory map range to support arm64 systems with system RAM located at very high offset, where the identity mapping used to enable/disable the MMU requires additional translation levels to map the physical memory at an equal virtual offset. The kernel detects at boot time the tcr_el1.t0sz value required by the identity mapping and sets-up the tcr_el1.t0sz register field accordingly, any time the identity map is required in the kernel (ie when enabling the MMU). After enabling the MMU, in the cold boot path the kernel resets the tcr_el1.t0sz to its default value (ie the actual configuration value for the system virtual address space) so that after enabling the MMU the memory space translated by ttbr0_el1 is restored as expected. Commit dd006da21646 ("arm64: mm: increase VA range of identity map") also added code to set-up the tcr_el1.t0sz value when the kernel resumes from low-power states with the MMU off through cpu_resume() in order to effectively use the identity mapping to enable the MMU but failed to add the code required to restore the tcr_el1.t0sz to its default value, when the core returns to the kernel with the MMU enabled, so that the kernel might end up running with tcr_el1.t0sz value set-up for the identity mapping which can be lower than the value required by the actual virtual address space, resulting in an erroneous set-up. This patchs adds code in the resume path that restores the tcr_el1.t0sz default value upon core resume, mirroring this way the cold boot path behaviour therefore fixing the issue. Cc: <stable@vger.kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Fixes: dd006da21646 ("arm64: mm: increase VA range of identity map") Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-10-28 01:29:10 +08:00
cpu_set_reserved_ttbr0();
local_flush_tlb_all();
arm64: kernel: fix tcr_el1.t0sz restore on systems with extended idmap Commit dd006da21646 ("arm64: mm: increase VA range of identity map") introduced a mechanism to extend the virtual memory map range to support arm64 systems with system RAM located at very high offset, where the identity mapping used to enable/disable the MMU requires additional translation levels to map the physical memory at an equal virtual offset. The kernel detects at boot time the tcr_el1.t0sz value required by the identity mapping and sets-up the tcr_el1.t0sz register field accordingly, any time the identity map is required in the kernel (ie when enabling the MMU). After enabling the MMU, in the cold boot path the kernel resets the tcr_el1.t0sz to its default value (ie the actual configuration value for the system virtual address space) so that after enabling the MMU the memory space translated by ttbr0_el1 is restored as expected. Commit dd006da21646 ("arm64: mm: increase VA range of identity map") also added code to set-up the tcr_el1.t0sz value when the kernel resumes from low-power states with the MMU off through cpu_resume() in order to effectively use the identity mapping to enable the MMU but failed to add the code required to restore the tcr_el1.t0sz to its default value, when the core returns to the kernel with the MMU enabled, so that the kernel might end up running with tcr_el1.t0sz value set-up for the identity mapping which can be lower than the value required by the actual virtual address space, resulting in an erroneous set-up. This patchs adds code in the resume path that restores the tcr_el1.t0sz default value upon core resume, mirroring this way the cold boot path behaviour therefore fixing the issue. Cc: <stable@vger.kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Fixes: dd006da21646 ("arm64: mm: increase VA range of identity map") Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-10-28 01:29:10 +08:00
cpu_set_default_tcr_t0sz();
if (mm != &init_mm)
cpu_switch_mm(mm->pgd, mm);
/*
* Restore per-cpu offset before any kernel
* subsystem relying on it has a chance to run.
*/
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 21:54:50 +08:00
set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
/*
* Restore HW breakpoint registers to sane values
* before debug exceptions are possibly reenabled
* through local_dbg_restore.
*/
if (hw_breakpoint_restore)
hw_breakpoint_restore(NULL);
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
}
arm64: kernel: pause/unpause function graph tracer in cpu_suspend() The function graph tracer adds instrumentation that is required to trace both entry and exit of a function. In particular the function graph tracer updates the "return address" of a function in order to insert a trace callback on function exit. Kernel power management functions like cpu_suspend() are called upon power down entry with functions called "finishers" that are in turn called to trigger the power down sequence but they may not return to the kernel through the normal return path. When the core resumes from low-power it returns to the cpu_suspend() function through the cpu_resume path, which leaves the trace stack frame set-up by the function tracer in an incosistent state upon return to the kernel when tracing is enabled. This patch fixes the issue by pausing/resuming the function graph tracer on the thread executing cpu_suspend() (ie the function call that subsequently triggers the "suspend finishers"), so that the function graph tracer state is kept consistent across functions that enter power down states and never return by effectively disabling graph tracer while they are executing. Fixes: 819e50e25d0c ("arm64: Add ftrace support") Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reported-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org> Suggested-by: Steven Rostedt <rostedt@goodmis.org> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> # 3.16+ Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-17 19:50:51 +08:00
unpause_graph_tracing();
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
/*
* Restore pstate flags. OS lock and mdscr have been already
* restored, so from this point onwards, debugging is fully
* renabled if it was enabled when core started shutdown.
*/
local_dbg_restore(flags);
return ret;
}
struct sleep_save_sp sleep_save_sp;
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
static int __init cpu_suspend_init(void)
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 19:22:13 +08:00
{
void *ctx_ptr;
/* ctx_ptr is an array of physical addresses */
ctx_ptr = kcalloc(mpidr_hash_size(), sizeof(phys_addr_t), GFP_KERNEL);
if (WARN_ON(!ctx_ptr))
return -ENOMEM;
sleep_save_sp.save_ptr_stash = ctx_ptr;
sleep_save_sp.save_ptr_stash_phys = virt_to_phys(ctx_ptr);
__flush_dcache_area(&sleep_save_sp, sizeof(struct sleep_save_sp));
return 0;
}
early_initcall(cpu_suspend_init);